Juan Pablo
Mejía Ramos

Associate Professor
Rutgers University

Contact Details

Graduate School of Education

10 Seminary Place
Room 234
New Brunswick, NJ 08901
Tel. +1-848-932-0806

Department of Mathematics

Hill Center
110 Frelinghuysen Road
Room 518
Piscataway, NJ 08854
Tel. +1-848-445-7972

WebLinks

Research group

Projects

Events

Hi / Hola

I am an Associate Professor of Mathematics Education at Rutgers University, where I am jointly appointed in the Department of Learning and Teaching within the Graduate School of Education and the Department of Mathematics within the School of Arts and Sciences. In this page you find information about my academic work.

Education

PhD (Mathematics Education), University of Warwick, 2008.
MS (Mathematics Education), University of Warwick, 2004.
BS (Mathematics), Universidad de Los Andes, 2003.

Research

I am mainly interested in mathematical argumentation and proof, particularly the ways in which university students and research-active mathematicians construct, read, and present arguments and proofs in mathematics. Some of my most recent research projects have focused on:

  • the reasoning styles of mathematics undergraduate students as they construct proofs,
  • the reading of published proofs by research-active mathematicians,
  • the assessment of proof comprehension at the university level, and
  • the different ways in which mathematicians present proofs in their advanced mathematics courses.
For more information on these and other projects, please visit the website of our research group: Proof Comprehension Research Group.

Grants

National Science Foundation

  • J.P. Mejía Ramos (PI), M. Inglis. 2019-2020. Workshop - Understanding Mathematical Explanation: Uniting Philosophical and Educational Perspectives. STS-1921688. Award: $26,870.

  • J.P. Mejía Ramos (PI), K. Weber, D. Gitomer, K. Lew, & K. Melhuish. 2018-2021. Developing and Validating Proof Comprehension Tests in Real Analysis. DUE-1821553. Award: $600,000.

  • K. Weber (PI), N. Wasserman (PI), T. Fukawa-Connelly (PI), A. Cohen, & J.P. Mejía Ramos. 2015-2018. Collaborative Research: Upgrading Learning for Teachers in Real Analysis. DUE-1524681, DUE-1524739, DUE-1524619. Total award: $519,900.

  • J.P. Mejía Ramos (PI), K. Weber, & J. de la Torre. 2013-2015. Validating proof comprehension tests in mathematics. DUE-1245625. Award: $200,000.

  • J.P. Mejía Ramos (PI), K. Weber, E. Fuller, & J. de la Torre. 2010-2013. Proving styles in university mathematics. DRL-1008641. Award: $441,900.

British Academy/Leverhulme

  • L. Alcock (PI), M. Inglis, & J. P. Mejía Ramos. 2014-2017. Understanding Mathematical Language: Construction and Analysis of Expert and Learner Corpora. SG141241. Award: £3,733.

Teaching

Education Mathematics
  • 05:300:341
    High School Mathematics Content: Teaching and Assessment

  • 05:300:342
    Supervised Undergraduate Tutoring in Mathematics

  • 15:254:550
    Problem Solving Processes in Mathematics

  • 15:254:649
    Seminar in Mathematical Ideas

  • 15:255:536
    Teaching Internship Seminar

  • 01:640:300
    Introduction to Mathematical Reasoning

  • 01:640:311
    Introduction to Real Analysis

  • 01:640:350
    Linear Algebra

  • 01:640:351
    Introduction to Abstract Algebra I

Writing

Book Chapters

  • Weber, K., & Mejía Ramos, J. P. (2019). An empirical study on the admissibility of graphical inferences in mathematical proofs. In A. Aberdein & M. Inglis (Eds.) Advances in Experimental Philosophy of Logic and Mathematics. (pp. 123-144). London: Bloomsbury. https://doi.org/10.5040/9781350039049.0009

  • Mejía Ramos, J. P., Alcock, L., Lew, K., Rago, P., Sangwin, C., & Inglis, M. (2019). Using corpus linguistics to investigate mathematical explanation. In F. Eugen & C. Mark (Eds.) Methodological Advances in Experimental Philosophy (pp. 239-263). London: Bloomsbury. https://doi.org/10.5040/9781350069022.ch-009

  • Inglis, M., & Mejía Ramos, J. P. (2013). How persuaded are you? A typology of responses. In A. Aberdein & I. Dove (Eds.) The Argument of Mathematics (pp. 101-118). Springer: Dordrecht. This chapter is a reprint of the journal article published in Research in Mathematics Education 10(2), 119-133. https://doi.org/10.1007/978-94-007-6534-4_7

  • Tall, D. O., & Mejía Ramos, J. P. (2010). The long-term cognitive development of reasoning and proof. In G. Hanna, H.N. Jahnke, and H. Pulte (Eds.), Explanation and Proof in Mathematics: Philosophical and Educational Perspectives (pp. 137-149). New York: Springer. https://doi.org/10.1007/978-1-4419-0576-5_10

  • Mejía Ramos, J. P. (2006). An analysis of three modes of proof. In A. Simpson (Ed.), Retirement as Process and Concept: A Festschrift for Eddie Gray and David Tall, Prague, Czec Republic, 15-16 July 2006 (pp. 173-180). Prague: Karlova Univerzita v Praze, Pedagogick Fakulta.

Refereed Journal Papers

  • Mejía Ramos, J. P., Evans, T., Rittberg, C., & Inglis, M. (in press). Mathematicians' assessments of the explanatory value of proofs. To appear in Axiomathes.

  • Lew, K., Weber, K., & Mejía Ramos, J. P. (2020). Do generic proofs improve comprehension? Journal of Educational Research in Mathematics, Special Issue, 229-248. https://doi.org/10.29275/jerm.2020.08.sp.1.229

  • Weber, K., Dawkins, P., & Mejía Ramos, J. P. (2020). The relationship between mathematical practice and mathematics pedagogy in mathematics education research. ZDM Mathematics Education, 52(6), 1063-1074. https://doi.org/10.1007/s11858-020-01173-7

  • Mejía Ramos, J. P., & Weber, K. (2020). Using task-based interviews to generate hypotheses about mathematical practice: Mathematics education research on mathematicians' use of examples. ZDM Mathematics Education, 52(6), 1099-1112. https://doi.org/10.1007/s11858-020-01170-w

  • Fukawa-Connelly, T., Mejía Ramos, J. P., Wasserman, N., & Weber, K. (2020). An evaluation of ULTRA: An experimental real analysis course built on a transformative theoretical model. International Journal of Research in Undergraduate Mathematics Education, 6(2), 159–185. https://doi.org/10.1007/s40753-019-00102-8

  • Weber, K., Mejía Ramos, J. P., Fukawa-Connelly, T., & Wasserman, N. (2020). Connecting the learning of advanced mathematics with the teaching of secondary mathematics: Inverse functions, domain restrictions, and the arcsine function. Journal of Mathematical Behavior, 57, Article 100752. https://doi.org/10.1016/j.jmathb.2019.100752

  • Lew, K., & Mejía Ramos, J. P. (2020). The linguistic conventions of mathematical proof writing across pedagogical contexts. Educational Studies in Mathematics, 103(1), 43-62. https://doi.org/10.1007/s10649-019-09915-5

  • Weber, K., Lew, K., & Mejía Ramos, J.P. (2020). Using expectancy value theory to account for students' mathematical justifications. Cognition and Instruction, 38(1), 27-56. https://doi.org/10.1080/07370008.2019.1636796

  • Wasserman, N., Weber, K., Fukawa-Connelly, T., & Mejía Ramos, J. P. (2020). Area-preserving transformations: Cavalieri in 2D. Mathematics Teacher: Learning and Teaching PK-12, 113(1), 53-60. https://doi.org/10.5951/MTLT.2019.0079

  • Mejía Ramos, J. P., & Weber, K. (2019). Mathematics majors' diagram usage when writing proofs in calculus. Journal for Research in Mathematics Education, 50(5), 478-488. https://doi.org/10.5951/jresematheduc.50.5.0478

  • Inglis, M. & Mejía Ramos, J. P. (2019). Functional explanation in mathematics. Synthese. Advance online publication. https://doi.org/10.1007/s11229-019-02234-5

  • McGuffey, W., Quea, R., Weber, K., Wasserman, N., Fukawa-Connelly, T., & Mejía Ramos, J.P . (2019). Pre- and in-service teachers' perceived value of an experimental real analysis course for teachers. International Journal of Mathematical Education in Science and Technology, 50(8), 1166-1190. https://doi.org/10.1080/0020739X.2019.1587021

  • Lew, K., & Mejía Ramos, J.P. (2019). Linguistic conventions of mathematical proof writing at the undergraduate level: Mathematicians' and students' perspectives. Journal for Research in Mathematics Education, 50(2), 121-155. https://doi.org/10.5951/jresematheduc.50.2.0121

  • Wasserman, N., Weber, K., Villanueva, M., & Mejía Ramos, J. P. (2018). Mathematics teachers' views about the limited utility of real analysis: A transport model hypothesis. Journal of Mathematical Behavior, 50, 74-89. https://doi.org/10.1016/j.jmathb.2018.01.004

  • Fukawa-Connelly, T., Weber, K., & Mejía Ramos, J. P. (2017). Informal content and student note-taking in advanced mathematics classes. Journal for Research in Mathematics Education, 48(5), 567-579. https://doi.org/10.5951/jresematheduc.48.5.0567

  • Wasserman, N., Fukawa-Connelly, T., Villanueva, M., Mejía Ramos, J.P., & Weber, K. (2017). Making real analysis relevant to secondary teachers: Building up from and stepping down to practice. PRIMUS, 27(6), 559-578. https://doi.org/10.1080/10511970.2016.1225874

  • Mejía Ramos, J. P., Lew, K., de la Torre, J., & Weber, K. (2017). Developing and validating proof comprehension tests in undergraduate mathematics. Research in Mathematics Education, 19(2), 130-146. https://doi.org/10.1080/14794802.2017.1325776

  • Weber, K., Fukawa-Connelly, T., Mejía Ramos, J. P., & Lew, K. (2016). How to help students understand lectures in advanced mathematics. Notices of the American Mathematical Society, 63(10), 1190-1193. https://doi.org/10.1090/noti1435

  • Lew, K., Fukawa-Connelly, T., Mejía Ramos, J.P., & Weber, K. (2016). Lectures in advanced mathematics: Why students might not understand what the professor is trying to convey. Journal for Research in Mathematics Education 47(2), 162-198. https://doi.org/10.5951/jresematheduc.47.2.0162 [preprint]

  • Zazkis, D., Weber, K., & Mejía Ramos, J.P. (2016). Bridging the gap between informal argument and mathematical proof. Educational Studies in Mathematics 93(2), 155-173. https://doi.org/10.1007/s10649-016-9698-3

  • Zhen, B. Mejía Ramos, J.P. & Weber, K. (2016). Mathematics majors’ perceptions on the permissibility of graphs in proofs. International Journal for Research in Undergraduate Mathematics Education 2(1), 1-29. https://doi.org/10.1007/s40753-015-0010-1 [preprint]

  • Mejía Ramos, J. P., Weber, K., & Fuller, E. (2015). Factors influencing students' propensity for semantic and syntactic reasoning in proof writing: A single-case study. International Journal of Research in Undergraduate Mathematics Education 1(2), 187-208. https://doi.org/10.1007/s40753-015-0014-x

  • Weber, K. & Mejía Ramos, J. P. (2015). The contextual nature of conviction in mathematics. For the Learning of Mathematics, 35(2), 9-14. [journal]

  • Zazkis, D., Weber, K., & Mejía Ramos, J. P. (2015). Two proving strategies of highly successful mathematics majors. Journal of Mathematical Behavior, 39, 11-27. https://doi.org/10.1016/j.jmathb.2015.04.003

  • Fuller, E., Weber, K., Mejía Ramos, J. P., Samkoff, A., & Rhoads, K. (2014). Comprehending structured proofs. International Journal for Studies in Mathematics Education 7(1), 1-32. [journal]

  • Weber, K., Inglis, M., & Mejía Ramos, J. P. (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition. Educational Psychologist, 49(1), 36-58. https://doi.org/10.1080/00461520.2013.865527 [preprint]

  • Mejía Ramos, J. P., & Weber, K. (2014). Why and how mathematicians read proofs: further evidence from a survey study. Educational Studies in Mathematics, 85(2), 161-173. https://doi.org/10.1007/s10649-013-9514-2 [preprint]

  • Weber, K., & Mejía Ramos, J. P. (2014). Mathematics majors' beliefs about proof reading. International Journal of Mathematical Education in Science and Technology, 45(1), 89-103. https://doi.org/10.1080/0020739X.2013.790514 [preprint]

  • Weber, K., & Mejía Ramos, J. P. (2013). The influence of sources in the reading of mathematical text: A reply to Shanahan, Shanahan, and Misischia. Journal of Literacy Research, 45, 87-96. https://doi.org/10.1177/1086296X12469968

  • Weber, K., & Mejía Ramos, J. P. (2013). On mathematicians' proof skimming: A reply to Inglis and Alcock. Journal for Research in Mathematics Education, 44(2), 464-471. https://doi.org/10.5951/jresematheduc.44.2.0464

  • Inglis, M., Mejía Ramos, J. P., Weber, K., & Alcock, L. (2013). On mathematicians’ different standards when evaluating elementary proofs. Topics in Cognitive Science, 5(2), 270-282. https://doi.org/10.1111/tops.12019 [preprint]

  • Lai, Y., Weber, K., & Mejía Ramos, J. P. (2012). Mathematicians' perspectives on features of a good pedagogical proof. Cognition and Instruction, 30(2), 146-169. https://doi.org/10.1080/07370008.2012.661814 [preprint]

  • Mejía Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79(1), 3-18. https://doi.org/10.1007/s10649-011-9349-7 [preprint]

  • Iannone, P., Inglis, M., Mejía Ramos, J. P., Simpson, A. & Weber, K. (2011). Does generating examples aid proof production? Educational Studies in Mathematics, 77, 1-14. https://doi.org/10.1007/s10649-011-9299-0

  • Mejía Ramos, J. P. & Inglis, M. (2011). Semantic contamination and mathematical proof: Can a non-proof prove? Journal of Mathematical Behavior, 30, 19-29. https://doi.org/10.1016/j.jmathb.2010.11.005 [preprint]

  • Weber, K. & Mejía Ramos, J. P. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics, 76, 329-344. https://doi.org/10.1007/s10649-010-9292-z [preprint]

  • Weber, K. & Mejía Ramos, J. P. (2009). An alternative framework to evaluate proof productions. Journal of Mathematical Behavior, 28, 212-216. https://doi.org/10.1016/j.jmathb.2009.10.005

  • Inglis, M., & Mejía Ramos, J. P. (2009). The effect of authority on the persuasiveness of mathematical arguments. Cognition and Instruction, 27, 25-50. https://doi.org/10.1080/07370000802584513 [preprint]

  • Inglis, M., & Mejía Ramos, J. P. (2009). On the persuasiveness of visual arguments in mathematics. Foundations of Science, 14, 97-110. https://doi.org/10.1007/s10699-008-9149-4 [preprint]

  • Mejía Ramos, J. P., & Inglis, M. (2009). What are the argumentative activities associated with proof? Research in Mathematics Education, 11, 77-78. https://doi.org/10.1080/14794800902732258

  • Inglis, M., & Mejía Ramos, J. P. (2008). How persuaded are you? A typology of responses. Research in Mathematics Education, 10(2), 119-133. https://doi.org/10.1080/14794800802233647 [preprint]

  • Inglis, M., & Mejía Ramos, J. P. (2008). Theoretical and methodological implications of a broader perspective on mathematical argumentation. Mediterranean Journal for Research in Mathematics Education, 7(2), 107-119.

  • Inglis, M., Mejía Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3-21. https://doi.org/10.1007/s10649-006-9059-8 [preprint]

  • Inglis, M., & Mejía Ramos, J. P. (2005). La fuerza de la aserción y el poder persuasivo en la argumentación en matemáticas. Revista EMA: Investigación e Innovación en Educación Matemática, 10, 327-352. [preprint]