The linear recurrence operator annihilating the series of coefficients of th\ e Onsager function, let's call it f(v) is 6 5 4 3 2 /d \ (-13 v + 70 v - 251 v + 16 v + 69 v + 2 v - 5) |-- f(v)| \dv / / 2 \ 5 4 3 2 |d | - v (v - 1) (55 v - 309 v + 328 v + 220 v - 87 v + 1) |--- f(v)| | 2 | \dv / / 3 \ 2 4 3 2 2 |d | - v (33 v - 172 v - 10 v + 116 v - 15) (v - 1) |--- f(v)| | 3 | \dv / / 4 \ 3 2 3 |d | - 4 v (v + 1) (v - 6 v + 1) (v - 1) |--- f(v)| = 0 | 4 | \dv / and in Maple notation (-13*v^6+70*v^5-251*v^4+16*v^3+69*v^2+2*v-5)*diff(f(v),v)-v*(v-1)*(55*v^5-309*v ^4+328*v^3+220*v^2-87*v+1)*diff(diff(f(v),v),v)-v^2*(33*v^4-172*v^3-10*v^2+116* v-15)*(v-1)^2*diff(diff(diff(f(v),v),v),v)-4*v^3*(v+1)*(v^2-6*v+1)*(v-1)^3*diff (diff(diff(diff(f(v),v),v),v),v) = 0 the differential operator is (-13*v^6+70*v^5-251*v^4+16*v^3+69*v^2+2*v-5)*Dv-v*(v-1)*(55*v^5-309*v^4+328*v^3 +220*v^2-87*v+1)*Dv^2-v^2*(33*v^4-172*v^3-10*v^2+116*v-15)*(v-1)^2*Dv^3-4*v^3*( v+1)*(v^2-6*v+1)*(v-1)^3*Dv^4