read InvMaj:
print(`The beginning (up to order 5) of the infinite-dimensional recurrence operator let's call it OPER(1/R,1/S,r,s,n,i) such that`):
print(`the mixed-fatorial moment of (inv,maj) defined over permutations of {1, ..., n} that end in i (let's call if f[r,s](n,i)`):
print(`f[r,s](n,i)=OPER(1/R,1/S,r,s,n,i) f[r,s](n,i) , corresponding to (RecG) of the article is`):
lprint(MOP(I1/q+(q^(n-1)-1)/(n-1)*p^(n/2-i)/q^(n/2)/N,p,q,N,I1,r,s,R,S,5));
lprint(MOP(I1/q+(q^(n-1)-1)/(n-1)*p^(n/2-i)/q^(n/2)/N,p,q,N,I1,r,s,R,S,5));
print(`The beginning (up to order 5) of the infinite-dimensional recurrence operator let's call it OPER(1/R,1/S,r,s,n,i) such that`):
print(`the mixed-fatorial moment of (inv,maj) defined over permutations of {1, ..., n} that end in i (let's call if f[r,s](n,i)`):
print(`f[r,s](n,i)=OPER(1/R,1/S,r,s,n,i) f[r,s](n,i) , corresponding to (Gnn) of the article is`):
print(`You have to stick Sum(%,i=1..n-1) in front!`):
lprint(MOP((p*q)^(n/2-i)/N/(n-1),p,q,N,I1,r,s,R,S,5)):
quit: