---------------------------------------------------- Sketch of an Irrationality Proof of the constant 1 1 1 / / / | | | 1 | | | ------------- dx dy dz | | | x y z - z + 1 / / / 0 0 0 divided by 1 1 1 / / / | | | | | | 1 dx dy dz | | | / / / 0 0 0 that equals, up to, 200, digits , 2.4041138063191885707994763230228999815299\ 725846809977635845431106836764115726261803729117472186705162923983155905\ 214388369839919973465664275527936744158003229078835658987201334383831510\ 444849884879231 By Shalosh B. Ekhad Theorem: The constant of the title , let's all it C 1/2 ln(17 + 12 2 ) + nu is irrational, with an irrationality measure, 1 + ---------------------, 1/2 ln(17 + 12 2 ) - nu for a certain number nu that is EXACTLY, 3 yielding an irrationality measure 1/2 ln(17 + 12 2 ) + 3 1 + -------------------- 1/2 ln(17 + 12 2 ) - 3 that to 10 decimals, equals 13.41782024 Comment: Note that this constant appears to be , 2 Zeta(3) Prove it! We need two lemmas Lemma ONE: , let A(n), B(n), be two sequences of rational numbers that satis\ fy the second-order recurrence 3 2 (1 + n) X(n) (2 n + 3) (17 n + 51 n + 39) X(1 + n) ------------- - -------------------------------------- + X(2 + n) = 0 3 3 (2 + n) (2 + n) Subject to the initial conditions A(0) = 0, A(1) = 12 B(0) = 1, B(1) = 5 A(n) Then, ----, approximates the constant of the title, let's call it C B(n) / 1 \n with an error that is OMEGA of, |---------------| | 1/2 2| \(17 + 12 2 ) / Proof, consider the Beukers-type integral 1 1 1 /x (1 - x) y (1 - y) z (1 - z)\n / / / |-----------------------------| | | | \ x y z - z + 1 / | | | -------------------------------- dx dy dz | | | x y z - z + 1 / / / 0 0 0 divided by 1 1 1 / / / | | | | | | 1 dx dy dz | | | / / / 0 0 0 Then , F(0) = B(0) C - A(0), F(1) = B(1) C - A(1) and F(n) also satisfies the above recurrence, thanks to the amazing Mathemat\ ica package HolonomicFunctions of Christoph Koutschan Hence, F(n) = B(n) C - A(n) 1 By a simple bound of the integrand, F(n) is OMEGA of, ---------------, 1/2 n (17 + 12 2 ) and by the Poincare lemma, B(n) (and for that matter, A(n)) are OMEGA of, 1/2 n (17 + 12 2 ) 1 Dividing by B(n) gives that A(n)/B(n)-C is OMEGA of , -------------------, 1/2 (2 n) (17 + 12 2 ) QED. we now claim that the sequence of RATIONAL numbers A(n),B(n), can be multipl\ ied by another sequence of rational numbers E(n) such that both A(n)E(n) and B(n)E(n) are integers Let E(n) be 3 LCM(n) where LCM(1..m) is the least-common-multiple of the first m integers, and fo\ r 0