2 The Apery Constant Inspired by the coefficient of , t , in the Zudilin-Straub transform of, n ----- \ ) binomial(n, k) binomial(n + k, k) / ----- k = 0 By Shalosh B. Ekhad Let RF(t,k), as usual, be the raising factorial, t*(t+1)...(t+k-1) We are interested in the limit, as n goes to infinity, of the coefficient of , 2 t , in the following quantity 2 RF(1 + t, n + k) (k!) (n - k)! --------------------------------------- 2 RF(1 + t, k) RF(1 - t, n - k) (n + k)! 1/2 2 n and k equals, ------, that in floating-point is, 0.70710678118654752440 n 2 Let's call this constant c (it can also be described directly in terms of ha\ rmonic-type expressions). Using this definition the convergence is extre\ mely slow. We will show how to compute it much faster, with exponential error-rate Let A(n) be the sequence of integers satisfying the linear recurrence (n + 1) A(n) + (-6 n - 9) A(n + 1) + (n + 2) A(n + 2) = 0 and in Maple notation (n+1)*A(n)+(-6*n-9)*A(n+1)+(n+2)*A(n+2) = 0 Subject to the initial condition A(1) = 3, A(2) = 13 Let B(n) be the sequence satisfying the INHOMOGENEOUS recurrence i.e. (n+1)*B(n)+(-6*n-9)*B(n+1)+(n+2)*B(n+2) = C(n) with the initial conditions B(1) = 3, B(2) = 69/4 where the right side, C(n), satisfies the recurrence -2*(n+1)*(21881459371394930680052*n^3+185707271237033180603765*n^2+ 462510605143354924832742*n+287346091083506801360925)*(3+2*n)^2/(n+5)/( 5195974367286240732095*n^3+50480267836210758755222*n^2+151875453836769500089538 *n+140567016521152468356999)/(6+n)^2*C(n)+(179441922580159316447104*n^6+ 1569792273476603943975468*n^5-523587211358108796729190*n^4-\ 47648870347684265979593089*n^3-195503664853490031926413804*n^2-\ 317904077383696722576867585*n-187718197628604115039897476)/(n+5)/( 5195974367286240732095*n^3+50480267836210758755222*n^2+151875453836769500089538 *n+140567016521152468356999)/(6+n)^2*C(n+1)+1/2*(52473635287185179020092*n^6+ 3311190153395584865202363*n^5+46619044862356341290874091*n^4+ 287580723084879249399079559*n^3+895521339568144994051674661*n^2+ 1377550071595020209833995042*n+828013724834069863848126744)/(n+5)/( 5195974367286240732095*n^3+50480267836210758755222*n^2+151875453836769500089538 *n+140567016521152468356999)/(6+n)^2*C(n+2)-1/2*(71646079239757402497658*n^5+ 1707977555794646280584937*n^4+14778302332559848724947974*n^3+ 59169020325727004755830659*n^2+110500568361712478106966612*n+ 76970000311622216619797952)/(5195974367286240732095*n^3+50480267836210758755222 *n^2+151875453836769500089538*n+140567016521152468356999)/(6+n)^2*C(n+3)+C(n+4) = 0 with the initial conditions C(1) = 22, C(2) = 1037/12, C(3) = 10483/30, C(4) = 42247/30 Note that it is very fast to compute many terms of C(n) and hence of B(n) The ratios B(n)/A(n) tend very fast to the constant c Here it is to 30 digits, 1.64493406684822643647241516665 2 Pi This is most probably, --- 6 #The direct computation of the approximation was terminated.