Theorem: Let h(r):= r! (m - r)! Let H(n,r) be the Hankel determinant det (h(r+i+j)), 0<=i,j<=n-1 Then we have the explicit evaluation H(n,r)= / n / | --------' | n |' | | | (r! (m - r)!) | | | | | | | | | | | | \ n[1] = 1 \ n[1] --------' ' | | (n[2] - 1) (-m - 3 + n[2]) (n[2] - 1 + r) (n[2] - 3 - m + r) | | ---------------------------------------------------------------- | | 2 | | (2 n[2] - 3 - m + r) (2 n[2] - 5 - m + r) (-4 + 2 n[2] + r - m) n[2] = 2 \\ || || || || || // Proof: Let's call the expression on the r.h.s. G(n,r). Obviously H(n,r)=G(n,r), for n=0,1 It is readily checked that 2 G(n - 1, r) G(n - 1, r + 2) - G(n - 1, r + 2) G(n, r) = ---------------------------------------------- G(n - 2, r + 2) Since, by Dodgson's rule: 2 H(n - 1, r) H(n - 1, r + 2) - H(n - 1, r + 2) H(n, r) = ---------------------------------------------- H(n - 2, r + 2) It follows by induction on n that, for all n>=0 H(n, r) = G(n, r) QED It took, 39.141, seconds of CPU time This does MacMahon's determinant An Explicit Evaluation Of a Certain Toeplitz Determinant By S. B. Ekhad (c/o D. Zeilberger, zeilberg@math.rutgers.edu) Theorem: Let h(r):= 1 -------- (m + r)! Let H(n,r) be the Toeplitz determinant det (h(r+i-j)), 0<=i,j<=n-1 Then we have the explicit evaluation H(n,r)= / n / n[1] \\ | --------' | --------' || / 1 \n |' | | |' | | n[2] - 1 || |--------| | | | | | | ----------------|| \(m + r)!/ | | | | | | m - 1 + r + n[2]|| | | | | | | || \ n[1] = 1 \ n[2] = 2 // Proof: Let's call the expression on the r.h.s. G(n,r). Obviously H(n,r)=G(n,r), for n=0,1 It is readily checked that 2 G(n - 1, r) - G(n - 1, 1 + r) G(n - 1, r - 1) G(n, r) = ---------------------------------------------- G(n - 2, r) Since, by Dodgson's rule: 2 H(n - 1, r) - H(n - 1, 1 + r) H(n - 1, r - 1) H(n, r) = ---------------------------------------------- H(n - 2, r) It follows by induction on n that, for all n>=0 H(n, r) = G(n, r) QED It took, .699, seconds of CPU time This does the Hilbert determinant An Explicit Evaluation Of a Certain Hankel Determinant By S. B. Ekhad (c/o D. Zeilberger, zeilberg@math.rutgers.edu) Theorem: Let h(r):= 1 ----- 1 + r Let H(n,r) be the Hankel determinant det (h(r+i+j)), 0<=i,j<=n-1 Then we have the explicit evaluation H(n,r)= / n | --------' / 1 \n |' | | |-----| | | | \1 + r/ | | | | | | \ n[1] = 1 / n[1] \\ | --------' 2 2 || |' | | (n[2] - 1) (n[2] - 1 + r) || | | | ----------------------------------------------------|| | | | 2|| | | | (2 n[2] - 1 + r) (2 n[2] - 3 + r) (-2 + 2 n[2] + r) || \ n[2] = 2 // Proof: Let's call the expression on the r.h.s. G(n,r). Obviously H(n,r)=G(n,r), for n=0,1 It is readily checked that 2 G(n - 1, r) G(n - 1, 2 + r) - G(n - 1, 2 + r) G(n, r) = ---------------------------------------------- G(n - 2, 2 + r) Since, by Dodgson's rule: 2 H(n - 1, r) H(n - 1, 2 + r) - H(n - 1, 2 + r) H(n, r) = ---------------------------------------------- H(n - 2, 2 + r) It follows by induction on n that, for all n>=0 H(n, r) = G(n, r) QED It took, .420, seconds of CPU time