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Abstract. In this paper, we extend the work in Morita’s Theory for the Symplectic Groups

[7] to split reductive groups. We construct and study the holomorphic discrete series repre-
sentation and the principal series representation of a split reductive group G over a p-adic
field F as well as a duality between certain sub-representations of these two representa-
tions.
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Notations

Let p be a prime, F a finite extension ofQp, o the ring of integers of F,$ a uniformizer
of o, | | the normalized absolute value, and Falg an algebraic closure of F. Let K be an
extension of F with an absolute value extending | |, and oK the valuation ring of K. We
assume that K is complete with respect to | |, and moreover, K is spherically complete
whenever topological properties of the K-vector spaces are under consideration.

1. Introduction

In a series of papers, [4], [5] and [6], Morita and Murase innitiated the work on the
representation theory for SL(2, F) with coefficient field K, especially holomorphic discrete

Key words and phrases. split reductive groups; principal series representations; rigid analytic symmetric
space; holomorphic discrete series representations; duality.
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series representations and their duality relations with principal series representations. Prin-
cipal series representations, or more generally, induced representations, appeared in many
literatures, notably in Féaux de Lacroix’s work [2] on locally analytic representations. On
the other hand, holomorphic discrete series representations were not extensively studied.
The holomorphic discrete series representation of SL(n + 1, F) associated to a rational rep-
resentation of GL(n, F) were introduced by Schneider in [8], in order to understand the
de Rham complex over Drinfel’d’s space as representation of SL(n + 1, F). In another
direction, the holomorphic discrete series representation of Sp(2n, F) associated to a K-
rational representation of GL(n, F) were constructed in our recent work [7]. Furthermore,
the algebraization and generalization of Morita’s duality were established in [7].

The purpose of this paper is to generalize Morita’s theory from Sp(2n, F) to a split
reductive group G. We are able to do such a generalization owning to the entirely algebraic
construction of Morita’s theory for Sp(2n, F). Therefore, we shall closely follow the main
ideas presented in [7].

In the first paragraph, we recollect some notions on split reductive groups and con-
struct an F-regular function f on G that characterizes the parabolic big cell associated to
a parabolic subgroup. In particular, f corresponds to the determinant function on M(n, F)
used in the definition of p-adic Siegel upper half-space in [7] (see Example 2.5 and 4.3).
f will appear extensively in the study of the rigid symmetric space associated to G and
holomorphic series representations.

The principal series representation (Can
σ (H,V),Tσ) is another interpretation of the par-

abolic induction from a locally analytic K-representation (σ,V) of the Levi subgroup (cf.
[5] and [7]). In the second paragraph, applying the general results of Féaux de Lacroix
on induced representations of F-Lie groups ([2]), one sees that (Can

σ (H,V),Tσ) is a locally
analytic representation of G over a K-vector space of compact type.

The third paragraph is dedicated to the construction and study of the rigid analytic
symmetric spaceΩ, which is the foundation of holomorphic discrete series representations.
Some examples are the p-adic upper half-plane for SL(2, F) (cf. [4]), Drinfel’d’s space for
SL(n + 1, F) (cf. [8]) and the p-adic Siegel upper half-space for Sp(2n, F) (cf. [7]). Such
symmetric spaces have been studied by van der Put and Voskuil in [14]. We shall however
use another approach following [10] and [7] to construct the admissible affinoid covering,
which enables us to obtain precise descriptions of rigid analytic functions onΩ. From this,
we prove that the space OK(Ω) of K-rigid analytic functions on ΩK is a nuclear K-Fréchet
space.

In the fourth paragraph, for a K-rational representation (σ,V) of the Levi subgroup,
we construct the holomorphic discrete series representation (Oσ(Ω), πσ) defined over the
nuclear K-Fréchet space of V-valued rigid analytic functions on Ω. Moreover, we prove
that its dual representation is locally analytic.

Since the strong duality gives rise to a contra-variant equivalence between the cate-
gory of K-vector spaces of compact type and the category of nuclear K-Fréchet spaces (cf.
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[11]), it is natural to expect certain duality relations between sub-quotient spaces of prin-
cipal series representations and those of holomorphic discrete series representations. For
SL(2, F), a duality of this kind via residues is analytically constructed by Morita (cf. [5]).
However, there does not seem to be any direct way to generalize Morita’s duality. Never-
theless, Morita’s duality may be algebraically interpreted in a weaker form and generalized
to any split reductive group G. These are done in the last paragraph. For a K-rational repre-
sentation (σ,V) of the Levi subgroup, a closed sub-representation Bσ∗ (H,V∗) of Can

σ∗ (H,V
∗)

and a closed sub-representation Nσ(Ω) of Oσ(Ω) are algebraically constructed, along with
a duality between them. As discussed in [7], our duality for SL(2, F) is exactly Morita’s
duality composed with Casselman’s intertwining operator (cf. [5]).

Acknowledgements. The author is especially indebted to Bingyong Xie for the communication

of several important ideas. Thanks are also due to Professor P. Schneider and Professor J. Cogdell

for comments and advices.

2. A lemma on the split reductive groups

2.1. Split reductive groups. We adopt the notations in [3] Part II, Chapter 1.
Let G be a connected split reductive algebraic group over F, T a split maximal torus

of G. We have the decomposition of Lie algebra g of G (over F) in the form

(2.1) g = g0 ⊕
⊕
α∈R

gα,

where g0 is the Lie algebra of T and R is the root system of G with respect to T.
Each gα is of rank 1 over F, and we denote Uα ' Ga(F) the root subgroup of G

corresponding to α.
Let W � NG(T)/T be the Weyl group of R. For w ∈ W, we also denote w a representing

element in NG(T).
Choose a positive system R+ and denote S the corresponding set of simple roots. Let

B+ denote the corresponding Borel subgroup and B− its opposite Borel subgroup, U±G =

U(±R+) the unipotent radical of B±.
Throughout this article we fix a subset I of S , and denote RI = R ∩ ZI, WI the Weyl

group of RI , R+
I = R+ − RI , P+ the standard parabolic subgroup of G corresponding to

R+
I , P− its opposite parabolic subgroup, U± = U(±R+

I ) the unipotent radical of P±, L the
common Levi subgroup of P+ and P−.

L is a split reductive group with split maximal torus T, root system RI , positive system
R+

L = RI ∩ R+ and Weyl group WI . Let U±L = U(±R+
L).

We recall ([3] Part II.1.7) that for any closed and unipotent subset R′ of R (that is,
(Nα+Nβ)∩R ⊂ R′ for any α, β ∈ R′ and R′ ∩ (−R′) = ∅), for instance ±R+, ±R+

I and ±R+
L,

the multiplication induces, for any ordering of R′, an isomorphism of schemes over F

(2.2)
∏
α∈R′

Uα
'
−−→ U(R′).



4 ZHI QI

2.2. The parabolic big cell. We have the Bruhat decomposition of G ([3] Part II.1.9)

G =
⋃
w∈W

B−wB+ =
⋃
w∈W

U−GwTU+
G.

Let C denote the parabolic big cell

C =
⋃

w∈WI

U−GwTU+
G = U−

( ⋃
w∈WI

U−LwTU+
L

)
U+ = U−LU+ = U−P+ = P−U+.

Then G is the disjoint union of C and U−GwTU+
G for all w < WI .

Let r = |R+
I | = dim U+. We consider the adjoint representation of G on

∧r
g over F.

From the decomposition (2.1) of gwe obtain a direct sum decomposition of
∧r
g. Choosing

Xα a nonzero element in gα for each α ∈ R and a basis of g0 we obtain a basis of
∧r
g with

respect to this decomposition and containing Y =
∧
α∈R+

I
Xα. For g ∈ G we define f (g) to

be the coefficient of Y in the expansion of Ad(g)Y in the chosen basis of
∧r
g. Then f is a

regular function on G over F.
There is a partial order on ZS : γ ≺ δ iff δ−γ is a sum of positive roots. If one considers

the group action of the symmetric group S r on (ZS )r via coordinate permutation, the set of
the unordered r-tuples [γ1, ..., γr] of elements in ZS may be viewed as the set of S r-orbits
in (ZS )r. We define [γ1, ..., γr] ≺ [δ1, ..., δr] iff there exists s ∈ S r such that γ j � δs( j) for
all 1 6 j 6 r and γ j ≺ δs( j) for at least one j.

We adopt the convention that gγ = 0 if γ ∈ ZS is nonzero and not a root. Then
[gβ, gα] ⊂ gα+β, and therefore

Ad(uβ)Xα ∈ Xα +
∑
i>1

gα+iβ, uβ ∈ Uβ.

If α, β ∈ R+
I , then it is clear that either α + iβ ∈ R+

I or gα+iβ = 0. The same statement
holds for α ∈ R+

I and β ∈ RI , since the β-string through α lies in R+
I . Therefore Uβ fixes Y

for any β ∈ R+
I ∪ RI = R+ ∪ (−R+

I ). (2.2) implies that

(2.3) Y is invariant under U+
G and U−L.

If we let β be negative roots, then (2.2) also implies that for 3− ∈ U−G,

(2.4) Ad(3−)Xα ∈ Xα +
∑
γ≺α

gγ.

For t ∈ T ,

(2.5) Ad(t)Y =
∏
α∈R+

I

α(t)Y.

For w ∈ W there exists a constant cw,α ∈ F× satisfying

(2.6) Ad(w)Xα = cw,αXwα.

In view of (2.2), we see that w preserves R+
I iff w normalizes U+. Since NG(U+) = P+ and

w ∈ P+ iff w ∈ WI ,

(2.7) w preserves R+
I iff w ∈ WI .
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Since P+ =
⋃

w∈WI
U−LwTU+

G, if we write p+ = u−wt3+ (3+ ∈ U+
G, t ∈ T, w ∈ WI ,

u− ∈ U−L), then it follows from (2.3), (2.5), (2.6) and (2.7) that

Ad(p+)Y = sign(w)
∏
α∈R+

I

cw,αα(t) · Y,

where sign(w) denotes the sign of the permutation w on R+
I .Moreover, it follows from (2.4)

that

Ad(3−wt3+)Y ∈ sign(w)
∏
α∈R+

I

cw,αα(t) · Y +
∑

[γ j]≺[α]α∈R+
I

r∧
j=1

gγ j .

So

f (3−wt3+) = sign(w)
∏
α∈R+

I

cw,αα(t).

Similarly, for w < WI ,

Ad(3−wt3+)Y ∈
∑

[γ j]�[wα]α∈R+
I

r∧
j=1

gγ j .

It follows from the proof of (2.3) that α + β ∈ R+
I or gα+β = 0 if α ∈ R+

I and β ∈ R+, so
α ∈ R+

I and δ � α imply δ ∈ R+
I or gδ = 0. Therefore if δ ∈ {0} ∪ R − R+

I and γ � δ then
γ < R+

I , and hence (2.7) implies that Y does not appear in the expression of Ad(3−wt3+)Y ,
so f (3−wt3+) = 0.

We conclude with the following lemma.

Lemma 2.1. Let the notations be as above, then
(1) For p+ ∈ P+,

Ad(p+)Y = f (p+)Y,

and hence f is an F-rational character on P+.
(2) For w ∈ WI ,

f (3−wt3+) = sign(w)
∏
α∈R+

I

cw,αα(t), 3
± ∈ U±G, t ∈ T.

(3) f vanishes on U−GwTU+
G for w < WI .

In particular,
(4) C is an open F-subscheme of G, and F[C] = F[G] f .

(5) f is right invariant under U+
G and left invariant under U−G.

Example 2.2. [cf. [3] Part II 1.9 and [13] §5 Theorem 7] If I = ∅, then L = T and
U± = U±G. Lemma 2.1 implies that f (u−tu+) =

∏
α∈R+ α(t) and f (u−wtu+) = 0 for all

nontrivial w, u± ∈ U±G and t ∈ T.
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Example 2.3. Let G = SL(n + 1, F). Write g =

A B
C d

 with A ∈ M(n, F), B ∈

M(n, 1; F),C ∈ M(1, n; F) and d ∈ F. Let

U+ =


In 0
C 1

 ∈ G

 ,
L =


A 0
0 d

 ∈ G

 .
Some calculations show that

f (g) = dn+1.

Example 2.4. More generally, we consider G = GL(n, F). Let (n1, ..., ns) be a partition
of n. Write g = (gi j)16i, j6s with gi j ∈ M(ni, n j; F). Let U+ be the subgroup consisting of the
matrices u = (ui j) such that ui j = 0 for j < i and uii = Ini , and L the subgroup consisting
of the matrices l = (li j) such that li j = 0 for i , j. L �

∏
16i6s GL(ni, F).

For l ∈ L,

f (l) =
∏

16 j<i6s

det(lii)n j det(l j j)−ni

=
∏

16i6s

det(lii)
∑

j<i n j−
∑

i<k nk .

The computation of the explicit formula for f involves the process of block lower (or upper)
triangularization, and it turns out to be complicated if s > 3. For s = 2, we have

f (g) = det(g22)n1+n2 det(g)−n2 .

The situation is the same if G = SL(n, F). For instance, if s = 2, then

f (g) = det(g22)n1+n2 .

Example 2.5. We consider

G = Sp(2n, F) =

g ∈ GL(2n, F) : tg

 0 In

−In 0

 g =

 0 In

−In 0


 .

Write g =

A B
C D

 with A, B,C,D ∈ M(n, F). Let

U+ =


In 0
C In

 : C ∈ Sym(n, F)

 ,
L =


tD−1 0

0 D

 : D ∈ GL(n, F)

 ,
where Sym(n, F) is the group of symmetric matrices of order n over F. Some calculations
show that

f (g) = det(D)n+1.
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3. IndG
P−σ and the principal series (Can

σ (H,V),Tσ)

Induced representations, especially the parabolic inductions, are of extreme impor-
tance in Lie theory. For p-adic Lie groups, they were studied by Féaux de Lacroix in his
work ([2]) on the locally analytic representations.

We first recall the notion of locally analytic representations over K of an F-Lie group.

Definition 3.1 (cf. [2] and [11] §3). A locally analytic representation (σ,V) of an
F-Lie group G on a barreled locally convex Hausdorff K-vector space V is a continuous
representation such that the orbit maps are V-valued locally analytic functions on G. More
precisely, for any v ∈ V there exists a BH-space W of V (that is, a Banach space W together
with a continuous injection W ↪→ V) such that g 7→ σ(g)v expands (in a neighborhood of
the unit element) to a power series with W-coefficients.

Let (σ,V) be a locally analytic representation of the Levi subgroup L. σ extends to a
representation of P− defined by σ(ul) = σ(l) (l ∈ L, u ∈ U−).

Definition 3.2. Let IndG
P−σ be the space of V-valued locally analytic functions φ on G

satisfying
φ(p−g) = σ(p−)φ(g), for all g ∈ G, p− ∈ P−.

On IndG
P−σ we have a G-action defined by right translation.

Since the quotient space P−\G is compact, we obtain from [2] 4.1.5 the following
proposition.

Proposition 3.3. IndG
P−σ is a locally analytic representation of G.

Next, we introduce the principal series representation, serving as another description
of IndG

P−σ.
Let H and H denote the G-homogeneous spaces U−\G and P−\G respectively, and

denote ĝ := prG
H

(g). Because P− � U− o L, there is a left L-action on H, and H = L\H.

Definition 3.4. Let Can
σ (H,V) be the space of V-valued locally analytic functions ϕ on

H satisfying
ϕ(lĝ) = σ(l)ϕ(ĝ), for all ĝ ∈ H and l ∈ L.

The principal series representation (Can
σ (H,V),Tσ) of G is defined via

(Tσ(g)ϕ)(ĝ′) := ϕ(ĝ′ · g).

Lemma 3.5.
(1) The representation IndG

P−σ is (naturally) isomorphic to (Can
σ (H,V),Tσ).

(2) IndG
P−σ is isomorphic to Can(H,V).

(3) Let ι be a locally analytic section of prH
H

, then ι induces an isomorphism

ι◦ : Can
σ (H,V) → Can(H,V)

ϕ 7→ ϕ ◦ ι.
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Proof. (1) From a locally analytic section ῑ of prG
H

we obtain an isomorphism ([2]
4.3.1)

ῑ◦ : IndG
U−1 ' Can(H,V), φ 7→ φ ◦ ῑ.

By restriction to the subspaces, ῑ◦ induces an isomorphism, independent of ῑ, between
IndG

P−σ and Can
σ (H,V). G-equivariance is evident.

(2) A locally analytic section ι̃ of prG
H

induces an isomorphism ι̃◦ from IndG
P−σ onto

Can(H,V) (ibid.).
(3) Choose ῑ and ι̃ compatible with ι, that is, ι̃ = ῑ ◦ ι, then the assertion follows from

(1) and (2). Q.E.D.

Compactness ofH implies that Can(H,V) is of compact type ([11] Lemma 2.1). By [11]
Proposition 1.2, Theorem 1.3 and [9] Proposition 16.10, we have the following corollary.

Corollary 3.6. Suppose that K is spherically complete. Let B be a closed subspace
of Can

σ (H,V), then both B and Can
σ (H,V)/B are of compact type. In particular, they are

reflexive, bornological, and complete. Moreover, their strong duals B∗b and (Can
σ (H,V)/B)∗b

are nuclear Fréchet spaces.

4. Rigid analytic symmetric space Ω

The rigid analytic symmetric space Ω associated to G (with respect to a parabolic P+)
was constructed by van der Put and Voskuil in [14]. Some examples are the p-adic upper
half-plane, Drinfel’d’s space and the p-adic Siegel upper half-space, which are associated
to SL(2, F), SL(n + 1, F) and Sp(2n, F) respectively (cf. [4], [10] and [7]).

4.1. Definition of the symmetric space Ω. Let G, P±, U±, L and C denote the F-
rigid analytifications of G, P±, U±, L and C respectively. f defines a rigid analytic function
on G.

Since f is left invariant under U− (Lemma 2.1 (5)), we may define

f (ĝ,u) := f (g · u)

for ĝ ∈ H and u ∈ U−.

Definition 4.1. Let

Ω :=
{
u ∈ U− : g · u ∈ C, for all g ∈ G

}
=

{
u ∈ U− : f (ĝ,u) , 0, for all ĝ ∈ H

}
.

We call Ω the symmetric space associated to G with respect to P+.

Example 4.2. In the situation of Example 2.3, U− � An
/F and (z1, ..., zn) ∈ Ω is given

by the inequalities

c1z1 + ... + cnzn + d , 0 for all nonzero (c1, ..., cn, d) ∈ Fn+1.

Therefore Ω is Drinfel’d’s space.
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Example 4.3. In the situation of Example 2.5, U− � Sym(n) and Z ∈ Ω is given by the
inequalities

det(CZ + D) , 0 for all C tD = D tC, rank(C D) = n.

Therefore Ω is the p-adic Siegel upper half-space.

We may also interpretΩ to be the complement of all the G-translations of (G−C)/P+ =

G/P+ − U− in G/P+. Therefore we have a left G-action on Ω (induced from the left G-
action on G/P+). We denote g∗u the action of g ∈ G on u ∈ Ω. We have g∗u = prC

U− (g ·u).

4.2. Automorphy factor. We define the automorphy factor

j : G ×Ω → P+

(g,u) 7→ (g ∗ u)−1 · g · u.

Then j(g,u) = prC
P+ (g · u), and straightforward computations show

(4.1) j(g1g2,u) = j(g1, g2 ∗ u) j(g2,u).

For any u ∈ U−, j(u,u) = 1G, and hence (4.1) implies j(u · g,u) = j(g,u), so we may
define j(ĝ,u) := j(g,u).

For l ∈ L, since l ∗ u = l · u · l−1, we have j(l,u) = l, and by (4.1)

(4.2) j(l · ĝ,u) = l · j(ĝ,u).

Since f is left invariant under U− (Lemma 2.1(5)), it follows that

(4.3) f ( j(ĝ,u)) = f (ĝ,u).

From Lemma 2.1 (1), (4.1) and (4.3), we see that

(4.4) f (ĝ1g2,u) = f (ĝ1, g2 ∗ u) f (ĝ2,u).

Moreover, Lemma 2.1 (1), (4.2) and (4.3) imply

(4.5) f (l · ĝ,u) = f (l) f (ĝ,u).

4.3. The F-rigid analytic structure on Ω. van der Put and Voskuil defined an affi-
noid covering of Ω using Bruhat-Tits Buildings ([14]). In this paper we choose another
approach following the construction of affinoid covering of Drinfel’d’s space in [10] and
that of p-adic Siegel upper half-space in [7]. We endow Ω with a structure of F-rigid ana-
lytic variety and show that it is an admissible open subset of U− and, in particular, an open
rigid analytic subspace of U− (and therefore G/P+).

We realize G as a Zariski closed subgroup of GL(n, F) such that T consists of diagonal
matrices and B+ consists of lower triangular matrices. Then f (g) extends to an F-regular
function on GL(n, F) with respect to the coordinates gi, j (1 6 i, j 6 n), and det(g)r f (g) is
a homogeneous F-polynomial in gi, j. We denote N the degree of det(g)r f (g) and let M be
an integer such that all the coefficients have absolute values bounded by |$|NM .

Lemma 4.4. Ω is nonempty.
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Proof. It suffices to prove that G-translations of G − C do not cover G. For g ∈ G,
g · (G − C) is the locus of f (g−1 · g) = 0. With the embedding of G into GL(n, F) we
view f (g−1 · g) as a rational function in gi j with F[G]-coefficients, and, for a given g ∈ G,
f (g−1 · g) is a nonzero F-rational function in gi j. It is not hard to see that there are choices
of gi j ∈ Falg with appropriate absolute values so that the non-vanishing monomials in
f (g−1 · g) are of distinct absolute values in |(Falg)×| = |$|Q modulo |F×| = |$|Z. Therefore
there exists g ∈ G such that f (g−1 · g) is nonzero for all g ∈ G, and consequently g lies in
the complement of all the g · (G − C). Q.E.D.

Let Go and Lo denote the intersections of G and L with GL(n, o) respectively, and
denote Ho = prG

H
(Go).

We recall Iwasawa’s decomposition

G = B−Go.

Then G = P− · Go and H = L · Ho, so (4.5) and Lemma 2.1 imply

Ω =
{
u ∈ U− : f (ĝ,u) , 0, for any ĝ ∈ Ho

}
.

For u ∈ U− an upper triangular matrix with diagonal entries 1, let

|u| := max
16i6 j6n

|ui j| = max
16i< j6n

{
1, |ui j|

}
.

For any nonnegative integer m and ĝ ∈ Ho, we define

B(m; ĝ) :=
{
u ∈ U− : | f (ĝ,u)| < |u|N |$|N(M+m)

}
.

Lemma 4.5. If m is a nonnegative integer and g1, g2 ∈ Go such that g1 ≡ l · g2

mod $Nm+1 for some l ∈ Lo, then

B(m; ĝ1) = B(m; ĝ2).

Proof. Since f |Lo is a continuous F-character (Lemma 2.1 (1)) and Lo is compact, the
image of Lo under f is contained in o×. Therefore (4.5) implies | f (l̂g2,u)| = | f (ĝ2,u)|, and
hence B(m; ĝ2) = B(m; l̂g2). So we may assume g1 ≡ g2 mod $Nm+1.

We choose λ ∈ (Falg)× such that |λ| = |u|. Since |λ−1ui j| 6 1,

g1 · λ
−1u ≡ g2 · λ

−1u mod $Nm+1,

and the matrices on both sides have entries with absolute values 6 1. Applying detr · f , we
obtain

λ−N det(g1)r f (g1 · u) ≡ λ−N det(g2)r f (g2 · u) mod $NM+Nm+1,

and consequently

|u|−N
∣∣∣ f (ĝ1,u)

∣∣∣ < |$|N(M+m) ⇔ |u|−N
∣∣∣ f (ĝ2,u)

∣∣∣ < |$|N(M+m).

Therefore B(m; ĝ1) = B(m; ĝ2). Q.E.D.
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Let

Ω(m; ĝ) := U− − B(m; ĝ)

=
{
u ∈ U− : | f (ĝ,u)| > |ui j|

N |$|N(M+m), 1 6 i 6 j 6 n
}
,

Ω(m) :=
⋂
ĝ∈Ho

Ω(m; ĝ).

For a given u ∈ Ω, | f (ĝ,u)| has a positive lower bound on Ho. Therefore

Ω =

∞⋃
m=0

Ω(m).

LetH(m) be any finite subset ofHo including a set of representatives inHo for prG
H

(
Lo

∖
Go

/
Go(Nm + 1)

)
,

where Go(Nm+1) denotes the congruence subgroup
(
In +$Nm+1M(n, o)

)
∩G. Then Lemma

4.5 implies that

Ω(m) =
⋂

ĝ∈H(m)

Ω(m; ĝ).

Moreover, we may assume that H(m) contains În.

Ω(m; În) =
{
u ∈ U− :

∣∣∣$M+mui j

∣∣∣ 6 1
}

is an admissible open affinoid subset of U−. Ω(m) is the intersection of finitely many
rational sub-domains of Ω(m; În):u ∈ Ω(m; În) :

∣∣∣∣∣∣∣$
N(M+m)uN

i j

f (ĝ,u)

∣∣∣∣∣∣∣ 6 1, 1 6 i 6 j 6 n

 ,
with ĝ ranging on H(m) − {În}. Therefore Ω(m) is an affinoid variety.

We conclude that {Ω(m)}∞m=0 constitutes an admissible affinoid covering of Ω so that
Ω admits a rigid analytic variety structure (see [1] 9.3). According to [1] 9.1.2 Lemma 3
(compare [1] 9.1.4 Proposition 2), the following proposition implies thatΩ is an admissible
open subset of U−.

Proposition 4.6. Any morphism from an affinoid variety to U− with image inΩ factors
through some Ω(m).

Proof. The argument is similar to the third proof of [10] §1 Proposition 1.
Let X be an affinoid variety, Φ : X→ U− a morphism from X to U− with image in Ω.

For any ĝ ∈ Ho,

x 7→
Φ(x)N

i j

f (ĝ,Φ(x))
, 1 6 i 6 j 6 n,

are F-rigid analytic functions on X. By the maximum modulus principle ([1] §6.2 Propo-
sition 4 (i)), there exists a positive integer mĝ such that

max
16i6 j6n

max
x∈X

∣∣∣∣∣∣∣ Φ(x)N
i j

f (ĝ,Φ(x))

∣∣∣∣∣∣∣ 6 |$|−N(M+mĝ).
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In other words, Φ(X) ⊂ Ω(mĝ; ĝ). In view of Lemma 4.5, mĝ can be chosen locally con-
stant. Therefore the compactness of Ho implies that there exists a positive integer m such
that Φ(X) ⊂ Ω(m). Q.E.D.

Finally, we prove that the morphisms of g-translations fromΩ(m) intoΩ indeed factor
through the same Ω(m′) for all g ∈ Go.

Lemma 4.7. For any nonnegative integer m, there exists a nonnegative integer m′ such
that for all g ∈ Go,

g ∗Ω(m) ⊂ Ω(m′).

Proof. Let u ∈ Ω(m). Then

(4.6) 1 6 |u| 6 |$|−M−m,

and

(4.7)
|u|N

| f (ĝ,u)|
6 |$|−N(M+m) for any g ∈ Go.

g ∗ u = prC
U− (g · u), and since prC

U− is F-regular on C, Lemma 2.1 (4) implies that there
exist positive integers s and t such that all the entries of

det(g · u)t f (g · u)s · g ∗ u = det(g)t f (g · u)s · g ∗ u

are F-polynomials with variables the entries of g · u. Let D be the highest degree and L
an integer such that the absolute values of all the coefficients are bounded by |$|L. Since
g ∈ Go, the entries of g · u have absolute values 6 |u| and | det(g)| = 1, then

(4.8) |g ∗ u| 6
|$|L|u|D

| f (ĝ,u)|s
.

It follows from (4.4), (4.8), (4.6) and (4.7) that for any g1 ∈ Go,

|g ∗ u|N

| f (ĝ1, g ∗ u)|
6

|$|NL|u|ND

| f (ĝ1g,u)|| f (ĝ,u)|Ns−1

= |$|NL|u|ND−N2 s |u|N

| f (ĝ1g,u)|
|u|N2 s−N

| f (ĝ,u)|Ns−1 ,

6 |$|N(L−max{D,Ns}(M+m)).

Therefore g ∗Ω(m) ⊂ Ω(m′) for any m′ > −M − L + max{D,Ns}(M + m). Q.E.D.

4.4. Rigid analytic functions on Ω. Let O(Ω(m)) denote the space of F-rigid ana-
lytic functions onΩ(m). Then O(Ω(m)) is an F-affinoid algebra with the supremum norm.

Let O(Ω) be the F-algebra of F-rigid analytic functions on Ω, that is, the projective
limit of O(Ω(m)),

O(Ω) := lim
←−−

m

O(Ω(m)).

O(Ω) is endowed with the projective limit topology.
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From the construction of Ω(m) we see that the F-affinoid algebra O(Ω(m)) is equal to

(4.9) F
〈
$M+mui j,

$N(M+m)uN
i j

f (ĝ,u)
: 1 6 i 6 j 6 n, ĝ ∈ H(m) − {În}

〉
.

Therefore ψ ∈ O(Ω(m)) has an expansion in the following form that converges with
respect to the supremum norm || ||O(Ω(m)):

(4.10) ψ(u) =
∑

(`ĝ)∈(N0)H(m)

P(`ĝ)(u)
∏

ĝ∈H(m)

f (ĝ,u)−`ĝ ,

where P(`ĝ)(u) are polynomials in the coordinates of u with coefficients in F.
In view of (4.5), the assumption that H(m) is contained in Ho is quite artificial, and it is

more convenient and natural to choose H(m) to be an arbitrary finite subset of H whenever
we consider the expansion of ψ ∈ O(Ω(m)).

ψ ∈ O(Ω) may be considered as an Falg-valued function on Ω such that, restricting
on each Ω(m), ψ has an expansion (4.10) that converges with respect to || ||O(Ω(m)). In
particular, f (ĝ,u)−1 ∈ O(Ω) for any ĝ ∈ H.

Since all the generators of O(Ω(m)) in (4.9) are F-rigid analytic functions on Ω(m′)
for any m′ > m and therefore on Ω, we obtain the following proposition.

Proposition 4.8.
(1)Ω is a Stein space, that is, the image of O(Ω(m+1)) under the transition homomorphism
in O(Ω(m)) is dense for any nonnegative integer m.
(2) The image of O(Ω) under the transition homomorphism in O(Ω(m)) is dense.

Let OK(Ω(m)) and OK(Ω) denote O(Ω(m))⊗̂F K and O(Ω)⊗̂F K respectively. If we let
ΩK(m) and ΩK denote the extensions of the ground field K/F of Ω(m) and Ω respectively
(see [1] §9.3.6), then OK(Ω(m)) and OK(Ω) are the spaces of K-rigid analytic functions on
ΩK(m) and ΩK respectively.

Proposition 4.9. Let K be spherically complete. OK(Ω) is a nuclear K-Fréchet space.

Proof. By [9] Proposition 19.9, it suffices to prove that all the OK(Ω(m)) constitute a
compact projective system.

Consider the OK(Ω(m − 1))-norms of the generators of OK(Ω(m)) (see 4.9), then

sup
u∈Ω(m−1)

max
ĝ∈H(m)−{În}

max
16i6 j6n

{∣∣∣$M+mui j

∣∣∣ , ∣∣∣∣∣∣$N(M+m)ui j

f (ĝ,u)

∣∣∣∣∣∣
}
6 |$|.

[12] Lemma 1.5 implies that the transition homomorphism from OK(Ω(m)) to OK(Ω(m −
1)) is compact. Q.E.D.

[11] Theorem 1.3 and Proposition 1.2 imply the following corollary.

Corollary 4.10. Suppose K is spherically complete. Let N be a closed subspace of
OK(Ω), then N and OK(Ω)/N are nuclear Fréchet spaces, and their strong duals N ∗

b

and (OK(Ω)/N )∗b are of compact type.
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5. Holomorphic discrete series (Oσ(Ω), πσ)

Let Ω (resp. Ω(m)) denote ΩK(K) (resp. ΩK(m)(K)). Restricting to Ω (resp. Ω(m)),
we view K-rigid analytic functions in OK(Ω) (resp. OK(Ω(m))) as K-valued functions on
Ω (resp. Ω(m)), and abbreviate OK(Ω(m)) (resp. OK(Ω)) to O(Ω(m)) (resp. O(Ω)).

Let (V, σ) be a d-dimensional K-rational representation of L. σ extends to a represen-
tation of P+.

Let Oσ(Ω) := O(Ω) ⊗
K

V and Oσ(Ω(m)) := O(Ω(m)) ⊗
K

V .

For any g ∈ G and ψ ∈ Oσ(Ω), let πσ(g)ψ be the V-valued function on Ω as follows

(πσ(g)ψ)(u) := σ( j(g−1,u))−1ψ(g−1 ∗ u).

Lemma 5.1. πσ(g)ψ ∈ Oσ(Ω).

Proof. Since σ is K-rational, each coordinate of σ( j(g−1,u))−1 is a product of a K-
polynomial in the coordinates of j(g−1,u) and a power of det( j(g−1,u))−1 = det(g). Note
that j(g−1,u) = prC

P+ (g−1 · u), and since prC
P+ is F-regular on C, each coordinate of j(g−1,u)

is a product of an F-polynomial in the coordinates of g−1 ·u and powers of det(g−1 ·u)−1 =

det(g) and f (g−1 · u)−1. Therefore each coordinate of σ( j(g−1,u))−1 has a finite expansion
of the form (4.10), and hence belongs to O(Ω).

Similarly, the coordinates of ψ(g−1 ∗ u) also have expansions of the form (4.10). By
Proposition 4.6, for any m, g−1-translation maps Ω(m) into some Ω(m′), and hence the
norm of each coordinate of ψ(g−1∗u) onΩ(m) is bounded by the norm of the corresponding
coordinate of ψ on Ω(m′). Therefore ψ(g−1 ∗ u) ∈ Oσ(Ω).

We conclude that πσ(g)ψ ∈ Oσ(Ω). Q.E.D.

It follows from the automorphy relation (4.1) that πσ is an action of G on Oσ(Ω).

Definition 5.2. We call (Oσ(Ω), πσ) the holomorphic (rigid analytic) discrete series
representation of G.

Lemma 5.3. Let m and m′ be as in Lemma 4.7. Then there exists a constant c depending
on σ and m such that

||πσ(g)ψ||Oσ(Ω(m)) 6 c||ψ||Oσ(Ω(m′)),

for all g ∈ Go.

Proof. The proof is similar to the arguments in Lemma 5.1, but instead of Proposition
4.6 we apply Lemma 4.7.

Using the expressions for the coordinates of σ( j(g−1,u))−1 in the first paragraph of the
proof of Lemma 5.1, we see that their O(Ω(m))-norms are uniformly bounded on Go, so
there is a constant c > 0 such that

max
g∈Go

max
u∈Ω(m)

||σ( j(g−1,u))−1||End(V) 6 c.
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Consequently,

max
g∈Go
||πσ(g)ψ||Oσ(Ω(m))

= max
g∈Go

max
u∈Ω(m)

||(πσ(g)ψ)(u)||V

6 max
g∈Go

max
u∈Ω(m)

||σ( j(g−1,u))−1||End(V) ·max
g∈Go

max
u∈Ω(m)

||ψ(g−1 ∗ u)||V

6 c max
u∈Ω(m′)

||ψ(u)||V

= c||ψ||Oσ(Ω(m′)).

Q.E.D.

It follows from Lemma 5.3 that, for each m, the map

Go × Oσ(Ω) → Oσ(Ω(m))

(g, ψ) 7→ (πσ(g)ψ)|Ω(m).

is continuous. Since Oσ(Ω) is the projective limit of Oσ(Ω(m)), we obtain the following
corollary.

Corollary 5.4. (Oσ(Ω), πσ) is a continuous G-representation.

Moreover, we shall prove that the dual representation of πσ is locally analytic. For this,
we recall that a coordinate chart at 1G is obtained from the decomposition of the Bruhat
big cell (see (2.2))

(5.1) U−U−LTU+
LU+ ' A|R|F × Gm(F)dim g0 .

Lemma 5.5. Let m and m′ be as in Lemma 4.7. Let B be any parameterized (as in
(5.1)) open neighborhood of 1G contained in Go. For any ψ ∈ Oσ(Ω(m′)), the orbit map

B → Oσ(Ω(m))

g 7→ (πσ(g)ψ)|Ω(m)

is an Oσ(Ω(m))-valued analytic function, namely, it can be expanded as a convergent
power series with variables the coordinate parameters of B and coefficients in the Banach
space Oσ(Ω(m)).

Proof. Once we have obtained a formal expansion of πσ(g)ψ into a power series with
variables the coordinate parameters of B and coefficients in Oσ(Ω(m)), Lemma 5.3 would
imply that the expansion is indeed convergent. In view of (5.1), it suffices to consider
πσ(g)ψ(u) for g in U−,U−L and T (note that U+ and U+

L are the conjugations of U− and U−L
by the long Weyl element).

Let u ∈ U−, then

πσ(u)ψ(u) = ψ(u−1 · u).
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Let O(Ω(m))[[u]] denote the ring of formal power series ϕ(u) in the coordinates uα
(α ∈ R−I ) with coefficients in O(Ω(m)), where ϕ(u) is expressed as

ϕ(u) =
∑

r∈N
R−I
0

ar · ur, ar ∈ O(Ω(m)), ur :=
∏
α∈R−I

urα
α .

If the constant term a0 is a unit in O(Ω(m)), then ϕ(u) is invertible in O(Ω(m))[[u]]. Note
that, for ĝ ∈ H, the constant term in the expansion of f (ĝ, u−1 · u) is f (ĝ,u), and it is
invertible in O(Ω(m)), so f (ĝ, u−1 · u)−1 belongs to O(Ω(m))[[u]]. Therefore, in view of
the expansion form (4.10), the coordinates of ψ(u−1 · u) expand into a formal power series
in uα whose coefficients are series in O(Ω(m)), but it follows from Lemma 5.3 that the
coefficients are indeed convergent series in O(Ω(m)) for u ∈ B. So each coordinate of
ψ(u−1 · u) belongs to O(Ω(m))[[u]].

For l ∈ U−L or T,
πσ(l)ψ(u) = σ(l)−1ψ(l−1 · u · l).

The arguments are similar. Q.E.D.

Corollary 5.6. Let U+
o = U+ ∩ Go, then the power series expansion of

f ( j(u+,u))−1 = f (u+ · u)−1, u+ ∈ U+
o ,

on U+
o converges in O(Ω(m)).

Proof. Since f is an F-rational character on P+ (Lemma 2.1 (1)), if we put σ = f and
ψ ≡ 1, then (π f (g−1)1)(u) = f ( j(g,u))−1. Therefore our assertion follows from Lemma
5.5. Q.E.D.

Now consider the dual representation π∗σ of G on Oσ(Ω)∗b � lim
−−→

m

O(Ω(m))∗b. The

transition homomorphisms Oσ(Ω(m))∗b → Oσ(Ω)∗b are injective (see Proposition 4.8 (2)).
Lemma 4.7 implies that, for any g ∈ Go, π∗σ(g) maps O(Ω(m))∗b into O(Ω(m′))∗b via〈

ψ, π∗σ(g)µ
〉

=
〈
(πσ(g−1)ψ)|Ω(m), µ

〉
, µ ∈ Oσ(Ω(m))∗, ψ ∈ Oσ(Ω(m′)).

We deduce from Lemma 5.5 that, for any µ ∈ Oσ(Ω(m))∗, the orbit map

B−1 → Oσ(Ω(m′))∗b

g 7→ π∗σ(g)µ

is an Oσ(Ω(m′))∗b-valued analytic function. Therefore we obtain the following corollary.

Corollary 5.7. (Oσ(Ω)∗b, π
∗
σ) is locally analytic.

6. Duality

In the following, we assume that K is spherically complete. Let (V, σ) be a d-dimensional
K-rational representation of L. We choose a basis v1, · · · , vd of V and denote by v∗1, · · · , v

∗
d

the corresponding dual basis of the dual space V∗. (V∗, σ∗) denotes the dual representation
of (V, σ).
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6.1. The duality operator Iσ. For u ∈ Ω and v∗ ∈ V∗, let ϕu,v∗ be the V∗-valued
locally analytic function on H:

ϕu,v∗ (ĝ) := σ∗( j(ĝ,u))v∗.

In view of (4.2), ϕu,v∗ belongs to Can
σ∗ (H,V

∗). Let B0
σ∗ (H,V

∗) be the subspace of
Can
σ∗ (H,V

∗) spanned by ϕu,v∗ , Bσ∗ (H,V∗) the closure of B0
σ∗ (H,V

∗). From (4.1), we see
that B0

σ∗ (H,V
∗) and therefore Bσ∗ (H,V∗) are G-invariant.

For any continuous linear functional ξ ∈ Bσ∗ (H,V∗)∗, we define a V-valued function
on Ω:

Iσ(ξ)(u) :=
d∑

k=1

〈ϕu,v∗k , ξ〉vk, u ∈ Ω.

Iσ(ξ) is independent of the choice of the basis {vk}
d
k=1. Evidently, Iσ is injective.

Lemma 6.1. Iσ is G-equivariant, that is,

Iσ(T ∗σ∗ (g)ξ) = πσ(g)Iσ(ξ),

for any g ∈ G.

Proof.

Iσ(T ∗σ∗ (g)ξ)(u) =

d∑
k=1

〈ϕu,v∗k ,T
∗
σ∗ (g)ξ〉vk =

d∑
k=1

〈Tσ∗ (g−1)ϕu,v∗k , ξ〉vk

=

d∑
k=1

〈σ∗( j(? · g−1,u))v∗k, ξ〉vk

= σ( j(g−1,u))−1

 d∑
k=1

〈σ∗( j(?, g−1 ∗ u))v∗k;g, ξ〉vk;g

 (see (4.1))

= (πσ(g)Iσ(ξ))(u),

where vk;g = σ( j(g−1,u))vk, and similarly v∗k;g = σ∗( j(g−1,u))v∗k. {vk;g}
d
k=1 and {v∗k;g}

d
k=1 are

dual to each other. Q.E.D.

Proposition 6.2.
(1) For any continuous linear functional ξ ∈ Bσ∗ (H,V∗)∗, Iσ(ξ) is a V-valued rigid

analytic function on Ω.
(2) Iσ is a continuous homomorphism of G-representations from (Bσ∗ (H,V∗)∗b,T

∗
σ∗ ) to

(Oσ(Ω), πσ).

Proof. Step 1. We denote by i the inclusion: Bσ∗ (H,V∗) ↪→ Can
σ∗ (H,V

∗), i∗ its adjoint
operator. Because of our assumption that K is spherically complete, the Hahn-Banach
Theorem ([9] Corollary 9.4) implies that i∗ is surjective. Since Can

σ∗ (H,V
∗)∗b and Bσ∗ (H,V∗)∗b

are both Fréchet spaces (Corollary 3.6), the open mapping theorem ([9] Proposition 8.6)
implies that i∗ is open. Therefore the continuity of Iσ ◦ i∗ implies that of Iσ. Consequently,
(1) and (2) are equivalent to:
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(1′) Iσ ◦ i∗(ξ) ∈ Oσ(Ω) for any ξ ∈ Can
σ∗ (H,V

∗)∗;
(2′) Iσ ◦ i∗ : (Can

σ∗ (H,V
∗)∗b,T

∗
σ∗ ) → (Oσ(Ω), πσ) is a continuous homomorphism of G-

representations.
Since G-equivariance is proved in Lemma 6.1, for (2′) it remains to show the continu-

ity of Iσ ◦ i∗.
For convenience, we still denote Iσ ◦ i∗ by Iσ.
Step 2. Let {Uκ}κ be a finite disjoint open covering of H satisfying:

1. U+
o ∈ {Uκ}κ (note that the open subscheme P−\C of H is identified with U+);

2. each Uκ is (right) translated into U+
o by some gκ ∈ G.

Let Uκ be the preimage of Uκ under prH
H

.
For ξ ∈ Can

σ∗ (H,V
∗)∗, we write Iσ(ξ) in integral:

Iσ(ξ)(u) =

d∑
k=1

∫
H

ϕu;v∗k dξ · vk =

d∑
k=1

∑
κ

∫
Uκ

ϕu;v∗k dξ · vk

=
∑
κ

πσ(gκ)
( d∑

k=1

∫
Uκ ·gκ

ϕu;v∗k;gκ
d(T ∗σ∗ (g

−1
κ )ξ) · vk;gκ

)
,

where vk;gκ = σ( j(g−1
κ ,u))vk is defined in the proof of Lemma 6.1. Therefore it suffices to

consider

(6.1)
d∑

k=1

∫
U

ϕu;v∗k dξ
′ · vk,

where U ranges on {Uκ · gκ}κ and ξ′ is the image of ξ under Can
σ∗ (H,V

∗)∗b → Can
σ∗ (U,V

∗)∗b.
For the open subset U = prH

H
(U) of U+

o , we have the isomorphism induced from a

locally analytic section ι of prU
U

(see Lemma 3.5 (3)):

(6.2) Can
σ∗ (U,V

∗)∗b ' Can(U,V∗)∗b.

Then (6.1) is equal to

Īσ,U(ξ)(u) :=
d∑

k=1

∫
U

(σ∗( j(u+,u))v∗k) dξ(u+) · vk,

where ξ is the image of ξ′ in Can(U,V∗)∗b via the isomorphism (6.2).
Therefore it suffices to prove that Īσ,U(ξ) is rigid analytic on Ω(m), and that the map

Can(U,V∗)∗b → Oσ(Ω(m))

ξ 7→ Īσ,U(ξ)|Ω(m)

is continuous for all m.
Step 3. Since σ∗ is K-rational, using the same arguments in the proof of Lemma 5.1

and applying Corollary 5.6, we obtain an expansion

σ∗( j(u+,u))v∗k =

d∑
`=1

( ∑
r∈N

R+
I

0

ar,k`(u) · (u+)r
)
v∗` ,
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with ar,k` ∈ O(Ω(m)) such that

(6.3) lim
|r|→∞
||ar,k` ||O(Ω(m)) · ||(u+)r ||Can(U+

o ) = 0,

and moreover, there is a constant c′ > 0, depending only on m, σ and {vk}
d
k=1, such that

(6.4) ||ar,k` ||O(Ω(m)) · ||(u+)r ||Can(U+
o ) 6 c′.

Then

(6.5) Īσ,U(ξ)(u) =

d∑
k=1

( d∑
`=1

∑
r

∫
U

(u+)r · v∗`dξ(u
+) · ar,k`(u)

)
vk.

We have

(6.6)
∣∣∣∣∣∫
U

(u+)r · v∗`dξ(u
+)

∣∣∣∣∣ 6 ||(u+)r ||Can(U+
o ) · ||v∗` ||V∗ · ||ξ||Can(U,V∗)∗b

.

(6.3) and (6.6) imply that the expansion (6.5) of Īσ,U(ξ) converges in Oσ(Ω(m)).
(6.4) and (6.6) imply∥∥∥Īσ,U(ξ)

∥∥∥
Oσ(Ω(m))

6 max
16k,`6d

c′||v∗` ||V∗ ||vk ||V · ||ξ||Can(U,V∗)∗b
,

and therefore the continuity follows. Q.E.D.

6.2. The duality operator Jσ. Let Nσ(Ω) denote the image of Iσ.
We consider Jσ, the adjoint operator of Iσ, which is an injective continuous linear

operator from Nσ(Ω)∗b to (Bσ∗ (H,V∗)∗b)∗b � Bσ∗ (H,V∗) (Bσ∗ (H,V∗) is reflexive according to
Corollary 3.6).

For any µ ∈ Nσ(Ω)∗ and ξ ∈ Bσ∗ (H,V∗)∗, we have

(6.7) 〈Jσ(µ), ξ〉 = 〈Iσ(ξ), µ〉.

For ĝ ∈ H and v ∈ V , we define the Dirac distribution ξĝ,v ∈ Bσ∗ (H,V∗)∗ as follows:

〈ϕ, ξĝ,v〉 = 〈v, ϕ(ĝ)〉V , ϕ ∈ Bσ∗ (H,V∗),

and a V-valued rigid analytic function ψĝ,v on Ω:

ψĝ,v(u) := σ( j(ĝ,u))−1v.

Lemma 6.3.
Iσ(ξĝ,v) = ψĝ,v.

Proof. This is straightforward from definitions.

Iσ(ξĝ,v)(u) =

d∑
k=1

〈ϕu,v∗k , ξĝ,v〉vk =

d∑
k=1

〈v, ϕu,v∗k (ĝ)〉Vvk =

d∑
k=1

〈v, σ∗( j(ĝ,u))v∗k〉Vvk

=

d∑
k=1

〈σ( j(ĝ,u))v, v∗k〉Vvk = σ( j(ĝ,u))v = ψĝ,v(u)

Q.E.D.

Then we obtain a formula for Jσ.
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Proposition 6.4. For any continuous linear functional µ ∈ Nσ(Ω)∗, we have

(6.8) Jσ(µ)(ĝ) =

d∑
k=1

〈ψĝ,vk , µ〉v
∗
k.

Proof. This is straightforward from Lemma 6.3 and (6.7). Indeed,
r∑

k=1

〈ψĝ,vk , µ〉v
∗
k =

r∑
k=1

〈Iσ(ξĝ,vk ), µ〉v
∗
k =

r∑
k=1

〈Jσ(µ), ξĝ,vk〉v
∗
k

=

r∑
k=1

〈vk, Jσ(µ)(ĝ)〉V · v∗k = Jσ(µ)(ĝ).

Q.E.D.

6.3. The image of Iσ. Let N 0
σ (Ω) denote the subspace of Oσ(Ω) spanned by ψĝ,v for

all ĝ ∈ H and v ∈ V . Then it follows from (4.1) that N 0
σ (Ω) is G-invariant, and Lemma 6.3

implies N 0
σ (Ω) ⊂ Nσ(Ω).

From (6.8), we see that Jσ factors through N 0
σ (Ω)∗, and (6.8) defines an injective

map from N 0
σ (Ω)∗b into Bσ∗ (H,V∗). Since Jσ is injective and the natural map Nσ(Ω)∗b →

N 0
σ (Ω)∗b is surjective (the Hahn-Banach Theorem), N 0

σ (Ω)∗b = Nσ(Ω)∗b. Therefore the
Hahn-Banach Theorem implies the following lemma.

Lemma 6.5. N 0
σ (Ω) is dense in Nσ(Ω).

Theorem 6.6.
(1) Iσ is an isomorphism from Bσ∗ (H,V∗)∗b to Nσ(Ω).
(2) Nσ(Ω) is the closure of N 0

σ (Ω) in Oσ(Ω).

Proof. Let ι be a locally analytic section of prH
H

, and denote K = ι(H).

1. Let N 0
σ (Ω(m)) be the image of N 0

σ (Ω) in Oσ(Ω(m)).
Since ψĝ,vk = πσ(g−1)vk, we see that the map

H → Oσ(Ω(m))

ĝ 7→ ψĝ,vk ,

is locally analytic (Lemma 5.5). Since K is compact, ρm = min
16k6d

min
ĝ∈K
||ψĝ,vk ||Oσ(Ω(m)) is posi-

tive. Let L denote the lattice
d∑

k=1

∑
ĝ∈K

oK · ψĝ,vk in N 0
σ (Ω). Then, for each m, the image of

L in N 0
σ (Ω(m)) contains the ball of radius ρm centered at zero, and therefore the interior

of L is a nontrivial open lattice.
2. According to Lemma 3.5, ι induces an isomorphism ι◦ between Can

σ∗ (H,V
∗) and

Can(H,V∗), and hence an isomorphism between Bσ∗ (H,V∗) and its image, denoted by
B(H,V∗).

Let I be any (finite) disjoint open chart covering {Uκ}κ of H. We recall that Can(H,V∗)
is defined to be the inductive limit, indexed with all the I, of the K-Banach algebras
EI(H,V∗) =

∏
κ O(Uκ,V∗), where O(Uκ,V∗) denotes the space of K-analytic functions
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on Uκ (cf. [2] 2.1.10 and [11] §2). The inductive limit structure is naturally induced onto
B(H,V∗), say B(H,V∗) = lim

−−→I
EI(H,V∗). Moreover, the strong dual space B(H,V∗)∗b is the

projective limit of EI(H,V∗)∗b.
3. Consider (

ι◦−1)∗
◦ I−1

σ |N 0
σ (Ω) : N 0

σ (Ω) → B(H,V∗)∗b

ψĝ,v 7→
(
ι◦−1)∗(ξĝ,v).

Let ĝ ∈ K. ∥∥∥(ι◦−1)∗(ξĝ,v)
∥∥∥

EI(H,V∗)∗b
= max

ϕ∈EI(H,V∗)

〈ϕ,
(
ι◦−1)∗(ξĝ,v)〉
||ϕ||EI(H,V∗)

= max
ϕ∈ ι◦−1(EI(H,V∗))

〈ϕ, ξĝ,v〉

||ι◦(ϕ)||EI(H,V∗)

= max
ϕ∈ ι◦−1(EI(H,V∗))

〈v, ϕ(ĝ)〉V
max
ĝ′∈K
||ϕ(ĝ′)||V∗

6 ||v||V .

Therefore the image of L under
(
ι◦−1)∗ ◦ I−1

σ |N 0
σ (Ω) in B(H,V∗)∗b is bounded, since its

image in EI(H,V∗)∗b are all norm-bounded by max
16k6d

||vk ||V . Because N 0
σ (Ω) is metrizable,

it is bornological ([9] Proposition 6.14), and therefore I−1
σ |N 0

σ (Ω) is continuous ([9] Propo-
sition 6.13). Therefore Iσ induces an isomorphism between I−1

σ (N 0
σ (Ω)) and N 0

σ (Ω), and
consequently Iσ induces an isomorphism between their completions, which, in view of
Lemma 6.5, must be Bσ∗ (H,V∗)∗b and Nσ(Ω) respectively. Q.E.D.

Corollary 6.7. Jσ is an isomorphism of G-representations from (Nσ(Ω)∗b, π
∗
σ) to

(Bσ∗ (H,V∗),Tσ∗ ).

7. Concluding remarks

In [7] §3 we briefly reviewed Morita’s theory of SL(2, F) and discussed the relation
between Iσ and Morita’s duality and Casselman’s operator for

σs

z−1 0
0 z

 = zs

with s a positive integer (for s non-positive, Iσ is an isomorphism between two (−s + 1)-
dimensional G-representations, which is of less interest).

To illustrate this connection, we consider the special case s = 2. Oσ2 (Ω) is canonically
isomorphic to the space Ω1(Ω) of holomorphic 1-forms on the upper half plane Ω � K−F =

P1(K) − P1(F) via ψ(u) 7→ ψ(u)du. It may be shown that Nσ2 (Ω) corresponds to the
subspace of Ω1(Ω) with zero residue at each point of P1(F) (see [4] and [7]). On the other
hand, Can

σ0
(H) � Can(H) with H � P1(F), and we denote D0 = Can(P1(F)). D0 has two

closed G-invariant subspaces, the spaces P0 and Ploc
0 consisting of constants and locally



22 ZHI QI

constant functions on P1(F) respectively. The classical Morita’s duality is established via
residues. More precisely, for each ψ ∈ Oσ2 (Ω), define a linear functional M2(ψ) of D0 by

〈ϕ,M2(ψ)〉 = the sum of residues of the 1-form ϕ(u)ψ(u) du on P1(F).

Morita’s duality M2 induces G-isomorphisms Oσ2 (Ω) � (D0/P0)∗b and Nσ2 (Ω) � (D0/Ploc
0 )∗b.

Moreover, Casselman’s intertwining operator

S 0 : ϕ 7→ dϕ

induces a G-isomorphism between D0/Ploc
0 and the space D−2 of locally analytic 1-forms

on P1(F), a space that is isomorphic to Can
σ−2

(H) (see [5] and [7]). The connection between
our duality operator Iσ2 and Morita’s duality M2 was found in [7] Theorem 3.6 as the
following commutative diagram

Nσ2 (Ω) (D0/Ploc
0 )∗b

Bσ−2 (H)∗b = Can
σ−2

(H)∗b � (D−2)∗b

M2

Iσ2 S ∗0

A generalization of Morita’s duality seems quite hard in view of its analytic con-
struction via residues. The first step towards this would be finding other closed sub-
representations of (Can

σ (H,V),Tσ) and (Oσ(Ω), πσ). This work is done completely for
SL(2, F) in Morita and Murase’s [4], [5] and [6], where the complete classifications of
the sub-quotient spaces of holomorphic discrete series and the principal series are con-
jectured and claimed (Morita attempted to prove this, but his proof contained a serious
gap).

A further question is on the irreducibility. For this, we conjecture that (Nσ(Ω), πσ)
and (Bσ∗ (H,V∗),Tσ∗ ) are topologically irreducible G-representations if σ is irreducible.
For SL(2, F), this conjecture was claimed in [6] Theorem 1 (i) and a proof for F = Qp was
given by Schneider and Teitelbaum in [11].
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[2] C. T. Féaux de Lacroix, Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf
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