------------------------------ Let's take z0=3, and try to factorize the Dimer C-finite sequences n is, 4 [[[3*RootOf(_Z^4-3*_Z^2+1), 1], [-3*RootOf(_Z^4-3*_Z^2+1)*(RootOf(_Z^4-3*_Z^2+1 )^2-3), 1]]] n is, 6 [[[3*RootOf(_Z^6-5*_Z^4+6*_Z^2-1), 1], [9*RootOf(_Z^6-5*_Z^4+6*_Z^2-1)*(RootOf( _Z^6-5*_Z^4+6*_Z^2-1)^4-5*RootOf(_Z^6-5*_Z^4+6*_Z^2-1)^2+6), -9*RootOf(_Z^6-5* _Z^4+6*_Z^2-1)^2+47, 9*RootOf(_Z^6-5*_Z^4+6*_Z^2-1)*(RootOf(_Z^6-5*_Z^4+6*_Z^2-\ 1)^4-5*RootOf(_Z^6-5*_Z^4+6*_Z^2-1)^2+6), -1]]] n is, 8 [[[3*RootOf(_Z^2-1), 1], [27*RootOf(_Z^2-1), 841, 1593*RootOf(_Z^2-1), -951, -\ 1593*RootOf(_Z^2-1), 841, -27*RootOf(_Z^2-1), -1]]]