The pure recurrence operator, in n, annihilatating the (2n,2n,2n) mixed mom\ ent of the Ekhad-Zeilberger tri-variate distribution where the shift operator is n is denoted by N is There is hope for a recurrence of order, 2 2 3 3 3 ope := - 4 (2 n + 3) (n + 1) (2 n + 1) (1 + 2 c) (-1 + c) / 7 (2 c n + 3 c + 4 n + 7) / ((c + 1) (2 c n + c + 4 n + 3)) + (2 n + 3) ( / 5 3 5 2 4 3 5 4 2 3 3 5 8 c n + 28 c n - 64 c n + 30 c n - 220 c n - 256 c n + 9 c 4 3 2 2 3 4 3 2 2 - 232 c n - 936 c n - 224 c n - 69 c - 1068 c n - 832 c n 3 3 2 2 3 2 - 80 c n - 368 c - 972 c n - 296 c n - 32 n - 348 c - 350 c n 2 / 4 2 - 120 n - 129 c - 144 n - 55) N / ((c + 1) (2 c n + c + 4 n + 3)) + N / -4*(2*n+3)*(n+1)^2*(2*n+1)^3*(1+2*c)^3*(-1+c)^3*(2*c*n+3*c+4*n+7)/(c+1)^7/(2*c* n+c+4*n+3)+(2*n+3)*(8*c^5*n^3+28*c^5*n^2-64*c^4*n^3+30*c^5*n-220*c^4*n^2-256*c^ 3*n^3+9*c^5-232*c^4*n-936*c^3*n^2-224*c^2*n^3-69*c^4-1068*c^3*n-832*c^2*n^2-80* c*n^3-368*c^3-972*c^2*n-296*c*n^2-32*n^3-348*c^2-350*c*n-120*n^2-129*c-144*n-55 )/(c+1)^4/(2*c*n+c+4*n+3)*N+N^2 ----------------------------------------- This took, 2.681, seconds.