
Chapter 4

Michelle Bodnar, Andrew Lohr

February 5, 2018

Exercise 4.1-1

It will return the least negative position. As each of the cross sums are
computed, the most positive one must have the shortest possible lengths. The
algorithm doesn’t consider length zero sub arrays, so it must have length 1.

Exercise 4.1-2

Algorithm 1 Brute Force Algorithm to Solve Maximum Subarray Problem

left = 1
right = 1
max = A[1]
curSum = 0
for i = 1 to n do // Increment left end of subarray

curSum = 0
for j = i to n do // Increment right end of subarray

curSum = curSum+A[j]
if curSum > max then

max = curSum
left = i
right = j

end if
end for

end for

Exercise 4.1-3

The crossover point is at around a length 20 array, however, the times were
incredibly noisy and I think that there was a garbage collection during the run,
so it is not reliable. It would probably be more effective to use an actual profiler
for measuring runtimes. By switching over the way the recursive algorithm
handles the base case, the recursive algorithm is now better for smaller values of
n. The chart included has really strange runtimes for the brute force algorithm.
These times were obtained on a Core 2 duo P8700 and java 1.8.0.51.

1

In the chart of runtimes, the x axis is the length of the array input. The y
axis is the measured runtime in nanoseconds.

Exercise 4.1-4

First do a linear scan of the input array to see if it contains any positive
entries. If it does, run the algorithm as usual. Otherwise, return the empty
subarray with sum 0 and terminate the algorithm.

Exercise 4.1-5

See the algorithm labeled linear time maximum subarray.
Exercise 4.2-1

2

Algorithm 2 linear time maximum subarray(A)

1: M = −∞
2: lowM , highM = null
3: Mr = 0
4: lowr = 1
5: for i from 1 to A.length do
6: Mr+ = A[i]
7: if Mr > M then
8: lowM = lowr
9: highM = i

10: M = Mr

11: end if
12: if Mr < 0 then
13: Mr = 0
14: lowr = i+ 1
15: end if
16: end for
17: return (lowM , highM ,M)

S1 = 8− 2 = 6

S2 = 1 + 3 = 4

S3 = 7 + 5 = 12

S4 = 4− 6 = −2

S5 = 1 + 5 = 6

S6 = 6 + 2 = 8

S7 = 3− 5 = −2

S8 = 4 + 2 = 6

S9 = 1− 7 = −6

S10 = 6 + 8 = 14

P1 = 6

P2 = 8

P3 = 72

P4 = −10

P5 = 48

P6 = −12

P7 = −84

3

C11 = 48− 10− 8− 12 = 18

C12 = 6 + 8 = 14

C21 = 72− 10 = 62

C22 = 48 + 6− 72 + 84 = 66

So, we get the final result: (
18 14
62 66

)

Exercise 4.2-2

As usual, we will assume that n is an exact power of 2 and A and B are n
by n matrices. Let A[i..j][k..m] denote the submatrix of A consisting of rows i
through j and columns k through m.

Exercise 4.2-3

You could pad out the input matrices to be powers of two and then run the
given algorithm. Padding out the the next largest power of two (call it m) will
at most double the value of n because each power of two is off from each other
by a factor of two. So, this will have runtime

mlg 7 ≤ (2n)lg 7 = 7nlg 7 ∈ O(nlg 7)

and
mlg 7 ≥ nlg 7 ∈ Ω(nlg 7)

Putting these together, we get the runtime is Θ(nlg 7).

Exercise 4.2-4

Assume that n = 3m for some m. Then, using block matrix multiplication,
we obtain the recursive running time T (n) = kT (n/3)+O(1). Using the Master
theorem, we need the largest integer k such that log3 k < lg 7. This is given by
k = 21.

Exercise 4.2-5

If we take the three algorithms and divide the number of multiplications
by the side length of the matrices raised to lg(7), we approximately get the

4

Algorithm 3 Strassen(A, B)

if A.length == 1 then
return A[1] ·B[1]

end if
Let C be a new n by n matrix
A11 = A[1..n/2][1..n/2]
A12 = A[1..n/2][n/2 + 1..n]
A21 = A[n/2 + 1..n][1..n/2]
A22 = A[n/2 + 1..n][n/2 + 1..n]
B11 = B[1..n/2][1..n/2]
B12 = B[1..n/2][n/2 + 1..n]
B21 = B[n/2 + 1..n][1..n/2]
B22 = B[n/2 + 1..n][n/2 + 1..n]
S1 = B12−B22
S2 = A11 +A12
S3 = A21 +A22
S4 = B21−B11
S5 = A11 +A22
S6 = B11 +B22
S7 = A12−A22
S8 = B21 +B22
S9 = A11−A21
S10 = B11 +B12
P1 = Strassen(A11, S1)
P2 = Strassen(S2, B22)
P3 = Strassen(S3, B11)
P4 = Strassen(A22, S4)
P5 = Strassen(S5, S6)
P6 = Strassen(S7, S8)
P7 = Strassen(S9, S10)
C[1..n/2][1..n/2] = P5 + P4 − P2 + P6

C[1..n/2][n/2 + 1..n] = P1 + P2

C[n/2 + 1..n][1..n/2] = P3 + P4

C[n/2 + 1..n][n/2 + 1..n] = P5 + P1 − P3 − P7

return C

5

following values

3745

3963

4167

This means that, if used as base cases for a Strassen Algorithm, the first one
will perform best for very large matrices.

Exercise 4.2-6

By considering block matrix multiplication and using Strassen’s algorithm as
a subroutine, we can multiply a kn×n matrix by an n×kn matrix in Θ(k2nlog 7)
time. With the order reversed, we can do it in Θ(knlog 7) time.

Exercise 4.2-7

We can see that the final result should be

(a+ bi)(c+ di) = ac− bd+ (cb+ ad)i

We will be multiplying

P1 = (a+ b)c = ac+ bcP2 = b(c+ d) = bc+ bdP3 = (a− b)d = ad+ bd

Then, we can recover the real part by taking P1−P2 and the imaginary part
by taking P2 + P3.

Exercise 4.3-1

Inductively assume T (n) ≤ cn2, were c is taken to be max(1, T (1)) then

T (n) = T (n− 1) +n ≤ c(n− 1)2 +n = cn2 + (1− 2c)n+ 1 ≤ cn2 + 2− 2c ≤ cn2

The first inequality comes from the inductive hypothesis, the second from the
fact that n ≥ 1 and 1− 2c < 0. The last from the fact that c ≥ 1.

Exercise 4.3-2

We’ll show T (n) ≤ 3 log n− 1, which will imply T (n) = O(log n).

T (n) = T (dn/2e) + 1

≤ 3 log(dn/2e)− 1 + 1

≤ 3 log(3n/4)

= 3 log n+ 3 log(3/4)

≤ 3 log n+ log(1/2)

= 3 log n− 1.

6

Exercise 4.3-3

Inductively assume that T (n) ≤ cn lg n where c = max(T (2)/2, 1). Then,

T (n) = 2T (bn/2c) + n ≤ 2cbn/2c lg(bn/2c) + n

≤ cn lg(n/2) + n = cn(lg(n)− 1) + n = cn(lg(n)− 1 +
1

c
) ≤ cn lg(n)

And so, T (n) ∈ O(n lg(n)).
Now, inductively assume that T (n) ≥ c′n lg(n) where c′ = min(1/3, T (2)/2).

T (n) = 2T (bn/2c) + n ≥ 2c′bn/2c lg(bn/2c) + n ≥ c′(n− 1) lg((n− 1)/2) + n

= c′(n− 1)(lg(n)− 1− lg(n/(n− 1))) + n

= c′n(lg(n)− 1− lg(n/(n− 1)) +
1

c′
)− c′(lg(n)− 1− lg(n/(n− 1)))

≥ c′n(lg(n)− 2 +
1

c′
− (lg(n− 1)− 1)

n
) ≥ c′n(lg(n)− 3 +

1

c′
) ≥ c′n lg(n)

So, T (n) ∈ Ω(n). Together with the first part of this problem, we get that
T (n) ∈ Θ(n).

Exercise 4.3-4

We’ll use the induction hypothesis T (n) ≤ 2n log n + 1. First observe that
this means T (1) = 1, so the base case is satisfied. Then we have

T (n) = 2T (bn/2c) + n

≤ 2((2n/2) log(n/2) + 1) + n

= 2n log(n)− 2n log 2 + 2 + n

= 2n log(n) + 1 + n+ 1− 2n

≤ 2n log(n) + 1.

Exercise 4.3-5

If n is even, then that step of the induction is the same as the “inexact”
recurrence for merge sort. So, suppose that n is odd, then, the recurrence is

T (n) = T ((n + 1)/2) + T ((n − 1)/2) + Θ(n). However, shifting the argu-
ment in n lg(n) by a half will only change the value of the function by at most
1
2 ·

d
dn (n lg(n)) = lg(n)

2 +1, but this is o(n) and so will be absorbed into the Θ(n)
term.

Exercise 4.3-6

7

Choose n1 such that n ≥ n1 implies n/2 + 17 ≤ 3n/4. We’ll find c and d
such that T (n) ≤ cn log n− d.

T (n) = 2T (bn/2c+ 17) + n

≤ 2(c(n/2 + 17) log(n/2 + 17)− d) + n

≤ cn log(n/2 + 17) + 17c log(n/2 + 17)− 2d+ n

≤ cn log(3n/4) + 17c log(3n/4)− 2d+ n

= cn log n− d+ cn log(3/4) + 17c log(3n/4)− d+ n.

Take c = −2/ log(3/4) and d = 34. Then we have T (n) ≤ cn log n − d +
17c log(n) − n. Since log(n) = o(n), there exists n2 such that n ≥ n2 im-
plies n ≥ 17c log(n). Letting n0 = max{n1, n2} we have that n ≥ n0 implies
T (n) ≤ cn log n− d. Therefore T (n) = O(n log n).

Exercise 4.3-7

We first try the substitution proof T (n) ≤ cnlog3 4.

T (n) = 4T (n/3) + n ≤ 4c(n/3)log3 4 + n = 4cnlog3 4 + n

This clearly will not be ≤ cnlog3 4 as required.
Now, suppose instead that we make our inductive hypothesis T (n) ≤ cnlog3 4−

3n.

T (n) = 4T (n/3) +n ≤ 4(c(n/3)log3 4−n) +n = cnlog3 4− 4n+n = cnlog3 4− 3n

as desired.

Exercise 4.3-8

Suppose we want to use substitution to show T (n) ≤ cn2 for some c. Then
we have

T (n) = 4T (n/2) + n

≤ 4(c(n/2)2) + n

= cn2 + n,

which fails to be less than cn2 for any c > 0. Next we’ll attempt to show
T (n) ≤ cn2 − n.

T (n) = 4T (n/2) + n

≤ 4(c(n/2)2 − n) + n

= cn2 − 4cn+ n

≤ cn2

8

provided that c ≥ 1/4.

Exercise 4.3-9

Consider n of the form 2k. Then, the recurrence becomes

T (2k) = 3T (2(k/2)) + k

We define S(k) = T (2k). So,

S(k) = 3S(k/2) + k

We use the inductive hypothesis S(k) ≤ (S(1) + 2)klog2 3 − 2k

S(k) = 3S(k/2) + k ≤ 3(S(1) + 2)(k/2)log2 3 − 3k + k = (S(1) + 2)klog2 3 − 2k

as desired. Similarly, we show that S(k) ≥ (S(1) + 2)klog2 3 − 2k

S(k) = 3S(k/2) + k ≥ (S(1) + 2)klog2 3 − 2k

So, we have that S(k) = (S(1) + 2)klog2 3 − 2k. Translating this back to T ,
T (2k) = (T (2) + 2)klog2 3 − 2k. So, T (n) = (T (2) + 2)(lg(n))log2 3 − 2 lg(n).

Exercise 4.4-1

Since in a recursion tree, the depth of the tree will be lg(n), and the number
of nodes that are i levels below the root is 3i. This means that we would estimate
that the runtime is

∑lg(n)
i=0 3i(n/2i) = n

∑lg(n)
i=0 (3/2)i = n (3/2)lg(n)−1

.5 ≈ nlg(3).

We can see this by performing a substutiton T (n) ≤ cnlg(3) − 2n. Then, we
have that

T (n) = 3T (nbn/2c) + n

≤ 3cnlg(3)/2lg(3) − 3n+ n

= cnlg(3) − n

So, we have that T (n) ∈ O(nlg(3)).

Exercise 4.4-2

As we construct the tree, there is only one node at depth d, and its weight
is n2/(2d)2. Since the tree has log(n) levels, we guess that the solution is

roughly
∑logn
i=0

n2

4i = O(n2). Next we use the substitution method to verify that
T (n) ≤ cn2.

T (n) = T (n/2) + n2

≤ c(n/2)2 + n2

= (
c

4
+ 1)n2

≤ cn2

9

provided that c ≥ 4/3.

Exercise 4.4-3

Again, we notice that the depth of the tree is around lg(n), and there are 4i

vertices on the ith level below the root, so, we have that our guess is n2. We
show this fact by the substitution method. We show that T (n) ≤ cn2 − 6n

T (n) = 4T (n/2 + 2) + n

≤ 4c(n2/4 + 2n+ 4− 3n− 12) + n

= cn2 − 4cn− 32c+ n

Which will be ≤ cn2 − 6 so long as we have −4c+ 1 ≤ −6 and c ≥ 0. These
can both be satisfied so long as c ≥ 7

4 .

Exercise 4.4-4

The recursion tree looks like a complete binary tree of height n with cost 1 at
each node. Thus we guess that the solution is O(2n). We’ll use the substitution
method to verify that T (n) ≤ 2n − 1.

T (n) = 2T (n− 1) + 1

≤ 2(2n−1 − 1) + 1

= 2n − 1.

Exercise 4.4-5

The recursion tree looks like one long branch and off of it, branches that
jump all the way down to half. This seems like a pretty full tree, we’ll we’ll
guess that the runtime is O(n2). To see this by the substitution method, we try
to show that T (n) ≤ 2n by the substitution method.

T (n) = T (n− 1) + T (n/2) + n

≤ 2n−1 +
√

2n + n

≤ 2n

Now, to justify that this is actually a pretty tight bound, we’ll show that we
can’t have any polynomial upper bound. That is, if we have that T (n) ≤ cnk

then, when we substitute into the recurrence, we get that the new coefficient
for nk can be as high as c(1 + 1

2k
) which is bigger than c regardless of how we

choose c.

Exercise 4.4-6

10

Examining the tree in figure 4.6 we observe that the cost at each level of the
tree is exactly cn. To find a lower bound on the cost of the algorithm, we need
a lower bound on the height of the tree. The shortest simple path from root to
leaf is found by following the left child at each node. Since we divide by 3 at
each step, we see that this path has length log3 n, so the cost of the algorithm
is cn(log3 n+ 1) ≥ cn log3 n = c

log3n log n = Ω(n log n).

Exercise 4.4-7

Here is an example for n = 4.

n

n
2

n
4

n
4

n
4

n
4

n
2

n
4

n
4

n
4

n
4

n
2

n
4

n
4

n
4

n
4

n
2

n
4

n
4

n
4

n
4

We can see by an easy substitution that the answer is Θ(n2). Suppose that
T (n) ≤ c′n2 then

T (n) = 4T (bn/2c) + cn

≤ c′n2 + cn

which is ≤ c′n2 whenever we have that c′ + c
n ≤ 1, which, for large enough n is

true so long as c′ < 1. We can do a similar thing to show that it is also bounded
below by n2.

Exercise 4.4-8

T (a) + cn

T (a) + c(n− a)

T (a) + c(n− 2a)

T (1)

11

Since each node of the recursion tree has only one child, the cost at each
level is just the cost of the node. Moreover, there are dn/ae levels in the tree.
Summing the cost at each level we see that the total cost of the algorithm is

dn/ae−1∑
i=0

T (a) + c(n− ia) = dn/aeT (a) + cdn/aen− cadn/ae(dn/ae − 1)

2
.

To compute the asymptotoics we can assume n is divisible by a and ignore
the ceiling functions. Then this becomes

c

2a
n2 + (T (a)/a+ c/2)n = Θ(n2).

Exercise 4.4-9

Since the sum of the sizes of the two children is αn+(1−α)n = n, we would
guess that this behaves the same way as in the analysis of merge sort, so, we’ll
try to show that it has a solution that is T (n) ≤ c′n lg(n)− cn.

T (n) = T (αn) + T ((1− α)n) + cn

≤ c′αn(lg(α) + lg(n))− cαn+ c′(1− α)n(lg(1− α) + lg(n))− c(1− α)n+ cn

= c′n lg(n) + c′n(α lg(α) + (1− α) lg(1− α))

≤ c′n lg(n)− c′n

Where we use the fact that x lg(x) is convex for the last inequality. This
then completes the induction if we have c′ ≥ c which is easy to do.

Exercise 4.5-1

a. Θ(
√
n)

b. Θ(
√
n lg(n))

c. Θ(n)

d. Θ(n2)

Exercise 4.5-2

Recall that Strassen’s algorithm has running time Θ(nlg 7). We’ll choose
a = 48. This is the largest integer such that log4(a) < lg 7. Moreover,
2 < log4(48) so there exists ε > 0 such that n2 < nlog4(48)−ε. By case 1 of
the Master theorem, T (n) = Θ(nlog4(48)) which is asymptotically better than
Θ(nlg 7).

12

Exercise 4.5-3

Applying the method with a = 1, b = 2, we have that Θ(nlog2 1) = Θ(1). So,
we are in the second case, so, we have a final result of Θ(nlog2 1 lg(n)) = Θ(lg(n)).

Exercise 4.5-4

The master method cannot be applied here. Observe that logb a = log2 4 = 2
and f(n) = n2 lg n. It is clear that cases 1 and 2 do not apply. Furthermore,
although f is asymptotically larger than n2, it is not polynomially larger, so
case 3 does not apply either. We’ll show T (n) = O(n2 lg2 n). To do this, we’ll
prove inductively that T (n) ≤ n2 lg2 n.

T (n) = 4T (n/2) + n2 lg n

≤ 4((n/2)2 lg2(n/2)) + n2 lg n

= n2(lg n− lg 2)2 + n2 lg n

= n2 lg2 n− n2(2 lg n− 1− lg n)

= n2 lg2 n− n2(lg n− 1)

≤ n2 lg2 n

provided that n ≥ 2.

Exercise 4.5-5

Let ε = a = 1, b = 3, and f = 3n + 23nχ{2i:i∈N} where χA is the indicator
function of the set A. Then, we have that for any number n which is three times
a power of 2, we know that

f(n) = 3n < 2n + n = f(n/3)

And so, it fails the regularity condition, even though f ∈ Ω(n) = Ω(nlogb(a)+ε).

Exercise 4.6-1

nj is obtained by shifting the base b representation j positions to the right,
and adding 1 if any of the j least significant positions are non-zero.

Exercise 4.6-2

Assume that n = bm for some m. Let c1 and c2 be such that c2n
logb a lgk n ≤

f(n) ≤ c1nlogb a lgk n. We’ll first prove by strong induction that T (n) ≤ nlogb a lgk+1 n−
dnlogb a lgk n for some choice of d ≥ 0. Equivalently, that T (bm) ≤ am lnk+1(bm)−

13

dam lgk(bm).

T (bm) = aT (bm/b) + f(bm)

≤ a(am−1 lgk+1(bm−1)− dam−1 lgk bm−1) + c1a
m lgk(bm)

=≤ am lgk+1(bm−1)− dam lgk bm−1 + c1a
m lgk(bm)

=≤ am[lg(bm)− lg b]k+1 − dam[lg bm − lg b]k + c1a
m lgk(bm)

= am lgk+1(bm)− damd lgk bm

. . .− am
(
d

k−1∑
r=0

(
k

r

)
lgr(bm)(− lg b)k−r +

k∑
r=0

(
k + 1

r

)
lgr(bm)(− lg(b))k+1−r + c1 lgk(bm)

)
= am lgk+1(bm)− dam lgk bm

. . .− am
(

(c1 − k lg b) lgk(bm) +

k−1∑
r=0

(
k + 1

r

)
lgr(bm)(− lg(b))k+1−r + d

k−1∑
r=0

(
k

r

)
lgr(bm)(− lg b)k−r

)
≤ am lgk+1(bm)− dam lgk bm

for c1 ≥ k lg b. Thus T (n) = O(nlogb a lgk+1 n). A similar analysis shows
T (n) = Ω(nlogb a lgk+1 n).

Exercise 4.6-3

Suppose that f satisfies the regularity condition, we want that ∃ε, d, k,∀n ≥
k, we have f(n) ≥ dnlogb a+ε. By the regularity condition, we have that for
sufficiently large n, af(n/b) ≤ cf(n). In particular, it is true for all n ≥ bk. Let
this be our k from above, also, ε = − logb(c). Finally let d be the largest value
of f(n)/nlogb(a)+ε between bk and b2k. Then, we will prove by induction on
the highest i so that bik is less than n that for every n ≥ k, f(n) ≥ dnlogb a+ε.
By our definition of d, we have it is true for i = 1. So, suppose we have
bi−1k < n ≤ bik. Then, by regularity and the inductive hypothesis, cf(n) ≥
af(n/b) ≥ ad

(
n
b

)logb(a)+ε. Solving for f(n), we have

f(n) ≥ ad

c

(n
b

)logb a/c

=
a/c

blogb(a/c)
dnlogb(a)+ε = dnlogb(a)+ε

Completing the induction.

Problem 4-1

a. By Master Theorem, T (n) ∈ Θ(n4)

b. By Master Theorem, T (n) ∈ Θ(n)

c. By Master Theorem, T (n) ∈ Θ(n2 lg(n))

d. By Master Theorem, T (n) ∈ Θ(n2)

14

e. By Master Theorem, T (n) ∈ Θ(nlg(7))

f. By Master Theorem, T (n) ∈ Θ(n1/2 lg(n))

g. Let d = m mod 2, we can easily see that the exact value of T (n) is

j=n/2∑
j=1

(2j + d)2 =

n/2∑
j=1

4j2 + 4jd+ d2 =
n(n+ 2)(n+ 1)

6
+
n(n+ 2)d

2
+
d2n

2

This has a leading term of n3/6, and so T (n) ∈ Θ(n3)

Problem 4-2

a. 1. T (n) = T (n/2) + Θ(1). Solving the recursion we have T (N) = Θ(lgN).

2. T (n) = T (n/2)+Θ(N). Solving the recursion we have T (N) = Θ(N lgN).

3. T (n) = T (n/2) + Θ(n/2). Solving the recursion we have T (N) = Θ(N).

b. 1. T (n) = 2T (n/2) + cn. Solving the recursion we have T (N) = Θ(N lgN).

2. T (n) = 2T (n/2) + cn + 2Θ(N). Solving the recursion we have T (N) =
Θ(N lgN) + Θ(N2) = Θ(N2).

3. T (n) = 2T (n/2) + cn + 2c′n/2. Solving the recursion we have T (N) =
Θ(N lnN).

Problem 4-3

a. By Master Theorem, T (n) ∈ Θ(nlog3(4))

b. We first show by substitution that T (n) ≤ n lg(n).

T (n) = 3T (n/3)+n/ lg(n) ≤ cn lg(n)−cn lg(3)+n/ lg(n) = cn lg(n)+n(
1

lg(n)
−c lg(3)) ≤ cn lg(n)

now, we show that T (n) ≥ cn1−ε for every ε > 0.

T (n) = 3T (n/3) + n/ lg(n) ≥ 3c/31−εn1−ε + n/ lg(n) = 3εcn1−ε + n/ lg(n)

showing that this is ≤ cn1−ε is the same as showing

3ε + nε/(c lg(n)) ≥ 1

Since lg(n) ∈ o(nε) this inequality holds. So, we have that The function is
soft Theta of n, see problem 3-5.

15

c. By Master Theorem, T (n) ∈ Θ(n2.5)

d. it is Θ(n lg(n)). The subtraction occurring inside the argument to T won’t
change the asymptotics of the solution, that is, for large n the division is
so much more of a change than the subtraction that it is the only part that
matters. once we drop that subtraction, the solution comes by the master
theorem.

e. By the same reasoning as part 2, the function is O(n lg(n)) and Ω(n1−ε) for
every ε and so is soft theta of n, see problem 3-5.

f. We will show that this is O(n) by substitution. We want that T (k) ≤ ck for
k < n, then,

T (n) = T (n/2) + T (n/4) + T (n/8) + n ≤ 7

8
cn+ n

So, this is ≤ cn so long as 7
8c+ 1 ≤ c which happens whenever c ≥ 8.

g. Recall that χA denotes the indicator function of A, then, we see that the
sum is

T (0) +

n∑
j=1

1

j
= T (0) +

∫ n+1

1

n+1∑
j=1

χ(j,j+1)(x)

j
dx

However, since 1
x is monatonically decreasing, we have that for every i ∈ Z+,

sup
x∈(i,i+1)

n+1∑
j=1

χ(j,j+1)(x)

j
− 1

x
=

1

i
− 1

i+ 1
=

1

i(i+ 1)

So, our expression for T (n) becomes

T (N) = T (0) +

∫ n+1

1

(
1

x
+O(

1

bxc(bxc+ 1)

)
dx

We deal with the error term by first chopping out the constant amount
between 1 and 2 and then bound the error term by O(1

x(x−1)) which has

an anti-derivative (by method of partial fractions) that is O(1
n). so,

T (N) =

∫ n+1

1

dx

x
+O(

1

n
= lg(n) + T (0) +

1

2
+O(

1

n
)

This gets us our final answer of T (n) ∈ Θ(lg(n))

h. we see that we explicity have

T (n) = T (0) +

n∑
j=1

lg(j) = T (0) +

∫ n+1

1

n+1∑
j=1

χ(j,j+1)(x) lg(j)dx

16

Similarly to above, we will relate this sum to the integral of lg(x).

sup
x∈(i,i+1)

∣∣∣∣∣∣
n+1∑
j=1

χ(j,j+1)(x) lg(j)− lg(x)

∣∣∣∣∣∣ = lg(j + 1)− lg(j) = lg

(
j + 1

j

)
So,

T (n) ≤
∫ n

i

lg(x+ 2) + lg(x)− lg(x+ 1)dx = (1 +O(
1

lg(n)
))Θ(n lg(n))

i. See the approach used in the previous two parts, we will get T (n) ∈ Θ(li(n)) =
Θ(n

lg(n))

j. Let i be the smallest i so that n
1

2i < 2. We recall from a previous problem
(3-6.e) that this is lg(lg(n)) Expanding the recurrence, we have that it is

T (n) = n1−
1

2i T (2) + n+ n

i∑
j=1

1 ∈ Θ(n lg(lg(n)))

Problem 4-4

a. Recall that F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2 for i ≥ 2. Then we have

F(z) =

∞∑
i=0

Fiz
i

= F0 + F1z +

∞∑
i=2

(Fi−1 + Fi−2)zi

= z + z

∞∑
i=2

Fi−1z
i−1 + z2

∞∑
i=2

Fi−2z
i−2

= z + z

∞∑
i=1

Fiz
i + z2

∞∑
i=0

Fiz
i

= z + zF(z) + z2F(z).

b. Manipulating the equation given in part (a) we have F(z)−zF(z)−z2F(z) =
z, so factoring and dividing gives

F(z) =
z

1− z − z2
.

Factoring the denominator with the quadratic formula shows 1 − z − z2 =
(1−φz)(1− φ̂z), and the final equality comes from a partial fraction decom-
position.

17

c. From part (b) and our knowledge of geometric series we have

F(z) =
1√
5

(
1

1− φz
− 1

1− φ̂z

)
=

1√
5

(∞∑
i=0

(φz)i −
∞∑
i=0

(φ̂z)i

)

=

∞∑
i=0

1√
5

(φi − φ̂i)zi.

d. From the definition of the generating function, Fi is the coefficient of zi in
F(z). By part (c) this is given by 1√

5
(φi − φ̂i). Since |φ̂| < 1 we must have

| φ̂
i

√
5
| < | φ̂√

5
| < 1

2 . Finally, since the Fibonacci numbers are integers we see

that the exact solution must be the approximated solution φi

√
5

rounded to

the nearest integer.

Problem 4-5

a. The strategy for the bad chips is to always say that other bad chips are good
and other good chips are bad. This mirrors the strategy used by the good
chips, and so, it would be impossible to distinguish

b. Arbitrarily pair up the chips. Look only at the pairs for which both chips
said the other was good. Since we have at least half of the chips being good,
we know that there will be at least one such pair which claims the other is
good. We also know that at least half of the pairs which claim both are good
are actually good. Then, just arbitrarily pick a chip from each pair and let
these be the chips that make up the sub-instance of the problem

c. Once we have identified a single good chip, we can just use it to query every
other chip. The recurrence from before for the number of tests to find a good
chip was

T (n) ≤ T (n/2) + n/2

This has solution Θ(n) by the Master Theorem. So, we have the problem
can be solved in O(n) pairwise tests. Since we also necessarily need to look
at at least half of the chips, we know that the problem is also Ω(n).

Problem 4-6

a. If an array A is Monge then trivially it must satisfy the inequality by taking
k = i+ 1 and l = j + 1. Now suppose A[i, j] +A[i+ 1, j + 1] ≤ A[i, j + 1] +
A[i+ 1, j]. We’ll use induction on rows and columns to show that the array

18

is Monge. The base cases are each covered by the given inequality. Now fix i
and j, let r ≥ 1, and suppose that A[i, j]+A[i+1, j+r] ≤ A[i, j+r]+A[i+1, j].
By applying the induction hypothesis and given inequality we have

A[i, j] +A[i+ 1, j + r + 1] ≤ A[i, j + r] +A[i+ 1, j]−A[i+ 1, j + r]

+A[i, j + r + 1] +A[i+ 1, j + r]−A[i, j + r]

= A[i+ 1, j] +A[i, j + r + 1]

so it follows that we can extend columns and preserve the Monge property.
Next we induct on rows. Suppose that A[i, j] + A[k, l] ≤ A[i, l] + A[k, j].
Then we have

A[i, j] +A[k + 1, l] ≤ A[i, l] +A[k, j]−A[k, l] +A[k + 1, l] by assumption

≤ A[i, l] +A[k, j]−A[k, l] +A[k, l] +A[k + 1, l − 1]−A[k, l − 1] by given inequality

= A[i, l] + (A[k, j] +A[k + 1, l − 1])−A[k, l − 1]

≤ A[i, l] +A[k, l − 1] +A[k + 1, j]−A[k, l − 1] by row proof

= A[i, l] +A[k + 1, j].

b. Change the 7 to a 5.

c. Suppose that there exist i and k such that i < k but f(i) > f(k). Since
A is Monge we must have A[i, f(k)] + A[k, f(i)] ≤ A[k, f(k)] + A[i, f(i)].
Since f(i) gives the position of the leftmost minimum element in row i,
this implies that A[i, f(k)] > A[i, f(i)]. Moreover, A[k, f(k)] ≤ A[k, f(i)].
Combining these with the Monge inequality implies A[i, f(i)] + A[k, f(i)] <
A[k, f(i)]+A[i, f(i)], which is impossible since the two sides are equal. There-
fore no such i and k can exist.

d. Linearly scan row 1 indices 1 through f(2) for the minimum element of row
1 and record as f(1). Next linearly scan indices f(2) through f(4) of row
3 for the minimum element of row 3. In general, we need only scan indices
f(2k) through f(2k+ 2) of row 2k+ 1 to find the leftmost minimum element
of row 2k+ 1. If m is odd, we’ll need to search indices f(m−1) through n to
find the leftmost minimum in row m. By part (c) we know that the indices
of the leftmost minimum elements are increasing, so we are guaranteed to
find the desired minimum from among the indices scanned. An element of
column j will be scanned Nj+1 times, where Nj is the number of i such that
f(i) = j. Since

∑n
j=1Nj = n, the total number of comparisons is m + n,

giving a running time of O(m+ n).

e. Let T (m,n) denote the running time of the algorithm applied to an m by n
matrix. T (m,n) = T (m/2, n) + c(m + n) for some constant c. We’ll show

19

T (m,n) ≤ c(m+ n logm)− 2cm.

T (m,n) = T (m/2, n) + c(m+ n)

≤ c(m/2 + n log(m/2))− 2cm+ c(m+ n)

= c(m/2 + n logm)− cn+ cn− cm
≤ c(m+ n logm)− cm

so by induction we have T (m,n) = O(m+ n logm).

20

