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Abstract. The literature on mathematical explanation contains numerous examples of explanatory, 
and not so explanatory proofs. In this paper we report results of an empirical study aimed at 
investigating mathematicians’ notion of explanatoriness, and its relationship to accounts of 
mathematical explanation. Using a Comparative Judgement approach, we asked 38 
mathematicians to assess the explanatory value of several proofs of the same proposition. We 
found an extremely high level of agreement among mathematicians, and some inconsistencies 
between their assessments and claims in the literature regarding the explanatoriness of certain 
types of proofs. 
Keywords: Mathematical Explanation, Proof, Mathematical Practices, Comparative Judgment 

1. Introduction 
Outside of the philosophy of mathematics, mathematical explanation is frequently interpreted in a 
pedagogical sense: mathematical explanations are the kinds of things that someone may say or do 
to help someone else grasp a mathematical idea. In philosophy of mathematics this notion is often 
more closely related to scientific explanation, where scientific explanations are those things that 
account (or should account) for natural phenomena, and the philosophical study of scientific 
explanation is the characterization of the nature and structure of those explanations. Thus, just like 
we can think of science as offering explanations in its answers to the questions like “why does salt 
dissolve in water?” (with philosophers of science studying the nature of those explanations), some 
philosophers think of mathematics as offering explanations in its accounts of different types of 
phenomena (with philosophers of mathematics studying the nature of those accounts). Since 
Steiner (1978) offered a proposal for what constitutes an explanatory proof, the study of 
mathematical explanation has attracted modest but sustained interest. In the current study we set 
out to empirically investigate the notion of mathematical explanation held by mathematicians, and 
its relationship to philosophical accounts of mathematical explanation. 

Before delving into the relevant literature, we specify the type of mathematical explanation 
that constitutes the focus of our study. Lyon and Coyvan (2008) wrote that, depending on the 
nature of the phenomena being explained, a mathematical explanation is either extra-mathematical 
(if the phenomena being explained is non-mathematical in nature) or intra-mathematical (if the 
explained phenomena itself is mathematical). Lyon and Coyvan were particularly interested in 
extra-mathematical explanations, those which help explain physical phenomena, such as why hive-
bee honeycombs have a hexagonal structure.  Here, we focus instead on intra-mathematical 
explanations, in which what is being explained (the explanandum) and what is doing the explaining 
(the explanans) are both within mathematics. More specifically, we focus on the idea that some 
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mathematical proofs explain why a given mathematical theorem holds, while others merely 
establish that the theorem holds. Although our focus is on the explanatory value of mathematical 
proofs, we do not ascribe to the proof-chauvinism criticised by D’Alessandro (2020): the view that 
“all or most cases of mathematical explanation involve explanatory proofs in an essential way” 
(p.581). Like D’Alessandro, we believe that proofs do not have a monopoly of explanation in 
mathematics. Furthermore, the approach we take in this paper could easily be extended to study 
non-proof explanations.  

We begin by describing and illustrating a distinction between two categories into which 
accounts of mathematical explanation fall, a distinction that was crucial in the design of our study. 
We then consider the relationship between accounts of mathematical explanation and 
mathematical practices and address the motivating question of why philosophers interested in 
mathematical explanation should be interested in the results of our investigations. We then review 
recent developments in the assessment of the explanatory value of proofs, describe our 
methodological approach, and present the results of our study. We end the paper by discussing our 
results in light of current accounts of mathematical explanation, and how the use of the method 
employed in this paper could help move the field forward. 

2. Literature review 

Ontic and epistemic accounts of explanation in mathematics 
Based on a distinction made by Salmon (1984) in the context of scientific explanation, Delarivière, 
Frans, and Van Kerkhove (2017) distinguished between ontic and epistemic accounts of what it 
means for a proof to have explanatory value in mathematics: 

“An account of explanation is ontic if it states: 
Proof P of theorem t has explanatory value if and only if P itself is the explanans of t regardless of 
whether it gives understanding to any particular agent. 

An account of explanation is epistemic if it states: 
Proof P of theorem t has explanatory value if and only if the explanans consists of arguments (in 
the broad sense) including P that grants understanding of t for a particular agent S.” (p. 311) 

Whereas in ontic accounts the explanatory value of a proof relies on the extent to which the proof 
possesses certain characteristics (not necessarily related to understanding), in epistemic accounts 
the explanatory value of a proof relies on the extent to which the proof grants understanding to a 
particular agent. Thus, ontic accounts focus on specifying the kinds of (non-epistemic) 
characteristics that increase the explanatory value of a proof (e.g., in terms of certain mathematical 
properties), whereas epistemic accounts focus on specifying the type of understanding derived 
from proofs with higher explanatory value, and the conditions under which such understanding 
occurs. Crucially, in ontic accounts it is irrelevant (at least in principle) whether a proof with the 
appropriate characteristics is either understood or understandable by any one agent1. In contrast, 
in epistemic accounts, the assessment of the explanatory value of proofs varies depending on the 
agent. Proof P may have high explanatory value for agent S, but not for agent S’. 

Steiner’s (1978) account of what constitutes an explanatory proof in mathematics is an 
early exemplar of the ontic approach. For Steiner, a proof is explanatory if it deduces the theorem 

 
1 Delarivière et al. (2017) clarified that ontic accounts do not necessarily deny a possible relationship between 
explanation and understanding; ontic accounts simply do not use understanding as a defining criterion of the 
explanatory value of a proof (p. 312). 



 

 

about a mathematical object by evidently relying on what he calls the characterizing property of 
that object: 

My view exploits the idea that to explain the behavior of an entity, one deduces the behavior from 
the essence or nature of the entity. Now the controversial concept of an essential property of x (a 
property x enjoys in all possible worlds) is of no use in mathematics, given the usual assumption 
that all truths of mathematics are necessary. Instead of 'essence', I shall speak of 'characterizing 
properties', by which I mean a property unique to a given entity or structure within a family or 
domain of such entities or structures. […]  

My proposal is that an explanatory proof makes reference to a characterizing property of 
an entity or structure mentioned in the theorem, such that from the proof it is evident that the result 
depends on the property. It must be evident, that is, that if we substitute in the proof a different 
object of the same domain, the theorem collapses; more, we should be able to see as we vary the 
object how the theorem changes in response (p. 143) 

Steiner provided several examples of proofs meeting this criterion, including a proof that √2 is 
irrational that appeals to the number of powers of 2 in the prime factorization of 𝑎! and 2𝑏!: since 
both 𝑎!  and 𝑏!  have an even number of 2s in their prime factorization, 𝑎! and 2𝑏2  must have 
different prime factorizations, rendering 𝑎! = 2𝑏! (and thus √2 = 𝑎/𝑏) impossible. For Steiner, 
this proof (unlike the classic proof showing it is impossible to express √2 = 𝑎/𝑏 in lowest terms) 
is explanatory because it relies on the prime power expansion of a number (a ‘characterizing 
property’ of number) in such a way that it is evident how the theorem collapses if we substitute 
the number 2 by any perfect square number, or how the theorem changes if we replace 2 with 
another non-perfect square number. Steiner’s account has received a lot of attention and criticism, 
which have mainly illustrated its limitations as an account of all explanatory proofs in mathematics 
(e.g., Resnik & Kushner, 1987; Hafner & Mancosu, 2005; Lange, 2014). The crucial point here is 
that Steiner’s account relies on the mathematical properties of the objects in the theorem and its 
proof, it is not concerned with whether an agent who reads the proof would or could gain increased 
mathematical understanding. In other words, Steiner’s is an ontic, not an epistemic, account. 

Delarivière, Frans, and Van Kerkhove’s (2017) contextual account, and Inglis and Mejía-
Ramos’s (2019) functional account are two examples of epistemic accounts of mathematical 
explanation. While both define mathematical explanation in terms of an agent’s understanding, 
they differ on the particular kind of understanding an explanatory proof may grant, and the types 
of factors that mediate this understanding. Delarivière et al.’s (2017) contextual account uses an 
abilities-based type of understanding (see also Avigad, 2008), in which “‘Agent S understands X’ 
corresponds to ‘agent S possesses particular abilities related to X’” (p. 313). This account focuses 
on the background, skills, and the epistemic interests of the agent as the main contextual factors 
mediating such understanding. For instance, Delarivière et al. illustrated how the examples of 
explanatory proofs provided by Steiner (1978) could succeed or fail as explanations according to 
their own account. In Delarivière et al.’s account, the ‘characterizing property’ is no longer 
independent of an agent: an agent must use their background and skills to identify the property, 
and what ultimately makes it a ‘characterizing’ property depends on the agent’s own epistemic 
interests. Similarly, making evident how the theorem depends on that property is no longer a job 
passively carried out by the proof, but by an agent who must use their background and skills to 
study how the theorem collapses or changes when different objects are considered. 

While Inglis and Mejía-Ramos’s (2019) approach is compatible with any cognitive, 
knowledge-based theory of understanding, the notion of understanding they favour relies on the 
psychological idea of schema. Schemas are cognitive structures, stored in long-term memory, 



 

 

which help a person integrate existing knowledge with new information observed in the 
environment. Understanding a mathematical object or phenomenon, on this account, involves 
constructing a “sufficiently well-organised schema” of that object or phenomenon, with a focus on 
the ways in which human cognitive architecture (involving sensory, working, and long-term 
memory) mediates such schema formation. According to Inglis and Mejía-Ramos (2019), the 
reason Steiner’s (1978) criteria may lead to explanatory proofs is because the reference to a 
‘characterizing property’ helps agents link relevant information in sensory, working, and long-
term memory, which ultimately facilitates the encoding of new information into a sufficiently well-
organized schema of the object or phenomenon. Thus, Steiner’s explanatory proof that the √2 is 
irrational would be explanatory for an agent (on account of Steiner’s criteria), because its reliance 
on the prime factorization of numbers would ultimately help that agent form more comprehensive 
linked schemas concerned with irrational numbers and √2. Clearly, referencing a ‘characterizing 
property’ is not the only way in which a particular proof may aid this cognitive process, which is 
how Inglis and Mejía-Ramos (2019) are able to incorporate other accounts (e.g., Kitcher, 1981; 
Lange, 2014).  

Both Delarivière et al.’s (2017) and Inglis and Mejía-Ramos’s (2019) approaches lead to a 
notion of explanatoriness that partly depends upon individual agents (as understanding is sensitive 
to individual differences in agents’ abilities and knowledge), but also depends on factors which 
could be shared by larger groups of agents (e.g., common contextual factors in Delarivière et al.’s 
account) and a cognitive architecture shared by all humans (in the case of Inglis and Mejía-Ramos). 

Mathematical explanation in mathematical practices 
One issue that arises in debates about mathematical explanation concerns the relationship between 
the notion of explanation, as studied by philosophers of mathematics, and mathematical practices. 
This relationship is complex and studying it involves addressing general questions such as:  

• To what extent do mathematicians describe themselves (or their mathematical work) as 
explaining mathematical phenomena?  

• To what extent do mathematicians’ assessments of what is (more) explanatory agree with 
those of philosophers?  

• Are mathematicians concerned with the production of the kinds of explanation discussed 
in the philosophy of mathematics literature? 

Weber and Frans (2017) argued that the role of explanation in mathematical practices affects the 
philosophical study of mathematical explanation differently depending on the specific aim of the 
philosophical project. Clearly, if the aim of the project is to describe and evaluate explanatory 
practices in mathematics (what Weber and Frans called the analytical aim), then the role of 
explanation in mathematical practices is crucial. On the other hand, if the aim of the project is to 
develop an ideal of the types of explanations that should be valued in mathematical practices 
(which they called the reflective aim), then the role that explanation actually plays in mathematical 
practice seems to be less important. However, Weber and Frans acknowledged that even when 
adopting the reflective aim, philosophers of mathematics should ultimately want to confront their 
developed ideal of explanation with actual mathematical practices. Without this, it would remain 
unclear how mathematicians' explanatory practices compare to the philosopher’s ideal. 

In the literature, questions about mathematical practices at large are often answered by 
referencing individual mathematicians’ work, views, and beliefs (including the philosopher’s own 



 

 

views and beliefs), without reference to complementary systematic analyses of the practices of the 
broader population of mathematicians (but see, e.g., Löwe & Van Kerkhove 2019). This has led 
to inconsistent claims in the literature regarding the explanatory practices of mathematicians. For 
example, some have suggested that mathematicians often describe themselves (or their work) as 
explaining mathematical phenomena (e.g., Hafner & Mancosu, 2005; Steiner, 1978), while others 
believe that mathematicians rarely do so (e.g., Avigad, 2006; Resnik & Kushner, 1987; Zelcer, 
2013). In a recent systematic analysis of the use of explanatory language in a large sample of 
research papers (all papers uploaded to the ArXiv between January and August 2009), Mejía-
Ramos et al. (2019) found no evidence of such extreme prevalences of explanatory talk in 
mathematical writing (at least when compared to the use of explanatory language in the writing in 
other scientific fields and in day-to-day discourse): while mathematicians do describe themselves 
(or their mathematical work) as explaining mathematics in their research papers, they do so around 
half as often as do physicists in their research papers, or does the general population in day-to-day 
English. 

The general issue motivating the study reported in this paper is the relationship between 
mathematicians’ assessments of explanatoriness and theories of mathematical explanation in the 
literature. To make progress on this general issue, we need methods to investigate mathematicians’ 
assessments of explanatoriness at scale. In this paper, we focus on introducing comparative 
judgements as a method that allows one to measure mathematicians’ assessments of the 
explanatory value of proofs. However, this method can be easily adapted to investigate other types 
of mathematical explanations (e.g., the explanatory value of definitions, diagrams, theorems and 
so on). We suggest that the ability to measure the perceived explanatoriness of mathematical proofs 
could be useful both for those who adopt an analytical aim and those who adopt a reflective aim, 
and we return to this issue later in the paper. 

Assessing the explanatory value of a proof 
To our knowledge, Inglis and Aberdein (2015) were the first researchers to collect a large dataset 
of mathematicians’ assessments of the explanatory value of proofs. In their study, they asked 255 
mathematicians to think of a proof that they had read recently and to rate, on a five-point Likert 
scale (from very inaccurate to very accurate), how well each one of 80 adjectives (including 
‘explanatory’) described it. They then conducted an exploratory factor analysis, a statistical 
method that uses the strength of the correlation between observed variables (in this case the ratings 
of the 80 adjectives) to model their variability in terms of a lower number of unobserved variables 
(called factors). Inglis and Aberdein settled on a model with five factors, which they termed 
Aesthetics, Non-Use, Intricacy, Utility, and Precision. For instance, the factor termed Aesthetics 
captured high correlations between mathematicians’ ratings for 24 of the adjectives, including 
‘striking’, ‘ingenious’, ‘inspired’, ‘profound’, and ‘creative’.  

Inglis and Aberdein (2015) found that ‘explanatory’ had moderately positive loadings on 
the Utility and Precision factors, and a moderately negative loading on the Intricacy factor. In 
other words, proofs were likely to be rated as explanatory if they were seen as useful, precise and 
non-intricate. In a subsequent study, Inglis and Aberdein (2016) investigated mathematicians’ 
levels of agreement on these kinds of judgements by asking 112 mathematicians to rate the same 
proof using a reduced instrument with only 20 adjectives (four per factor). They found no evidence 
of a high level of agreement in mathematicians’ ratings and hypothesized that there could be large 
individual differences in how mathematicians evaluate proofs, including with respect to their 



 

 

explanatory value (although ‘explanatory’ was not itself included in the reduced set of 20 
adjectives). The findings of the study presented in this paper challenge this hypothesis. 

While Inglis and Aberdein’s (2015, 2016) approach provides some information about 
mathematicians’ assessments of the explanatory value of proofs (and a hypothesis about their level 
of agreement on these assessments), their method was not designed to investigate this particular 
type of assessment. Using a five-point scale to rate how accurately the adjective ‘explanatory’ 
describes a given proof, and modelling mathematicians’ appraisals of explanatoriness as a linear 
combination of more general factors provides us with only a rough approximation of 
mathematicians’ assessments of the explanatory value of proofs. We will return to this point in the 
Discussion section.  

If there are disagreements between different mathematicians’ assessments of the 
explanatory value of the same proof, there are at least two different explanations. They may 
represent a disagreement about the appropriate answer to a question which has been interpreted in 
roughly the same manner by everyone. However, such disagreements could also be the product of 
different interpretations of the same question. For example, if we simply asked mathematicians “is 
proof P explanatory?”, disagreements could certainly emerge from mathematicians who interpret 
the question as “does P have mathematical property E that makes it inherently explanatory?” 
(consistent with an ontic account of mathematical explanation), and those who interpret it as 
“would P grant agent S type of understanding U?” (consistent with an epistemic account of 
mathematical explanation). Clearly, even among mathematicians who interpret the question in the 
epistemic sense, we could still have disagreements based on the specific agent and the specific 
type of understanding considered by individual mathematicians.  

In the current study, we wanted to clarify to mathematicians the kind of assessment we 
were interested in (i.e., narrowing down the notion of explanation of interest). We asked 
mathematicians to conduct paired comparisons of purported explanations of the same theorem, 
with each comparison asking them to select the best explanation. With the intention of guiding 
mathematicians to interpret the explanatory value of a proof in a way that was consistent with ontic 
accounts of mathematical explanation, we instructed them to focus their assessments on how well 
the proofs themselves accounted for why the theorem holds, without regard to whether those proofs 
would provide understanding to any particular agent. We now discuss our method in detail. 

3. Method 

Approach 
Rather than asking mathematicians to judge the explanatoriness of individual explanations, we 
adopted a comparative judgement approach. Comparative Judgement (CJ) approaches to 
understanding human judgement exploit the finding that people are better at comparing two objects 
against each other than at evaluating one object against specific criteria (Thurstone, 1927). For 
example, people are more consistent when judging whether one room is hotter than another, than 
when judging the temperature of a single object in degrees Celsius. Thurstone (1927) harnessed 
this finding to assign temperatures to objects, based on participants ’pairwise judgements of which 
object was hotter. He also adopted the same technique to construct scales for other physical 
phenomena, such as weight. Subsequently, and most importantly for our purposes, Thurstone 
applied CJ techniques to construct scales of subjective phenomena such as social attitudes 
(Thurstone, 1954). 



 

 

The CJ approach relies upon the Bradley-Terry model (Bradley & Terry, 1952), which 
assumes that each explanation 𝑖 has a parameter 𝛽# which captures its explanatoriness. Given two 
explanations, 𝑖 and 𝑗, then the probability that 𝑖 is judged to be more explanatory than 𝑗 is given by 
𝑃(𝑖 > 𝑗) = $!"

$!"%$!#
. By recording the results of repeated paired comparisons, empirical estimates of 

𝛽#  and 𝛽&  can be obtained. Jones, Bisson, Gilmore & Inglis (2019) suggested that, in their 
experience, an average of 10 judgements per item (explanations in this case) usually suffices to 
provide a reliable estimate of the 𝛽s. 

CJ methods have since been applied to measurement in a variety of contexts, notably 
education. For example, CJ has been used to assess the quality of students ’essays (Heldsinger & 
Humphry, 2013) and laboratory reports (McMahon & Jones, 2015). It has also been applied in 
mathematics, to assess students’ understanding of calculus, statistics, and algebra (Bisson, 
Gilmore, Inglis & Jones, 2016; Jones et al., 2019) and their problem-solving skills (Jones & Inglis, 
2015). CJ methods have even been successfully used to assess nebulous constructs such as who is 
“the better mathematician”, as part of a project to track examination standards across time (Jones, 
Wheadon, Humphries & Inglis, 2016). The commonality across such studies is using CJ to assess 
constructs – such as explanatoriness – about which experts are expected to have an intuitive 
understanding, but which they may not be able to fully articulate, or use to make reliable absolute 
judgements (Pollitt, 2012).  

One strength of CJ is that it permits empirical investigation of the extent to which the judges 
agree about the construct they are asked to judge. For instance, if teachers are asked to repeatedly 
select which of two students is “the better mathematician” on the basis of their written work, we 
can quantify the extent to which they agree with each other by calculating an appropriate reliability 
coefficient. Such a coefficient represents the extent to which the judges agree about what 
constitutes a good mathematician. 

Following a CJ approach, we asked research-active mathematicians to select the best 
explanation in a series of pairs of mathematical explanations of the same statement, while 
interpreting the explanatory value of a proof in a way that was consistent with ontic accounts of 
mathematical explanation. Our primary goal was to investigate whether our participants’ 
judgements cohered with each other’s. Our secondary goal was to begin to explore the relationship 
between mathematicians’ assessments of what is explanatory in mathematics and the 
corresponding assessments made by philosophers in the literature. 

Materials 
The nine proofs we used in the study were all taken from Ording’s (2019) 99 Variations on a Proof 
of the proposition: 

Proposition. Let 𝑥 ∈ ℝ. If 𝑥' − 6𝑥! + 11𝑥 − 6 = 2𝑥 − 2, then 𝑥 = 1 or 𝑥 = 4. 
The full set of explanations, typeset as seen by participants is given in the Appendix, and 
summarized in Table 1. 



 

 

Explanation Name Explanation Description 

One-line 
(p. 3) 

A one-line argument which asserts the factorisation of the equation’s standard 
form. 

Two-column 
(p. 5) 

A two-column proof which reorganises the equation into standard form, then 
solves it. 

Elementary 
(p. 9) 

A narrative version of the same underlying argument as presented in the two-
column proof. 

Visual 
(p. 23) 

A visual ‘proof’ which deforms a cube of side length x into a cuboid with 
volume equal to the equation in standard form, and with the side lengths equal 
to x - 1, x - 1 and x - 4.  

Contradiction 
(p. 29) 

Verification that x = 1 and x = 4 are solutions, followed by a demonstration 
that the existence of a third solution would imply that 1 = 0. 

Contrapositive 
(p. 31) 

A demonstration that if x were neither 1 nor 4, then the LHS of the equation 
would not equal the RHS. 

Substitution 
(p. 49) 

An argument which substitutes x = y + 1 into the standard form of the 
equation and shows that y must be 0 or 3.  

Taylor series 
(p. 75) 

Uses the Taylor series expansion of the function represented by the equation’s 
standard form and shows the roots must be 1 or 4. 

Experimental  
(p. 183) 

Employs Newton’s method with a computer algebra system to show that the 
equation has roots very near if not equal to 1 and 4. 

Table 1: A description of each of the explanations used in the study. Full versions are given in the Appendix. 
Note that neither the explanations’ names nor descriptions were presented to participants. Page references 
are to Ording’s (2019) 99 Variations on a Proof. 

In the selection of these nine proofs, we wanted to end up with a diverse set of proofs containing 
some of the types of proofs that had been discussed in the mathematics explanation literature. This 
was done to address our secondary, more exploratory goal: to illustrate the relationship between 
mathematicians’ assessments of what is explanatory in mathematics and the corresponding 
assessments made by philosophers in the literature. 

• The ‘Elementary’ and ‘Two-column’ proofs, shown in Figure 1, were of particular 
importance to explore whether mathematicians are influenced by epistemic factors when 
asked to judge ontic explanatoriness. We considered these two explanations to be 
mathematically equivalent in the sense that they both reorganized the original equation into 
the standard form 𝑎𝑥' + 𝑏𝑥! + 𝑐𝑥 + 𝑑 = 0, then split 9x into 5x + 4x, which permitted the 
equation to be factorized as (𝑥! − 5𝑥)(𝑥 − 1) + 4(𝑥 − 1) = 0 and then (𝑥! − 5𝑥 + 4)(𝑥 −
1) = 0. Importantly, the only difference between the two explanations was the level of 
detail provided (substantially higher in the ‘Two-column’ proof). If mathematicians were 
eschewing all epistemic considerations when judging the ontic explanatoriness of these 
explanations, we would expect that these two explanations would be judged to be similarly 
explanatory. 

• The ‘One-line’, ‘Substitution’, and ‘Taylor series’ proofs were chosen as three direct proofs 
of different length, and with varying degrees of complexity and generality of approach. 



 

 

• The ‘Visual’ and ‘Experimental’ explanations both have debatable status as proofs. 
Furthermore, some have observed that visual proofs are often seen as being explanatory 
(e.g., Hanna, 2000; Steiner, 1978) and the notion of an explanatory proof is commonly 
illustrated with visual proofs in the literature (most often with examples in Euclidean 
geometry, but also with dot-diagrams in elementary number theory). 

• The ‘Contradiction’ and ‘Contrapositive’ proofs were chosen as examples of indirect 
proofs. Traditionally, proofs by contradiction have been discussed in the literature as being 
generally non-explanatory (Lange, 2016, and Mancosu, 2018, offer some historical 
examples). However, some authors have offered examples of proofs by contradiction that 
they deemed to be explanatory (Steiner, 1978; Colyvan, 2012; Hanna, 2018). 
 

Two-Column Elementary 

 

 

Figure 1. The ‘Two-column ’and ‘Elementary ’explanations as presented to mathematicians. 

Procedure and Participants 
Participants were recruited by email. Once they had read information about the study contained in 
the invitation email, if they wished to participate then they visited a website which explained the 
purpose of the study and asked them to state their research area, by selecting which category of 
the Mathematics Subject Classification most of their research fell into. They then read detailed 
instructions about the study: 
  



 

 

Our aim is to study mathematicians' sense of what makes a good explanation in mathematics. To 
this end we will ask you to conduct a series of paired comparisons of mathematical explanations. 
In each comparison you will be asked to read two explanations of a given proposition in 
mathematics and to choose the one which you think best explains why the proposition holds. […] 
All arguments you will read in this study come from Philip Ording’s book “99 Variations on a 
Proof”. In each paired comparison, we want you to think about which argument best explains 
why the proposition holds, and not to focus on how it might be received by a particular audience. 
(Emphasis in the original.) 

Our intention with these instructions was to prompt participants to focus on the explanatory value 
of a proof in a way that was consistent with ontic, rather than epistemic accounts of mathematical 
explanation. The instructions also explained how the paired comparison process worked, and asked 
participants to complete a total of twenty judgements. 

Once participants had read the instructions, they clicked through to the first paired 
comparison which was presented on the No More Marking platform 2 . Participants saw two 
explanations side-by-side and were asked to click “left” or “right” based on which they thought 
was the better explanation of why the proposition holds. Once participants had made their 
selection, another two explanations were presented. Each pairing was selected randomly from the 
set of possible pairs (the order of explanations in each pairing was also randomized). After 
participants had completed twenty judgements, their participation in the study finished. 

Our data collection proceeded in two stages. Participants in the first stage were research-
active mathematicians affiliated with the Department of Mathematics at the University of 
Auckland. We continued recruiting participants until we had collected a complete dataset, which 
consisted of twenty comparisons from each of 16 mathematicians. After analysing the data from 
the first stage we decided to attempt to replicate the study in a new context, and so attempted to 
recruit 16 further mathematicians, this time affiliated with the Department of Mathematics at 
Rutgers University. Although we planned to collect data from 16 Rutgers-based mathematicians, 
we had already obtained 22 complete datasets before we were able to stop data collection. Thus, 
the final sample consisted of a total of 38 mathematicians and 760 judgements, meaning that we 
had an average of 84 judgements per explanation, well above Jones et al.’s (2019) recommendation 
of 10.  

The participants researched a wide range of mathematical topics, the most common being 
combinatorics (N = 4), partial differential equations (N = 4), K-theory (N = 3), and group theory 
(N = 3).  

4. Results 
The paired comparison data were fitted to the Bradley-Terry model (Bradley & Terry, 1952; 
Hunter, 2004) using the sirt package in R.3 The Bradley-Terry model used the set of paired 
comparison judgements to produce estimates of the ‘explanatoriness’ of each proof. This was 
captured with a quality parameter and associated standard error (a measure of the precision with 
which the parameter was estimated). These parameters were used to explore the mathematicians ’
judgements further. 
  

 
2 www.nomoremarking.com 
3 Data and code available at http://dx.doi.org/10.17028/rd.lboro.12458486 



 

 

Mathematicians’ agreement  
To address our main question – do mathematicians agree about the criteria that make explanations 
explanatory? – we used an inter-rater reliability coefficient based on Bisson, Gilmore, Inglis and 
Jones’s (2016) split-half technique. Specifically, we randomly split the group of Auckland judges 
into two equal subgroups (each with eight participants), used the Bradley-Terry model to produce 
parameter estimates separately from the judgements from each group, and then correlated the 
resulting parameter values. We repeated this process 1000 times (with a new random split in each 
case) and calculated the average correlation coefficient across the 1000 iterations. If this so-called 
split-half inter-rater reliability coefficient were close to 1, it would indicate that the mathematicians 
in our sample completely agreed with each other about which explanations were most explanatory. 
However, if the coefficient was close to zero, then this would indicate that the mathematicians had 
completely different conceptions of explanatoriness.  

In the Auckland sample the split-half inter-rater reliability coefficient was very high, at 
.882, indicating that the mathematicians largely had a shared conceptualisation of explanation. We 
repeated this analysis in the Rutgers sample, finding that the parameter values derived from the 
Rutgers participants correlated very highly with those derived from the Auckland participants, r = 
.909. The results from the two samples are shown in Figure 2. To ensure that the reliability 
coefficient in the Rutgers sample was comparable to the Auckland sample, we used randomly 
created groups of the same size (i.e., 8 participants) to calculate the split-half inter-rater reliability 
coefficient. This yielded a value of .910. 

 
Figure 2. Relationship of parameters obtained from the Auckland and Rutgers samples (the largest 
disagreement was the ‘Substitution’ proof). Error bars show ± 1 SE of the mean. 

Given that the results derived from the Auckland and Rutgers samples were extremely similar, we 
refitted the Bradley-Terry model to the combined set of judgements. This again yielded an 



 

 

extremely high split-half inter-rater reliability coefficient of .947. Finally, given that previous 
research on mathematicians ’evaluations of proofs had found differences between pure and applied 
mathematicians (e.g., Inglis et al., 2013; Inglis & Aberdein, 2020), we first used our participants ’
area of research (as self-reported using the Mathematics Subject Classification) to classify them 
as either pure or applied mathematicians, and we then fitted the Bradley-Terry model to each one 
of these two groups. The reliability coefficient for both groups was very high (.929 for pure and 
.803 for applied mathematicians), as was the correlation between the two groups' parameters (r = 
.957). In sum, the research mathematicians in our sample tended to agree with each other about 
which of the proofs best explained why the proposition holds. 

Exploratory results 
To address our second goal – to explore the relationship between mathematicians ’assessments of 
what is explanatory in mathematics and the corresponding assessments made by philosophers in 
the literature – we explored the parameters associated with each of the proofs. These parameters 
are shown in Figure 3. Note that these values are only meaningful in relation to each other (they 
are on an arbitrary scale) but that, nevertheless, the numbers are interpretable as a scale (i.e., the 
gap in explanatoriness between explanations with parameters 0 and 0.5 is the same as the gap 
between explanations with parameters 0.5 and 1).  

 
Figure 3. Perceived explanatoriness of each explanation (Auckland and Rutgers samples combined). Error 
bars show ± 1 SE of the mean. 

  



 

 

Below we briefly summarize the explanation parameters by their selection criteria:  

• The ‘Elementary’ and ‘Two-column’ proofs: The ‘Elementary’ proof was deemed to be 
most explanatory by the mathematicians in the study. Critically, the ‘Elementary’ and 
‘Two-column’ explanations had substantially different parameters, 1.52 and -0.18 
respectively. In other words, despite the two proofs presenting what we see as being the 
same underlying mathematical argument, our participants perceived them to have very 
different explanatory values. Given this result, and despite the clear experimental 
instructions, it seems unlikely that our participants’ judgements were solely influenced by 
ontic explanatoriness. We return to this issue in the Discussion. 

• The ‘One-line’, ‘Substitution’, and ‘Taylor series’ proofs: With parameters of 1.23, 1.01 
and -0.252, respectively, these three direct proofs had substantially different parameters. 
In particular, the extremely brief ‘One-line’ proof was deemed the second most explanatory 
by the mathematicians. 

• The ‘Visual’ and ‘Experimental’ proofs: With parameters of -1.97 and -2.70 respectively, 
these two proofs were deemed the least explanatory by the mathematicians in the study. 

• The ‘Contradiction’ and ‘Contrapositive’ proofs:  With parameters of 0.78 and 0.56, 
respectively, the perceived levels of these indirect proofs were perhaps surprisingly high 
given suggestions in the literature that indirect proofs are rarely explanatory.  

5. Discussion 
We see the main contribution of this paper to be methodological. We have successfully used the 
Comparative Judgement (CJ) approach to measure mathematicians’ notion of the ontic explanatory 
value of nine proofs. This success is partly manifested in the high-level of agreement between 
mathematicians regarding which of the proofs best explained why the given proposition holds. 
While it remains unclear the extent to which mathematicians can articulate this notion (or use it to 
make absolute judgements), or where it comes from (e.g., whether these judgements are the 
product of enculturation, as internalized norms and values of mathematical practices), we believe 
that theories of mathematical explanation must be able to account for mathematicians’ judgements 
of explanatoriness of the type we have recorded. 

One possible challenge to the claimed success of this approach is that the explanations we 
used were extremely simple. We note that the mathematician Ording (2019) called these 
explanations proofs, and that these proofs are not much simpler than the kind of toy examples 
commonly used in the literature to illustrate the notion of explanatory proof. However, we agree 
that the CJ method should be tested with more complex results and proofs. On the other hand, the 
fact that mathematicians displayed such high level of agreement when making these comparative 
judgements about the explanatoriness of these simple proofs, could present a challenge to the 
following prediction by Lange (2014): 

My proposal predicts that if the result exhibits no noteworthy feature, then to demand an 
explanation of why it holds, not merely a proof that it holds, makes no sense. There is nothing that 
its explanation over and above its proof would amount to until some feature of the result becomes 
salient.  

This prediction is borne out. For example, there is nothing that it would be for some proof 
to explain why, not merely to prove that, ∫ (𝑥' − 5𝑥 + 2)𝑑𝑥 = 4'

( . Nothing about this equation 
calls for explanation. (p. 507) 



 

 

It is unclear whether our participants would have been able to make absolute judgements about the 
explanatoriness of these simple proofs (i.e., to decide that any of these individual proofs explained 
the given proposition), or whether Lange (2014) would see anything worth explaining in the 
proposition we used, but our results suggest that mathematicians were able to make sense of our 
instruction to compare which of our simple proofs best explained why that proposition holds. 

Another challenge could come from the comparison of our findings with those of Inglis 
and Aberdein (2016): while we found mathematicians in our sample tended to agree with each 
other about the explanatory value of these nine proofs, Inglis and Aberdein found evidence against 
a high level of agreement in mathematicians’ more general proof appraisal, hypothesizing that 
there could be large individual differences in how mathematicians evaluate proofs (including with 
respect to their explanatory value). As suggested earlier in the paper, we believe these 
discrepancies are mainly due to differences in methodological approach: Inglis and Aberdein’s 
dimension reduction approach (which approximates mathematicians’ judgements of 
explanatoriness through Likert-scale ratings of other adjectives that load onto factors with known 
correlation coefficients with ‘explanatoriness’) is not as well suited for the study of 
mathematicians’ judgements with respect to individual criteria as our more direct CJ approach. 
We hypothesize that the CJ approach will in general be a better approach to study mathematicians’ 
proof appraisals with respect to specific criteria. For instance, Inglis and Aberdein found that 
mathematicians tend to disagree about the aesthetic quality of proofs when asked to make absolute 
judgements about a single proof in isolation. Future research could productively test whether 
mathematicians agree about mathematical aesthetics in relative terms, using a similar CJ method 
as deployed here. 

Finally, the high level of agreement in mathematicians’ judgments of explanatoriness 
would seem to pose a challenge for epistemic accounts of mathematical explanation, particularly 
for philosophers studying explanation with an analytical aim: if the proposal is to use an epistemic 
account of mathematical explanation to describe explanatory practices in mathematics one would 
have to justify how the lack of specification of an agent could lead to similar judgements from 
different mathematicians. However, this challenge can be easily addressed: we would expect very 
few individual differences in mathematicians’ understanding of polynomials and their views of the 
‘generic student’ which they may (despite our instructions) be considering when evaluating these 
explanations epistemically. In this sense, an epistemic account would predict a lower level of 
agreement in mathematicians’ assessment of the explanatoriness of more complex proofs, or of 
proofs in more specialized topics. This is a hypothesis that could be tested in future research. 

With respect to our more exploratory results, it is worth noting that each of the following 
observations requires its own study (or sequence of studies). This is partly because claims of the 
form “Mathematicians find X (non) explanatory”, or “Mathematicians find X to be more 
explanatory that Y”, where X and Y represent large categories of proofs, clearly require testing 
that goes beyond the use of single instances of X and Y. Nevertheless, we believe the following 
exploratory results constitute promising avenues for future research. 

Despite explicitly asking mathematicians to focus on the proofs themselves (and not on 
how they might be received by a particular audience), the perceived explanatory value of two 
proofs presenting the same underlying argument (‘Elementary  ’and ‘Two-column’) was 
substantially different. Given that these parameters were obtained from all paired comparisons 
made by mathematicians (not a single comparison of these two proofs), these substantially 
different assessments cannot be explained by claiming that mathematicians could have been forced 
to consider other factors when shown two proofs that they considered to be equally explanatory. 



 

 

Thus, even when guiding mathematicians to interpret the explanatory value of a proof in a way 
that was consistent with ontic accounts of mathematical explanation, they seem to have considered 
factors other than the mathematical reasons offered by the proofs for why the proposition holds. 

The challenge for an ontic account is to produce some characteristic of the ‘Elementary’ 
proof (other than its underlying mathematical argument) that is not only missing from the ‘Two-
column’ proof but can also be disassociated (at least in principle) from an agent’s understanding. 
On the other hand, while we do not have data on the specific factors that played a role in 
mathematicians’ assessments of the explanatory value of these proofs, those factors could be 
related to how easy it is to understand them. We suspect that the extra level of detail contained in 
the ‘Two-column’ explanation was perceived to be excessive, and that this would constitute an 
obstacle to gaining understanding for readers with an undergraduate (or higher) level of 
mathematical knowledge. This belief is supported by the educational psychology literature. A level 
of instructional guidance that is suitable for low-knowledge learners has been found to be 
disruptive for high-knowledge learners, a result known as the ‘expertise-reversal effect’ (Kalyuga, 
2007). This also suggests that certain types of gaps in proofs (Fallis, 2003; Andersen, 2020) could 
increase the explanatory value of a proof in mathematical practices. Future research could test this 
hypothesis. 

Finally, in contrast to claims made in the literature regarding the explanatory value of 
different types of proofs, mathematicians in our study did not seem to judge visual proofs as 
particularly explanatory, or proofs by contradiction as particularly non-explanatory. Indeed, the 
fact that our proof by contradiction was deemed to be substantially more explanatory than our 
visual proof (with more standard, direct proofs being rated somewhere in between) provides an 
interesting counterexample to general claims about the explanatory value of these two types of 
proof (at least with respect to their description of explanatory practices of mathematicians). The 
CJ method could be used to investigate mathematicians’ judgements of the explanatoriness in more 
controversial cases, such as proofs by induction, which have been described in the literature as 
being both generally explanatory (e.g., Brown, 1999), and generally not explanatory (Lange, 
2009). Moreover, this method could be used to investigate the factors that influence 
mathematicians’ judgements of the explanatoriness of these different types of proofs.  
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