|
|
Course Syllabus
|
|
DATE |
TOPICS
|
SUGGESTED READING
|
9/2, 9/5 |
Introduction, Overview
Hyperbolic Geometry |
Chap. 2.1 |
9/9, 9/12 |
Fundamental Domains, Lattices |
Chap 2.2 |
9/16, 9/19 |
Gauss-Bonnet, Lattices are Geometrically Finite |
Chap 2.2 |
9/23 NO CLASS 9/26 |
Cusps, parabolic/unipotent elements Structure of Dirichlet Domain |
Chap 2.2 |
9/30, 10/3 |
Ergodicity, Recurrence |
Chap 1.1 |
10/7, 10/10 |
Mean Ergodic Theorems |
Chap 1.2 |
10/14, 10/17 |
Mixing |
Chap 1.2 |
10/21, 10/24 |
Unique Ergodicity Benford's Law 3x+1 Map, zeta(1/2+it) |
Chap 1.3 Benford's Law, values of L-functions and the 3x+1 Problem |
10/28 NO CLASS 10/31 |
Equidistribution Weyl's Criterion |
Chap 1.3 |
11/4, 11/7 |
Unit Tangent Bundle Geodesic/Horocycle Flow |
Chap 2.3 |
11/11, 11/14 |
Howe-Moore |
Chap 3.1 |
11/18, 11/21 |
Equidistribution of Spheres Lattice Point Counting |
Chap 3.3 |
Wed 11/26 |
Horocycle Flow Zagier/Sarnak |
Chap 4.1-4.4 |
12/5 NO CLASS 12/2 |
Bounds for Fourier Coefficients |
Sparse Equidistribution |
12/9 |
Overview |
|
| |
|
|
|