############################################################################## # GenBeukersZeta2.txt Save this file as GenBeukersZeta2.txt to use it, # # stay in the # ## same directory, get into Maple (by typing: maple ) # ## and then type: read GenBeukersZeta2.txt # ## Then follow the instructions given there # ## # ## Written by Robert Dougherty-Bliss and Doron Zeilberger # #Rutgers University , # #and Christoph Koutshan, Linz # #robert dot w dot bliss at gmail dot com # ## DoronZeil at gmail dot com # ############################################################################### print(` Written: Sept./Dec 2020 `): print(): print(`This is GenBeukersZeta2.txt, A Maple package for efficient computation of generalized Beukers integrals`): print(`that generalize the Beukers Zeta(2) integral `): print(` It experiments with the Generalized Beukers integral`): print(Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)): print(``): print(`It also considers the even more general integral`): print(Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(c+1)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)): print(``): print(`where the case c=0 correspond to the former case`): print(` It is one of the Maple packages that accompany the article `): print(`Tweaking the Beukers Integrals In Search of More Miraculous Irrationality Proofs A La Apery`): print(``): print(`avaliable from the authors' websites and from arxiv.org `): print(``): print(): print(`The most current version is available on WWW at:`): print(` http://sites.math.rutgers.edu/~zeilberg/tokhniot/GenBeukers.txt .`): print(`Please report all bugs to: DoronZeil at gmail dot com .`): print(): print(`---------------------------------------------`): print(): print(`For a list of the STORY procedures`): print(` type "ezraST();". For specific help type "ezra(procedure_name);" `): print(): print(): print(`---------------------------------------------`): print(): print(): print(`---------------------------------------------`): print(): print(`For a list of the PRIMES procedures`): print(` type "ezraPR();". For specific help type "ezra(procedure_name);" `): print(): print(): print(`---------------------------------------------`): print(): print(): print(`---------------------------------------------`): print(): print(`For a list of the Pre-Computed procedures`): print(` type "ezraPC();". For specific help type "ezra(procedure_name);" `): print(): print(): print(`---------------------------------------------`): print(): print(): print(`---------------------------------------------`): print(): print(`For a list of the procedures from MultiAlmkvistZeilbeger.txt `): print(` type "ezraMAZ();". For specific help type "ezraMAZ(procedure_name);" `): print(): print(): print(`---------------------------------------------`): print(): print(): print(`---------------------------------------------`): print(): print(`For a list of the Generalized procedures`): print(` type "ezraG();". For specific help type "ezra(procedure_name);" `): print(): print(): print(`---------------------------------------------`): print(): print(): print(`---------------------------------------------`): print(): print(`For a list of the SUPPORTING procedures`): print(` type "ezra1();". For specific help type "ezra(procedure_name);" `): print(): print(): print(`---------------------------------------------`): print(): print(): print(`---------------------------------------------`): print(): print(`For general help, and a list of the MAIN functions,`): print(` type "ezra();". For specific help type "ezra(procedure_name);" `): #print(`For a list of the supporting functions type: ezra1();`): print(): print(): print(`---------------------------------------------`): print(): ezraPR:=proc() if args=NULL then print(` The PRIMES pocedures are`): print(` AsyPpG, EvalPpG, PpG, PpGlimit, PrimesF, PrintPpG `): else ezra(args): fi: end: ezraST:=proc() if args=NULL then print(` The Story procedures are`): print(`Info1, Mamar2, Mamar3, Mamar4, PaperZ2, PaperZ2g, PrintPpG, TheoremZ2, TheoremZ2g, TheoremZ2gnum, TheoremZ2num, WadimHWv, WadimHWvLP, `): else ezra(args): fi: end: ezraG:=proc() if args=NULL then print(` generalized procedures are:`): print(` AnBnG, AppxSeqG, CnDnG, deltSeqG, FindRelG, hopefulSearchG, IntGBg, GBCg, OPEZ2g `): else ezra(args): fi: end: ezraPC:=proc() if args=NULL then print(`The pre-computed procedures are:`): print(` AlmostHopefuls1G, Hopefuls1, Hopefuls1C, Hopefuls1G, Hopefuls2, Hopefuls2C, Hopefuls3, Hopefuls3C, Hopefuls4, Hopefuls4C, Hopefuls5, Hopefuls5C `): print(`Hopefuls5v, WadimHW `): else ezra(args): fi: end: ezra1:=proc() if args=NULL then print(`The supporting procedures are:`): print(` AnBnSym,AppxSeq1, FindRel, FindRelSym, FindRelStupid `): print(`FracPts, GBC1, GuessK1, `): print(` hopefulSearch, hopefulSearchP, HopeStatus, IntGBnaked, IntGBser,IntGBsummand, IntGBsummandRF, IntGB3F2 `): print(`IntGBser, Khez, LeadA, LC, NormalizePair, Nu1, rf, SortC `): else ezra(args): fi: end: ezra:=proc() if args=NULL then print(`The MAIN procedures are:`) : print(` AnBn, AppxSeq, BC, CnDn, delt, deltSeq, GBC, IntGB, MyIDs, OPEZ2, Search, SeqFromRec `): elif nargs=1 and args[1]=AlmostHopefuls1G then print(`AlmostHopefuls1G(): A list of 3 pentuples with negative but small deltas for the generalized case. Try:`): print(`AlmostHopefuls1G();`): elif nargs=1 and args[1]=AnBn then print(`AnBn(a1,a2,b1,b2,K): The first K terms in the sequences An and Bn in the expression`): print(`IntGB(a1,a2,b1,b2,n)=B(n)*c-A(n)`): print(`where c=IntGB(a1,a2,b1,b2,0);`): print(`It also returns the first K terms in the floating point of the sequence IntGB(a1,a2,b1,b2,n) itself. Try: `): print(`AnBn(0,0,0,0,50);`): print(`AnBn(1/2,0,0,1/2,50);`): print(`AnBn(2/3,1/3,1/6,1/3,50);`): elif nargs=1 and args[1]=AnBnG then print(`AnBnG(a1,a2,b1,b2,c,K): The first K terms in the sequences An and Bn in the expression`): print(`IntGBg(a1,a2,b1,b2,n)=B(n)*CONST-A(n)`): print(`where CONT=IntGBg(a1,a2,b1,b2,c,0);`): print(`It also returns the first K terms in the floating point of the sequence IntGB(a1,a2,b1,b2,n) itself. Try: `): print(`AnBnG(0,0,0,0,1,50);`): print(`AnBnG(0,0,0,0,1/2,50);`): elif nargs=1 and args[1]=AnBnSym then print(`AnBnSym(a1,a2,b1,b2,K): The first K terms in the sequences An and Bn in the expression`): print(`IntGB(a1,a2,b1,b2,n)=B(n)*c-A(n)`): print(`where c=IntGB(a1,a2,b1,b2,0);`): print(`FOR SYMBOLIC a1,a2,b1,b2. Try:`): print(`AnBnSym(a1,a2,b1,b2,50);`): elif nargs=1 and args[1]=AppxSeq then print(`AppxSeq(a1,a2,b1,b2,K): The approximating sequence for IntGB(a1,a2,b1,b2,0); `): print(`Try: `): print(` AppxSeq(0,0,0,0,40); `): print(` AppxSeq(1/2,0,0,1/2,40); `): print(` AppxSeq(2/3,1/3,1/6,1/3,40); `): elif nargs=1 and args[1]=AppxSeqG then print(`AppxSeqG(a1,a2,b1,b2,c,K): The approximating sequence for IntGBg(a1,a2,b1,b2,c,0); `): print(`Try: `): print(` AppxSeqG(0,0,0,0,0,40); `): print(` AppxSeqG(1/2,0,0,1/2,0,40); `): print(` AppxSeqG(2/3,1/3,1/6,1/3,0,40); `): print(` AppxSeqG(2/3,1/3,1/6,1/3,1/2,40); `): elif nargs=1 and args[1]=AppxSeq1 then print(`AppxSeq1(ope,n,N,RE,K): It inputs a second order operator ope, in n where N is the shift operator N`): print(`where it is known that ope(n,N) annihilates a sequence a(n) that goes to zero.`): print(`It also inputs a pair RE=[[c0,c1],L] satisfying c0*a(0)+c1*a(1)=L where c0,c1 are integers and`): print(`L is a rational number, It outputs the list of the first K terms in the rational approximations to a(0). Try`): print(`AppxSeq1(N^2-N-1,n,N,[[11,12],3],20);`): elif nargs=1 and args[1]=AsyPpG then print(`AsyPpG(P): inputs a GpP expression P=[PA,PB] and outputs the`): print(`EXACT value of limit of log( EvalPpG(P,n))/n as n goes to infinity. Try`): print(`The following examples are parts of irrationality proofs, i.e. yielding positive delta, albeit of famous constants`): print(``): print(`For GBC(0,0,1/2,0) (alias 2*log(2)) , try: `): print(`AsyPpG([ [[2,2],[1,0],[]],[[1, 1], [1, 0], [ [0,1/2,0,1,{0},1], [1/2,1,0,2,{0},1]$2 ] ]]);`): print(``): print(`For GBC(0,0,1/3,-2/3) try: `): print(`AsyPpG([[[1, 0], [1, 0], [[1/3, 2/3, 0, 3, {2}, 3]]],[[1, 0], [1, 0], [[1/3, 2/3, 0, 3, {1}, 3]$2, [0, 1/3, 0, 3/2, {0}, 1], [2/3, 1, 0, 3/2, {0}, 1]]]]);`); print(`For the equivalent GBC(0,-2/3,2/3,-2/3), but much simpler, try:`): print(`AsyPpG([[[1, 0], [1, 0], []],[[3, 3/2], [1, 0], [[0, 1/3, 0, 1, {0}, 1]]]]);`); print(``): print(`For GBC(-3/4,-3/4,-1/4,-1/4), conjecturally 92-64*sqrt(2), try: `): print(` AsyPpG([[[1, 0], [1, 0], []], [[2, 2], [1, 0], [[1/2, 3/4, 0, 2, {0}, 1]] ]]); `): #print(`For GBC(0,-1/2,1/6,-1/2), type:`): #SOMETHING IS WRONG, TO BE CHECKED #print(`AsyPpG([[[3, 3/2], [1, 0], []],[[2, 2], [1, 0], [[0, 1/3, 0, 1, {0}, 1]]]]);`); print(`------------------------------`): print(`The following examples give negative deltas, but they are still interesting`): print(`For GBC(1/2,-1/2,-1/2,1/2), (conjecturally 4-8/Pi) , type:`): print(`AsyPpG([[[1, 0], [1, 0], []],[[2, 4], [1, 0], [[0, 1/2, 0, 1, {0}, 1]]]]);`); print(`For GBC(1/2,0,0,1/2), twice the Catalan constant , type:`): print(`AsyPpG([[[1, 0], [1, 0], []],[[2, 4], [2, 2], [ ]]]);`); print(`For GBC(1/3,0,0,1/3), whatever it is , type:`): print(`AsyPpG([[[1, 0], [1, 0], []],[[3,3], [3/2, 2], [ [1/3,2/3,3/2,3,{2},3]$2 ] ]]);`); elif nargs=1 and args[1]=AsyPpG1 then print(`AsyPpG1(P): inputs a partial GpP expression and outputs the`): print(`EXACT value of limit of log( EvalPpG1(P,n))/n as n goes to infinity. Try`): print(`For GBC(0,0,1/2,0) try: `): print(`AsyPpG1([[2, 2], [1, 0], [ [0,1/2,0,1,{0},1], [1/2,1,0,2,{0},1]$2 ] ] );`): elif nargs=1 and args[1]=BC then print(`BC(): The Beukers constant 11/2+5*sqrt(5)/2`): elif nargs=1 and args[1]=CnDn then print(`CnDn(a1,a2,b1,b2,K): The first K terms in the sequences gcd(numer(An[i]),numer(Bn[i]))`): print(`lcm(denom(An[i]),denom(Bn[i]), followed by the asympototics of the normalizing sequence, and the implied deltas.). Try:`): print(` that approximate IntGB(a1,a2,b1,b2,0);`): print(`The output is a list of length 3 where the first one is the pair of sequences `): print(`[lcm(numer(An[i]),numer(Bn[i])) `): print(``): print(`The second entry is the last 20 terms of the natural log of the normalizing sequence`): print(``): print(`The third entryis the last 20 terms of the conservative delta. If they are positive it indicates that there is probably`): print(`an inrrationality proof, modulo a certain divisibility lemma that needs a human, like Wadim Zudilin, to prove.`): print(``): print(`CnDn(0,0,0,0,50); `): print(` CnDn(1/2,0,0,1/2,50); `): print(` CnDn(1/2,0,0,1/2,50); `): print(`CnDn(2/3,1/3,1/6,1/3,50);`): elif nargs=1 and args[1]=CnDnG then print(`CnDnG(a1,a2,b1,b2,c,K): The first K terms in the sequences gcd(numer(An[i]),numer(Bn[i]))`): print(`lcm(denom(An[i]),denom(Bn[i]), followed by the asympototics of the normalizing sequence, and the implied deltas.). Try:`): print(` that approximate IntGBg(a1,a2,b1,b2,c);`): print(`The output is a list of length 3 where the first one is the pair of sequences `): print(`[lcm(numer(An[i]),numer(Bn[i])) `): print(`CnDnG(0,0,0,0,0,50); `): print(` CnDnG(1/2,0,0,1/2,0,50); `): print(` CnDnG(1/2,0,0,1/2,0,50); `): print(`CnDnG(2/3,1/3,1/6,1/3,0,50);`): elif nargs=1 and args[1]=CnDnG then print(`CnDnG(a1,a2,b1,b2,c,K): The first K terms in the sequences gcd(numer(An[i]),numer(Bn[i]))`): print(`lcm(denom(An[i]),denom(Bn[i])). that approximate IntGBg(a1,a2,b1,b2,c,0); Try:`): print(`It also returns the last 20 terms of the logs of the normailizing sequence`): print(`CnDnG(0,0,0,0,0,50); `): print(`CnDnG(0,0,0,0,1/2,50); `): elif nargs=1 and args[1]=delt then print(` delt(a,c): Given a rational number a and a constant `): print(` c, finds the delta such that |a-c|=1/denom(a)^(1+delta) `): print(` For example, try delt(22/7,evalf(Pi)); `): elif nargs=1 and args[1]=deltSeq then print(`deltSeq(a1,a2,b1,b2,K): The sequence for the empirical deltas for IntGB(a1,a2,b1,b2,0); `): print(`Try: `): print(`The folllowing is good old Apery-Beukers for Zeta(2) `): print(` deltSeq(0,0,0,0,40); `): print(`This one is Zudilin's construction for Catalan's constant`): print(` deltSeq(1/2,0,0,1/2,40); `): print(`This would give yet another proof for the irrationality of log(2) [not as good at Alladi]`): print(` deltSeq(-1/2,1/2,0,-1/2,50); `): print(`This seems to indicate irrationality proof for IntGB(2/3,1/3,1/6,1/3,0)`): print(` deltSeq(2/3,1/3,1/6,1/3,50); `): print(`This seems to indicate irrationality proof for IntGB(-1/3,-1/2,-2/3,-1/2,0)`): print(` deltSeq(-1/3,-1/2,-2/3,-1/2,50); `): elif nargs=1 and args[1]=deltSeqG then print(`deltSeqG(a1,a2,b1,b2,K): The sequence for the empirical deltas for IntGBg(a1,a2,b1,b2,c,0); `): print(`Try: `): print(`The folllowing is good old Apery-Beukers for Zeta(2) `): print(` deltSeqG(0,0,0,0,0,40); `): print(`This one is Zudilin's construction for Catalan's constant`): print(` deltSeqG(1/2,0,0,1/2,0,40); `): print(`For a case when c is not 0, try:`): print(` deltSeqG(0,0,0,0,1/2,40); `): elif nargs=1 and args[1]=EvalPpG1 then print(`EvalPpG1(P,n1): evaluate a partial (either top or bottom) PpG object at n=n1. `): print(`For GBC(0,0,0,0) (alias Zeta(2))`): print(`EvalPpG1([[1, 1], [1, 2],[] ],1000 );`): print(``): print(`For GBC(0,0,1/2,0) try: `): print(`EvalPpG1([[1/2, 2], [1, 0], [ [0,1/2,0,1,{0},1], [1/2,1,0,2,{0},1]$2 ] ],1000 );`): elif nargs=1 and args[1]=EvalPpG then print(`EvalPpG(P,n1): evaluate a PpG PA=[P1,P2], where P1 and P2 are the partial expressions for Cn and Dn resp., at n=n1. `): print(`For GBC(0,0,0,0) (alias Zeta(2))`): print(`EvalPpG([ [[1,1],[1,0],[]], [[1, 1], [1, 2],[] ]],1000 );`): print(``): print(`For GBC(0,0,1/2,0) (alias 2*log(2)), try: `): print(`EvalPpG([ [[2,2],[1,0],[]],[[1, 1], [1, 0], [ [0,1/2,0,1,{0},1], [1/2,1,0,2,{0},1]$2 ] ]],1000 );`): print(``): print(`For GBC(0,0,1/3,-2/3) try: `): print(``): print(`For GBC(0,0,1/3,-2/3) try: `): print(`EvalPpG([[[1, 0], [1, 0], [[1/3, 2/3, 0, 3, {2}, 3]]],[[1, 0], [1, 0], [[1/3, 2/3, 0, 3, {1}, 3]$2, [0, 1/3, 0, 3/2, {0}, 1], [2/3, 1, 0, 3/2, {0}, 1]]]],2000);`); print(`For the equivalent GBC(0,-2/3,2/3,-2/3), but much simpler, try:`): print(`EvalPpG([[[1, 0], [1, 0], []],[[3, 3/2], [1, 0], [[0, 1/3, 0, 1, {0}, 1]]]],2000);`); print(``): print(`For GBC(-3/4,-3/4,-1/4,-1/4), conjecturally 92-64*sqrt(2), try: `): print(` EvalPpG([[[1, 0], [1, 0], []], [[2, 2], [1, 0], [[1/2, 3/4, 0, 2, {0}, 1]] ]],2000); `): elif nargs=1 and args[1]=FindRelStupid then print(`FindRelStupid(a1,a2,b1,b2,K): Tries to find a pair of integers [c0,c1] where 1<=c0<=K, -K<=c1<=K such that`): print(`c0*IntGB(a1,a2,b1,b2,0)+c1*IntGB(a1,a2,b1,b2,1) is a rational number. `): print(`It returns r [[c0,c1],IntegralWithThatChoice]. Try:`): print(`FindRelStupid(0,0,0,0,3);`): print(`FindRelStupid(1/2,0,0,1/2,7);`): print(`FindRelStupid(1/3,0,1/3,0,7);`): print(`FindRelStupid(1/4,0,1/4,0,5);`): elif nargs=1 and args[1]=FindRel then print(`FindReCl(a1,a2,b1,b2): Tries to find a pair of integers [c0,c1] `): print(`c0*IntGB(a1,a2,b1,b2,0)+c1*IntGB(a1,a2,b1,b2,1) is a rational number. `): print(`It returns r [[c0,c1],IntegralWithThatChoice]. Try:`): print(`FindRel(0,0,0,0);`): print(`FindRel(1/2,0,0,1/2);`): print(`FindRel(1/3,0,1/3,0);`): print(`FindRel(1/4,0,1/4,0);`): print(`FindRel(2/3,1/3,1/6,1/3);`): elif nargs=1 and args[1]=FindRelG then print(`FindRelG(a1,a2,b1,b2,c): A clever way to find a relationship`): print(`between IntGBg(a1,a2,b1,b2,c,0) and IntGBg(a1,a2,b1,b2,c,1) . Try:`): print(`FindRelG(1/2,0,0,1/2,0);`): elif nargs=1 and args[1]=FindRelSym then print(`FindRelSym(a1,a2,b1,b2): A clever way to find a relationship`): print(`between IntGB(a1,a2,b1,b2,0) and IntGB(a1,a2,b1,b2,1) FOR SYMBOLIC a1,a2,b1,b2. Try:`): print(`FindRelSym(a1,a2,b1,b2);`): elif nargs=1 and args[1]=FracPts then print(`FracPts(n,S,K): Given a large positive integer n, a set of primes S and a pos. const. K`): print(`outputs the set frac(n/p) (in floating point) for all p in S larger than sqrt(K*n). Try:`): print(`FracPts(ithprime(1000),{seq(ithprime(i),i=1..1000)},7);`): elif nargs=1 and args[1]=GuessK then print(`GuessK(L): Given a list of rational numbers finds a rational number such that L[i]*K^i has no factors that are`): print(` large powers in the denominator or numerator`): print(`Try: `): print(`GuessK([seq(7*5^i/3^i,i=1..50)]); `): elif nargs=1 and args[1]=GuessK1 then print(`GuessK1(L): Given a list of integers finds an integer K such that L[i]/K^i is still an integer or fixed denominator`): print(`Try: `): print(`GuessK1([seq(7*5^i,i=1..50)]); `): elif nargs=1 and args[1]=Hopefuls1 then print(`Hopefuls1(): A list of 167 promising quadruples with positive empirical delta. Try:`): print(`Hopefuls1();`): elif nargs=1 and args[1]=Hopefuls1C then print(`Hopefuls1C(r): A list of length 21 of equivalence classes of qudruples based on Hopefuls1(). Try:`): print(`Hopefuls1C(r);`): elif nargs=1 and args[1]=Hopefuls1G then print(`Hopefuls1G(): A list of 4 promising pentuples with positive empirical delta for the generalized case. Try:`): print(`Hopefuls1G();`): elif nargs=1 and args[1]=Hopefuls2 then print(`Hopefuls2(): A list of 123 VERY promising quadruples with positive stricted empirical delta. Try:`): print(`Hopefuls2();`): elif nargs=1 and args[1]=Hopefuls2C then print(`Hopefuls2C(r): A list of length 16 of equivalence classes of qudruples based on Hopefuls2(). Try:`): print(`Hopefuls2C(r);`): elif nargs=1 and args[1]=Hopefuls3 then print(`Hopefuls3(): A lis of 35 tuples [a1,a2,b1,b2] for which there is a potential irrationality proof `): print(`for GBC(a1,a2,b1,b2) (q.v.) AND Maple can NOT identitify it in terms of algebraic and/or combinations of log `): print(`[Of course, just because Maple can't do it does not mean that it can't be done.] `): print(``): print(`hence there is A HOPE for a NEW irrationality theorem for a natural constant defined by a double integral (possibly divided by Gammas).Try:`): print(`Hopefuls3();`): elif nargs=1 and args[1]=Hopefuls3C then print(`Hopefuls3C(r): A list of length 9 of equivalence classes of qudruples based on Hopefuls3(). Try:`): print(`Hopefuls3C(r);`): elif nargs=1 and args[1]=Hopefuls4 then print(`Hopefuls4(): A list of 88 tuples [a1,a2,b1,b2] for which there is a potential irrationality proof `): print(`for GBC(a1,a2,b1,b2) (q.v.) and Maple CAN identitify in terms of algebraic and/or combinations of log `): print(`hence form candiates for a NEW irrationality theorem for a natural constant.Try:`): print(`Hopefuls4();`): elif nargs=1 and args[1]=Hopefuls4C then print(`Hopefuls4C(r): A list of length 8 of equivalence classes of qudruples based on Hopefuls4(). Try:`): print(`Hopefuls4C(r);`): elif nargs=1 and args[1]=Hopefuls5 then print(`Hopefuls5(): A list of lists of hopefuls parameters of length 6 whose i-th entry have denominators i+1. Try: `): print(`Hopefuls5();`): elif nargs=1 and args[1]=Hopefuls5C then print(`Hopefuls5C(r): A list of length 6 based on Hopefuls5(). Try:`): print(`Hopefuls5C(r);`): elif nargs=1 and args[1]=Hopefuls5v then print(`Hopefuls5v(K): Some constants that probably have an irrationality proof, indicating those that are not yet identified.`): print(`together for each the relevant information. K should be at least 1000 (it is the parameter used to collect data). Try:`): print(`Hopefuls5v(2000):`): elif nargs=1 and args[1]=hopefulSearch then print(`hopefulSearch(numers, denoms, eps=0.001, blockPosInts=true, report=true):`): print(`Exhaustively searches a collection of rational parameters to IntGB for`): print(`promising irrationality measures. Searches all p / q where p is in`): print(`'numers' and q is in 'denoms' and reports deltas > 'eps'. Optionally blocks`): print(`positive integers (which often results in division by zero errors).`): print(`Try:`): print(`hopefulSearch([0, 1], [2, 3]);`): print(`hopefulSearch([0, 1], [2, 3], eps=0.1); `): print(`hopefulSearch([0, 1, 2, 3], [2, 3, 4, 5]); `): elif nargs=1 and args[1]=hopefulSearchG then print(`hopefulSearchG(numers, denoms, c_numers, c_denoms, eps=0.001, blockPosInts=true, report=true):`): print(`Exhaustively searches a collection of rational parameters to IntGBg for`): print(`promising irrationality measures. For the first (not c) parameters,`): print(`searches all p / q where p is in 'numers' and q is in 'denoms' and reports deltas > 'eps'.`): print(`For c, searches p / q where p is in 'c_numers' and q is in 'c_denoms'.`): print(`Skips whenever p / q is a positive integer (which often results in division by zero errors).`): print(`Try:`): print(`hopefulSearchG([0, 1], [2, 3], [1, 2], [1, 2]);`): print(`hopefulSearchG([0, 1], [2, 3], [1, 2], [1, 2], eps=0.1);`): print(`hopefulSearchG([0, 1], [2, 3], [1, 2, 3], [1, 2, 3]);`): elif nargs=1 and args[1]=hopefulSearchP then print(`hopefulSearchP(numers, denoms):`): print(`Like hopefulSearch(numers, denoms) (q.v.) but for each hopeful quartet, it does not only give the empirical delta`): print(`but also the identified (or not) value, by Maple (so only conjectured) of the constant in-question, and what Maple thinks `): print(`is the exact value, rigorously, but often it gives you garbage`): print(`Try:`): print(`hopefulSearchP([0, 1], [2, 3]);`): print(`hopefulSearchP([0, 1, 2, 3], [2, 3, 4, 5]); `): elif nargs=1 and args[1]=HopeStatus then print(`HopeStatus(a1,a2,b1,b2,K): inputs a1,a2,b1,b2, such that [a1,a2,b1,b2] is hopeful, checks the`): print(`further rating for the more conserative test of CnDn(a1,a2,b1,b2,K)[3]. If they`): print(`all negative then it returns 0 followed by the smallest neative. If some are negative and some positive, it returns the`): print(`1/2 followed by the smallest negative and larger positive, if they are all positive`): print(`it returns 1 followed by the smallest positive. Try:`): print(`HopeStatus(5/3,5/3,0,0,2000);`): elif nargs=1 and args[1]=Info1 then print(`Info1(a1,a2,b1,b2,K): inputs a four-tuple (a1,a2,b1,b2) and outputs a list consisting of`): print(`(i) the constant as a 3F2, (ii) the floating point to 100 digits,`): print(`(iii) the recurrence operator annihilating An and Bn (iv) the pair of initial conditions for An and Bn`): print(`i.e. [[A(0),A(1)],[B(0),B(1)]] (v) the estimated value of the limit of the log of the INTEGERATING functor divided by n (vi) the`): print(`estimated implied irrationality measure using K values (vii) an identification if successful. Try:`): print(`Info1(0,0,0,0,2000);`): elif nargs=1 and args[1]=IntGB then print(`IntGB(a1,a2,b1,b2,n1); `): print(`int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y))/(1-x*y))^n1,x=0..1),y=0..1);`): print(`divided by Beta(1-a1,1-a2)*Beta(1-b1,1-b2) `): print(`Try: `): print(` IntGB(0,0,0,0,0); `): elif nargs=1 and args[1]=IntGBg then print(`IntGBg(a1,a2,b1,b2,c,n1);`): print(`int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(c+1)*(x*(1-x)*y*(1-y))/(1-x*y))^n1,x=0..1),y=0..1) divided by`): print(`int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^c,x=0..1),y=0..1) `): print(`Try: `): print(`IntGBg(0,0,0,0,0,0);`): elif nargs=1 and args[1]=IntGBnaked then print(`IntGBnaked(a1,a2,b1,b2,n1); `): print(`int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y))/(1-x*y))^n1,x=0..1),y=0..1); Try:`): print(` IntGBnaked(0,0,0,0,0); `): elif nargs=1 and args[1]=IntGBsummand then print(`IntGBsummand(a1,a2,b1,b2,n): The summand in the series representation for IntGB(a1,a2,b1,b2,0); Try:`): print(`IntGBsummand(0,0,0,0,n);`): print(`IntGBsummand(1/2,0,0,1/2,n);`): elif nargs=1 and args[1]=IntGB3F2 then print(`IntGB3F2(a1,a2,b1,b2): Expressing GBC(a1,a2,b1,b2) as a 3F2, the output is a pair of lists, the first of size 3, the second of size 2`): print(`corresponding to the numerator and denominator parameters, respectively. Try:`): print(`IntGB3F2(0,0,0,0);`): print(`IntGB3F2(1/2,0,0,1/2);`): elif nargs=1 and args[1]=IntGBsummandRF then print(`IntGBsummandRF(a1,a2,b1,b2,n,RF): The summand in the series representation for IntGB(a1,a2,b1,b2,0) in terms of the raising-factorial`): print(`denoted by RF. Try: `): print(`IntGBsummandRF(0,0,0,0,n,RF);`): print(`IntGBsummandRF(1/2,0,0,1/2,n,RF);`): elif nargs=1 and args[1]=GBC then print(`GBC(a1,a2,b1,b2): A floating-point approximation to the constant`): print(`IntGB(a1,a2,b1,b2,0). Try: `): print(`GBC(0,0,0,0);`): print(` GBC(1/2,0,0,1/2); `): print(`This gives a multiple of 3/2*2^(1/3): `): print(`GBC(2/3,1/3,1/6,1/3);`): elif nargs=1 and args[1]=GBCg then print(`GBCg(a1,a2,b1,b2,c): A floating-point approximation to the constant`): print(`IntGBg(a1,a2,b1,b2,c,0). Try: `): print(`GBCg(0,0,0,0,0);`): print(` GBCg(1/2,0,0,1/2,0); `): print(`This gives a multiple of 3/2*2^(1/3): `): print(`GBCg(2/3,1/3,1/6,1/3,0);`): elif nargs=1 and args[1]=IntGBser then print(`IntGBser(a1,a2,b1,b2,K): an approximation to GBC(a1,a2,b1,b2) using the series with K terms. Try:`): print(`IntGBser(0,0,0,0,100);`): print(`IntGBser(1/2,0,0,1/2,100);`): elif nargs=1 and args[1]=Khez then print(`Khez(n,p): The largest exponent i such that n/p^i is an integer. Try:`): print(`Khez(100,5);`): elif nargs=1 and args[1]=LeadA then print(` LeadA(a1,a2,b1,b2,n): The leading asymptotics in n in the terms of the series IntGBser(a1,a2,b1,b2). `): print(` LeadA(0,0,0,0,n);`): elif nargs=1 and args[1]=LC then print(`LC(n): The lcm of 1...n `): elif nargs=1 and args[1]=Mamar2 then print(`Mamar2(K) : PaperZ2(L,K): where L is given by Hopefuls2(): Try:`): print(`Mamar2(2000):`): elif nargs=1 and args[1]=Mamar2 then print(`Mamar2: PaperZ2(L,K): where L is given by Hopefuls2(): Try:`): print(`Mamar2(2000):`): elif nargs=1 and args[1]=Mamar3 then print(`Mamar3(K): PaperZ2(L,K): where L is given by Hopefuls3(): Try:`): print(`Mamar3(2000):`): elif nargs=1 and args[1]=Mamar4 then print(`Mamar4(K): PaperZ2(L,K): where L is given by Hopefuls4(): Try:`): print(`Mamar4(2000):`): elif nargs=1 and args[1]=MyIDs then print(`MyIDs(C,F,F0,N): Given a constant C in decimals and another constant`): print(`let's call it F, whose floating-point if F0`): print(` and a positive integer N`): print(`tries to express C as (a*F+b)/(c*F+d) for a,b,c,d from -N to N using PSLQ`): print(`MyIDs(evalf((log(2)-2)/(2*log(2)+3)),log(2),evalf(log(2)),100);`): elif nargs=1 and args[1]=NormalizePair then print(`NoralizePair(P,K): Given a pair of sequenes of rational numbers P[1],P[2], outputs the`): print(`sequence K^i*P[1][i], K^i*P[2][i]. Try:`): print(`gu:=AnBn(1/2,0,0,1/2,50): NormalizePair([gu[1],gu[2]],8);`): print(`gu:=AnBn(2/3,1/3,1/6,1/3,50): NormalizePair([gu[1],gu[2]],9/4);`): elif nargs=1 and args[1]=Nu1 then print(`Nu1(a,b,K,r): if you have a sequence of diophantine approximations A(n)+B(n)*c such that`): print(`(i)|A(n)+B(n)*c|<=Cb^n, (ii) max(|A(n)|,|B(n)|)=OMEGA(a^n) (iii) K^n*dn(r*n)*A(n) and K^n*dn(r*n)*B(n) are integers`): print(`outputs the implied rigorous delta (assuming that the divisibility lemmas are proved). Try:`): print(`mu:=5*sqrt(5)/2-11/2; `): print(`Nu1(1/mu,mu,16,4);`): print(`Nu1(1/mu,mu,1,2);`): elif nargs=1 and args[1]=OPEZ2 then print(`OPEZ2(a1,a2,b1,b2,n,N): The second-order linear recurrence equation annihilated by the Generalized`): print(`Beukers integral `): print(`Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)):`): print(`Here N is the shift operator in n, Nf(n):=f(n+1).`): print(`Try:`): print(`For the original Apery Recurrence for Zeta(2) type: OPEZ2(0,0,0,0,n,N);`): print(`For the Zudilin (2003) recurrence for Catalan's constant type: OPEZ2(1/2,0,0,1/2,n,N);`): print(`For a promising recurrence type `): print(`OPEZ2(2/3,1/3,1/6,1/3,n,N);`): elif nargs=1 and args[1]=OPEct then print(`OPEct(c1,c2,n,N): The second-order linear recurrence equation with polynomial coefficients annihilating`): print(`the contour integral Int(Int(((1+z)*(1+w)*(1+z+w))^n/(z^c1*w^c2),|z|=1,|w|=1). The case c1=1,c2=1 is Apery's`): print(`Zeta(2) recurrence. Try:`): print(`OPEct(1,1,n,N);`): print(`OPEct(1/2,1/2,n,N);`): elif nargs=1 and args[1]=OPEZ2g then print(`OPEZ2g(a1,a2,b1,b2,c,n,N): the second-order linear recurrence operator annihilating the generalized Beukers sequence`): print(`Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-a1)*(1-y)^(-a1)/(1-x*y)^(c+1)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1);. Try:`): print(`OPEZ2g(0,0,0,0,0,n,N);`): elif nargs=1 and args[1]=PaperZ2 then print(`PaperZ2(L,K): Given a list L of quadruples that are believed to be provably irrational and a large positive ineger K (around 2000 is OK)`): print(` outputs a paper with sketches`): print(`of proof. Try: `): print(`PaperZ2([[0,0,0,0],[1/2,0,0,0]],2000):`): elif nargs=1 and args[1]=PaperZ2g then print(`PaperZ2g(L,K): Given a list L of pentuplues that are believed to be provably irrational and a large positive ineger K (around 2000 is OK)`): print(` outputs a paper with sketches`): print(`of proof. Try: `): print(`PaperZ2g([[0,0,0,0,0],[0,0,0,0,1/2]],2000):`): elif nargs=1 and args[1]=PPold then print(`PPold(N): Inputs a positive integer N, outputs a list whose entries are`): print(` (i): The largest prime that shows up, let's call it P. `): print(`(ii) the list of lists whose j-th entry is the list primes between sqrt(p) and p with exponent is j.`): print(`Try:`): print(`PPold(LC(100));`): elif nargs=1 and args[1]=PpG then print(`PpG(a,b,n,m1,m2,C,M): Given rational numbers a and b between 0 and 1 and positive integers m1,m2 and n`): print(`and a subset C in {1,...M-1} and an integer M`): print(`it is the product of p between m1 and m2 such that frac{n/p} is between a and b`): print(`and p mod M is in C. Try:`): print(` PpG(0,1/2,1000,1000,2000,{0},1);`): elif nargs=1 and args[1]=PpGlimit then print(`The limit of log PpG(a,b,r1*n,r2*n,C,M)/n as n goes to infinity. Try:`): print(`PpGlimit(1/3,2/3,3/2,3,{2},3);`): elif nargs=1 and args[1]=PrimesF then print(`PrimesF(N,n,k): inputs a HUGE integer N that is a product of small primes, and a much smaller integer n`): print(`that generated N (via some process), outputs the list of length k, whose i-th entry is the list`): print(`of primes>=sqrt(n) that show up with exponent i, followed by the list of primes that`): print(`did not show up at all. Try:`): print(`lu:=op(Hopefuls2()[3][1]): N:=CnDn(op(lu),2000)[1][2][-1],2000): PrimesF(N,2000,6);`): elif nargs=1 and args[1]=PrintPpG then print(`PrintPpG(P,n,L1,L2): P is the same input as the P EvalPpG(P,n1) (q.v.) but n,L1 and L2 are symbols`): print(`where n stands for n, L1(n) stands for lcm(1...n) and L2(alpha,beta,a,b,C,M,n) stands for the`): print(`product of all primes between a*n and b*n such that the fractional part of n/p is between alpha and beta`): print(`and p mod M belongs to the set C where C is a subset of the set of nonneg. integers less than M relatively prime to it.`): print(`If no modularity condition is present than M=1 and C={0}. Try:`): print(``): print(`For GBC(0,0,1/2,0) try: `): print(`PrintPpG([ [[2,2],[1,0],[]],[[1, 1], [1, 0], [ [0,1/2,0,1,{0},1], [1/2,1,0,2,{0},1]$2 ] ]],n,LCM,PP);`): print(``): print(`For GBC(0,0,1/3,-2/3) try: `): print(`PrintPpG([[[1, 0], [1, 0], [[1/3, 2/3, 0, 3, {2}, 3]]],[[1, 0], [1, 0], [[1/3, 2/3, 0, 3, {1}, 3]$2, [0, 1/3, 0, 3/2, {0}, 1], [2/3, 1, 0, 3/2, {0}, 1]]]],n,LCM,PP);`); elif nargs=1 and args[1]=rf then print(`rf(a,n): The raising factorial a(a+1)...*(a+n-1). Try:`): print(`rf(1/3,10);`): elif nargs=1 and args[1]=Search then print(`Search(N,K): All the 4-tuples [a,b,c,d]=[a1/N,a2/N,a3/N,a4/N] with the ai's beteen -(N-1) and N-1 such that`): print(`the deltas for AnBn(a,b,c,d,e) seems to be positive. Try`): print(`Search(2,100);`): elif nargs=1 and args[1]=SeqFromRec then print(`SeqFromRec(ope,n,N,ini,L): Given an (ordinary) recurrence operator`): print(`ope(n,N) in the variable n and the shift operator N (Nf(n):=f(n+1))`): print(`and given initial values [ini0,ini1,..,ini_{ORD-1}],computes`): print(`the first L+1 terms of the sequence a(n) satisfying`): print(`ope(n,N)a(n)=0 and a[i]=ini[i] for i=0,...,ORD-1`): print(`For example, try: SeqFromRec(N^2-N-1,n,N,[0,1],10);`): elif nargs=1 and args[1]=SortC then print(`SortC(L,N,r): Given a list of 4-tuples, L, and a positive integer N, and a symbol r`): print(`divides them into classes such that GBC(op(L[i])) are related to`): print(`each other (conjecturally) by a fractional-linear transfomation with integers less than N in absolute value`); print(`The output is a list of lists such that the first entry is the main pentuple, followed by the symbol r[i],`): print(`its decimal approximation, followed by the tuples, and the expression in terms of r[i]`): print(`Try:`): print(`SortC(Hopefuls5()[2],10000,r);`): elif nargs=1 and args[1]=WadimHW then print(`WadimHW(): A data-base of conjectured 3F2 identities (many of them probably equivalent via some transformation`): print(`Homework for Wadim Zudilin to prove them`): elif nargs=1 and args[1]=WadimHWv then print(`WadimHWv(): A verbose version of WadimHW(): lots of conjectured evaluations. Each bunch are probably equivalent to each other`): print(`via some transformation that Wadim Zudilin can figure out. Print:`): print(`WadimHWv():`): elif nargs=1 and args[1]=WadimHWvLP then print(`WadimHWvLP(): Like WadimHWv() (q.v.), but with lprint insterad.`): print(`WadimHWvLP():`): elif nargs=1 and args[1]=TheoremZ2 then print(`TheoremZ2(a1,a2,b1,b2,K,P): Inputs rational numbers a1,a2,b1,b2, and a large positive integer K and P either 0 `): print(`if not known, or a proposed INTEGERrating factor, P`): print(`Outputs a theorem regarding the constant`): print(`IntGB(a1,a2,b1,b2,0) (q.v.)`): print(`Either a suggested proof of irrationality or a way to compute it exponentially fast.`): print(`For the original Zeta(2), Try:`): print(`TheoremZ2(0,0,0,0,2000, [[ [1,0],[1,0],[] ],[ [1,0],[1,2],[] ]]):`): print(``): print(`-----------------------`): print(`The following examples give positive delta, i.e. yielding irrationality proofs`): print(``): print(`For GBC(0,0,1/2,0) (alias 2*log(2)) try: `): print(`TheoremZ2(0,0,1/2,0,2000,[ [[2,2],[1,0],[]],[[1, 1], [1, 0], [ [0,1/2,0,1,{0},1], [1/2,1,0,2,{0},1]$2 ] ]]);`): print(``): print(`For GBC(0,0,1/3,-2/3) (conjecturally -6+4*Pi/sqrt(3)), try: `): print(`TheoremZ2(0,0,1/3,-2/3,2000,[[[1, 0], [1, 0], [[1/3, 2/3, 0, 3, {2}, 3]]],[[1, 0], [1, 0], [[1/3, 2/3, 0, 3, {1}, 3]$2, [0, 1/3, 0, 3/2, {0}, 1], [2/3, 1, 0, 3/2, {0}, 1]]]]);`); print(`For the equivalent GBC(0,-2/3,2/3,-2/3), conjecturally ( 45/8-5*sqrt(3)*Pi/6) but much simpler, try:`): print(`TheoremZ2(0,-2/3,2/3,-2/3,2000,[[[1, 0], [1, 0], []],[[3, 3/2], [1, 0], [[0, 1/3, 0, 1, {0}, 1]]]]);`); print(``): print(`For GBC(-3/4,-3/4,-1/4,-1/4), conjecturally 92-64*sqrt(2), try: `): print(` TheoremZ2(-3/4,-3/4,-1/4,-1/4, 2000,[[[1, 0], [1, 0], []], [[2, 2], [1, 0], [[1/2, 3/4, 0, 2, {0}, 1]] ]],2000); `): print(``): print(`For GBC( -4/5, -4/5, -2/5, 2/5), conjecturally, -65/4+65/8*5^(1/2), try: `): print(` TheoremZ2( -4/5, -4/5, -2/5, 2/5, 2000,0); `): print(``): print(`For GBC(0, -1/2, 1/6, -1/2), (not yet identified, possibly not yet proved to be irrational) , also no INTEGERating factor yet, try: `): print(` TheoremZ2(0,-1/2,1/6,-1/2,2000,0):`): print(`----------------------------------`): print(``): print(`For GBC( -5/6, -5/6, -1/2, -1/2), conjecturally, -1344/5+16384/105*3^(1/2) , try: `): print(` TheoremZ2( -5/6, -5/6, -1/2, -1/2, 2000,0); `): print(``): print(`For GBC( -5/6, -5/6, -1/3, -2/3), conjecturally, 972/5*2^(2/3)-1536/5 , try: `): print(` TheoremZ2( -5/6, -5/6, -1/3, -2/3, 2000,0); `): print(``): print(`For GBC( -2/3, -1/2, 1/2, -1/2 ), not yet identified, also no INTEGERating factor yet , try: `): print(`Comment:The delta is very small, so this case is questionable`): print(` TheoremZ2(-2/3, -1/2, 1/2, -1/2 , 3000,0); `): print(``): print(`For GBC( -6/7, -6/7, -4/7, -5/7 ), not yet identified, also no INTEGERating factor yet , try: `): print(` TheoremZ2( -6/7, -6/7, -4/7, -5/7, 2000,0); `): print(``): print(`For GBC( -6/7, -6/7, -4/7, 4/7), conjecturally`): print(`the root of -110592*x^3+1225728*x^2+45000816*x-101163391=0 `): print(`or, using Cardano`): print(`-665/576*(28+84*I*3^(1/2))^(1/3)-4655/144/(28+84*I*3^(1/2))^(1/3)+133/36-133/96*I*3^(1/2)*(5/6*(28+84*I*3^(1/2))^(1/3)-70/3/(28+84*I*3^(1/2))^(1/3))`): print(`type: `): print(` TheoremZ2( -6/7, -6/7, -4/7, 4/7, 2000,0); `): print(``): print(`For GBC( -6/7, -5/7, -3/7, -5/7 ), not yet identified, also no INTEGERating factor yet , try: `): print(` TheoremZ2( -6/7, -5/7, -3/7, -5/7, 2000,0); `): print(``): print(`For GBC( -6/7, -5/7, -2/7, -1/7 ), not yet identified, also no INTEGERating factor yet , try: `): print(` TheoremZ2( -6/7, -5/7, -2/7, -1/7, 2000,0); `): print(``): print(`For GBC( -6/7, -4/7, -1/7, -1/7 ), not yet identified, also no INTEGERating factor yet , try: `): print(` TheoremZ2( -6/7, -4/7, -1/7, -1/7, 2000,0); `): print(``): print(`For GBC((-6/7, -3/7, -5/7, -3/7 ), not yet identified, also no INTEGERating factor yet , try: `): print(` TheoremZ2(-6/7, -3/7, -5/7, -3/7, 2000,0); `): print(``): print(`For GBC( -6/7, -1/7, 4/7, 2/7), conjecturally`): print(`the root of 2299968*x^3+7074144*x^2-11234916*x-12663217=0 `): print(`or, using Cardano`): print(`245/792*(-28+84*I*3^(1/2))^(1/3)+1715/198/(-28+84*I*3^(1/2))^(1/3)-203/198`): print(`type: `): print(` TheoremZ2( -6/7, -1/7, 4/7, 2/7, 2000,0); `): print(``): print(`For GBC( -5/7, -3/7, -4/7, -2/7 ), not yet identified, also no INTEGERating factor yet , try: `): print(` TheoremZ2( -5/7, -3/7, -4/7, -2/7, 2000,0); `): print(``): print(`----------------------------------------------------`): print(`The following examples are for constants that yield negative deltas, but it is still interesting`): print(``): print(`For GBC(1/2,-1/2,-1/2,1/2), (conjecturally 4-8/Pi) , type:`): print(`TheoremZ2(1/2,-1/2,-1/2,1/2,2000,[[[1, 0], [1, 0], []],[[2, 4], [1, 0], [[0, 1/2, 0, 1, {0}, 1]]]]);`); print(`For GBC(1/2,0,0,1/2), twice the Catalan constant , type:`): print(`TheoremZ2(1/2,0,0,1/2,2000,[[[1, 0], [1, 0], []],[[2, 4], [2, 2], [ ]]]);`); print(`For GBC(1/3,0,0,1/3), whatever it is , type:`): print(`TheoremZ2(1/3,0,0,1/3,2000,[[[1, 0], [1, 0], []],[[3,3], [3/2, 2], [ [1/3,2/3,3/2,3,{2},3]$2 ] ]]);`); elif nargs=1 and args[1]=TheoremZ2g then print(`TheoremZ2g(a1,a2,b1,b2,e,K): Inputs rational numbers a1,a2,b1,b2, and e, and a large positive integer K and outputs`): print(`a theorem regarding the constant`): print(`IntGBg(a1,a2,b1,b2,e,0) (q.v.)`): print(`Either a suggested proof of irrationality or a way to compute it exponentially fast.`): print(`Try:`): print(`TheoremZ2g(0,0,0,0,0,2000):`): elif nargs=1 and args[1]=TheoremZ2gnum then print(`TheoremZ2gnum(a1,a2,b1,b2,e,K,num): Like TheoremZ2g(a1,a2,b1,b2,e,K) (q.v.) but as a numbered theorem. Try:`): print(`TheoremZ2gnum(0,0,0,0,0,2000,3):`): elif nargs=1 and args[1]=TheoremZ2num then print(`TheoremZ2num(a1,a2,b1,b2,K,num): Like TheoremZ2num(a1,a2,b1,b2,K) but a numbered theorem `): print(`Try:`): print(`TheoremZ2num(0,0,0,0,2000,1):`): else print(`There is no such thing as`, args): fi: end: Digits:=100: #start pre-computed #Hopefuls3(): A lis of 35 tuples [a1,a2,b1,b2] for which there is a potenial irrationality proof AND #for GBC(a1,a2,b1,b2) (q.v.) and Maple can't identitify in terms of algebraic and/or combinations of log #hence form candiates for a NEW irrationality theorem for a natural constant.Try: #Hopefuls3(); Hopefuls3:=proc(): [[5/3, 5/3, 0, 0], [2/3, 5/3, 0, 0], [4/3, 4/3, 0, 0], [2/3, 2/3, 0, 0], [4/3, 1/3, 0, 0], [1/3, 2/3, 1/2, 0], [2/3, 1/3, 1/2, 0], [1/3, 2/3, 3/2, 0], [2/3, 1/3, 3/ 2, 0], [1/3, 2/3, 5/2, 0], [1/3, 0, 5/3, 0], [1/2, 1/2, 5/3, 0], [2/3, 0, 4/3, 0], [1/2, 1/2, 4/3, 0], [1/2, 1/2, 2/3, 0], [1/2, 1/2, 1/3, 0], [1/3, 2/3, 1/2, 1/2], [2/3, 1/3, 1/2, 1/2], [1/3, 1/6, 1/2, 1/2], [1/2, 1/6, 2/3, 1/3], [1/7, 3/7, 5/7, 5/7], [3/7, 3/7, 4/7, 5/7], [2/7, 4/7, 3/7, 5/7], [4/7, 1/7, 3/7, 5/7], [2/7, 3/7, 1/7, 5/7], [2/7, 4/7, 1/7, 4/7], [3/7, 2/7, 4/7, 4/7], [5/7, 1/7, 4/7, 4/7], [3/7, 1/7, 5/7, 4/7], [4/7, 2/7, 5/7, 3/7], [2/7, 1/7, 5/7, 3/7], [4/7, 2/7, 1/7, 2/7], [5/7, 1/7, 2/7, 2/7], [1/7, 1/7, 3/7, 2/7], [2/7, 1/7, 4/7, 1/7]]: end: #Hopefuls4(): A lis of 88 tuples [a1,a2,b1,b2] for which there is a potenial irrationality proof AND #for GBC(a1,a2,b1,b2) (q.v.) and Maple CAN identitify in terms of algebraic and/or combinations of log #hence there already exists a proof of irrationality but there is a potential for improved irrationailty measure Hopefuls4:=proc(): [[0, 0, 0, 0], [1/2, 0, 0, 0], [3/2, 0, 0, 0], [5/2, 0, 0, 0], [1/3, 1/3, 0, 0], [1/3, 0, 2/3, 0], [2/3, 1/3, 5/6, 1/2], [5/6, 1/6, 2/3, 1/2], [1/6, 2/3, 1/2, 1/2], [5/6, 1/3, 1/2, 1/2], [1/6, 1/6, 1/2, 1/2], [5/6, 5/6, 1/2, 1/2], [1/6, 5/6, 1/3, 1/2], [1/3, 2/3, 1/6, 1/2], [1/4, 3/4, 5/4, 1/2], [3/4, 1/4, 3/4, 1/2], [1/4, 3/4, 1/4, 1/2], [1/6, 5/6, 4/3, 1/2], [5/6, 1/6, 5/3, 1/2], [2/3, 1/3, 5/6, 3/2], [5/6, 1/6, 2/3, 3/2], [1/6, 5/6, 1/3, 3/2], [1/3, 2/3, 1/6, 3/2], [1/4, 3/4, 5/4, 3/2], [3/4, 1/4, 3/4, 3/2], [1/4, 3/4, 1/4, 3/2], [5/6, 1/6, 5/3, 5/3], [1/6, 5/6, 2/3, 5/3], [5/6, 1/6, 2/3, 5/3], [1/3, 2/3, 1/6, 5/3], [1/3, 2/3, 5/6, 5/3], [2/3, 1/3, 5/6, 4/3], [1/6, 5/6, 1/3, 4/3], [5/6, 1/6, 1/3, 4/3], [2/3, 1/3, 1/6, 4/3], [5/6, 1/6, 4/3, 4/3], [1/6, 5/6, 4/3, 4/3], [1/6, 5/6, 3/2, 4/3], [1/3, 2/3, 5/6, 2/3], [1/6, 5/6, 2/3, 2/3], [5/6, 1/6, 2/3, 2/3], [5/6, 1/6, 1/2, 2/3], [5/6, 5/6, 1/3, 2/3], [1/6, 2/3, 1/3, 2/3], [1/6, 5/6, 5/3, 2/3], [5/6, 1/6, 5/3, 2/3], [1/6, 5/6, 1/2, 1/3], [1/6, 5/6, 3/2, 1/3], [1/6, 5/6, 5/2, 1/3], [1/6, 5/6, 4/3, 1/3], [5/6, 1/6, 4/3, 1/3], [5/6, 1/3, 2/3, 1/3], [1/6, 1/3, 2/3, 1/3], [1/6, 1/6, 2/3, 1/3], [5/6, 1/6, 1/3, 1/3], [1/6, 5/6, 1/3, 1/3], [3/4, 1/4, 5/4, 1/4], [1/4, 1/4, 3/4, 1/4], [5/4, 5/4, 3/4, 1/4], [1/4, 5/4, 3/4, 1/4], [1/4, 3/4, 3/4, 3/4], [2/5, 2/5, 1/5, 4/5], [3/5, 4/5, 1/5, 4/5], [2/5, 3/5, 4/5, 4/5], [4/5, 1/5, 3/5, 3/5], [1/5, 3/5, 2/5, 3/5], [1/5, 1/5, 3/5, 2/5], [4/5, 2/5, 3/5, 2/5], [2/5, 1/5, 4/5, 1/5], [1/2, 1/6, 5/6, 1/6], [1/3, 1/6, 5/6, 1/6], [4/3, 1/6, 5/6, 1/6], [5/2, 1/6, 5/6, 1/6], [3/2, 1/6, 5/6, 1/6], [1/6, 5/6, 2/3, 5/6], [1/6, 5/6, 1/2, 5/6], [5/3, 5/6, 1/6, 5/6], [3/2, 5/6, 1/6, 5/6], [3/7, 3/7, 2/7, 5/7], [1/7, 4/7, 2/7, 5/7], [4/7, 3/7, 1/7, 5/7], [3/7, 4/7, 2/7, 4/7], [1/7, 1/7, 3/7, 4/7], [5/7, 2/7, 4/7, 4/7], [4/7, 3/7, 5/7, 3/7], [2/7, 1/7, 4/7, 3/7], [5/7, 2/7, 1/7, 2/7], [3/7, 1/7, 5/7, 2/7]]: end: Hopefuls5:=proc(): [ [[-1/2, -1/2, 0, -1/2], [-1/2, -1/2, 0, 0], [-1/2, 0, 0, 0], [-1/2, 1/2, 0, -1/ 2], [-1/2, 1/2, 0, 0], [0, -1/2, 1/2, -1/2], [0, 0, 1/2, -1/2], [0, 0, 1/2, 0], [0, 1/2, 1/2, -1/2]], [[-2/3, -2/3, -1/3, -1/3], [-2/3, -2/3, 0, 0], [-2/3, -1/3, 0, -1/3], [-2/3, -1 /3, 0, 2/3], [-2/3, 0, -1/3, 0], [-2/3, 0, 2/3, 0], [-2/3, 1/3, -1/3, -1/3], [-\ 2/3, 1/3, 0, 0], [-2/3, 2/3, 0, -1/3], [-2/3, 2/3, 0, 2/3], [-1/3, -2/3, 0, -2/ 3], [-1/3, -2/3, 0, 1/3], [-1/3, -1/3, 0, 0], [-1/3, -1/3, 1/3, -2/3], [-1/3, 0 , 1/3, 0], [-1/3, 1/3, 0, -2/3], [-1/3, 1/3, 0, 1/3], [-1/3, 2/3, 0, 0], [-1/3, 2/3, 1/3, -2/3], [0, -2/3, 2/3, -2/3], [0, -1/3, 1/3, -1/3], [0, 0, 1/3, -2/3], [0, 0, 1/3, 1/3], [0, 0, 2/3, -1/3], [0, 0, 2/3, 2/3], [0, 1/3, 2/3, -2/3], [0, 2/3, 1/3, -1/3], [1/3, -2/3, 2/3, -1/3], [1/3, 0, 2/3, 0], [1/3, 1/3, 2/3, -1/3 ]], [[-3/4, -3/4, -1/4, -3/4], [-3/4, -3/4, -1/4, -1/4], [-3/4, -3/4, -1/4, 1/4], [ -3/4, -3/4, -1/4, 3/4], [-3/4, -3/4, 3/4, -3/4], [-3/4, -3/4, 3/4, -1/4], [-3/4 , -3/4, 3/4, 1/4], [-3/4, -3/4, 3/4, 3/4], [-3/4, -1/2, -3/4, -1/4], [-3/4, -1/ 2, -3/4, 3/4], [-3/4, -1/2, 1/4, -1/4], [-3/4, -1/2, 1/4, 3/4], [-3/4, -1/4, -3 /4, 1/2], [-3/4, -1/4, -1/4, -1/4], [-3/4, -1/4, -1/4, 3/4], [-3/4, -1/4, 1/4, -1/2], [-3/4, -1/4, 1/4, 1/2], [-3/4, -1/4, 3/4, -1/4], [-3/4, -1/4, 3/4, 3/4], [-3/4, 1/4, -1/4, -3/4], [-3/4, 1/4, -1/4, -1/4], [-3/4, 1/4, -1/4, 1/4], [-3/4 , 1/4, 3/4, -3/4], [-3/4, 1/4, 3/4, -1/4], [-3/4, 1/4, 3/4, 1/4], [-3/4, 1/2, -\ 3/4, 3/4], [-3/4, 1/2, 1/4, -1/4], [-3/4, 1/2, 1/4, 3/4], [-3/4, 3/4, -1/4, -1/ 4], [-3/4, 3/4, -1/4, 3/4], [-3/4, 3/4, 1/4, -1/2], [-3/4, 3/4, 1/4, 1/2], [-3/ 4, 3/4, 3/4, -1/4], [-3/4, 3/4, 3/4, 3/4], [-1/2, -3/4, -1/2, -1/4], [-1/2, -3/ 4, -1/2, 3/4], [-1/2, -3/4, 1/2, -1/4], [-1/2, -3/4, 1/2, 3/4], [-1/2, -1/4, -1 /2, 1/4], [-1/2, -1/4, 1/2, -3/4], [-1/2, -1/4, 1/2, 1/4], [-1/2, 1/4, 1/2, -1/ 4], [-1/2, 3/4, 1/2, -3/4], [-1/4, -3/4, -1/4, -1/2], [-1/4, -3/4, -1/4, 1/2], [-1/4, -3/4, 1/4, -3/4], [-1/4, -3/4, 1/4, 1/4], [-1/4, -3/4, 3/4, -1/2], [-1/4 , -3/4, 3/4, 1/2], [-1/4, -1/2, -1/4, 1/4], [-1/4, -1/2, 3/4, -3/4], [-1/4, -1/ 2, 3/4, 1/4], [-1/4, -1/4, 1/4, -3/4], [-1/4, -1/4, 1/4, -1/4], [-1/4, -1/4, 1/ 4, 1/4], [-1/4, -1/4, 1/4, 3/4], [-1/4, 1/4, -1/4, 1/2], [-1/4, 1/4, 1/4, -3/4] , [-1/4, 1/4, 1/4, 1/4], [-1/4, 1/4, 3/4, -1/2], [-1/4, 1/4, 3/4, 1/2], [-1/4, 1/2, 3/4, -3/4], [-1/4, 1/2, 3/4, 1/4], [-1/4, 3/4, 1/4, -3/4], [-1/4, 3/4, 1/4 , -1/4], [-1/4, 3/4, 1/4, 3/4], [1/4, -3/4, 3/4, -3/4], [1/4, -3/4, 3/4, -1/4], [1/4, -3/4, 3/4, 1/4], [1/4, -3/4, 3/4, 3/4], [1/4, -1/2, 1/4, -1/4], [1/4, -1/ 2, 1/4, 3/4], [1/4, -1/4, 1/4, 1/2], [1/4, -1/4, 3/4, -1/4], [1/4, -1/4, 3/4, 3 /4], [1/4, 1/4, 3/4, -3/4], [1/4, 1/4, 3/4, -1/4], [1/4, 1/4, 3/4, 1/4], [1/4, 1/2, 1/4, 3/4], [1/4, 3/4, 3/4, -1/4], [1/4, 3/4, 3/4, 3/4], [1/2, -3/4, 1/2, -\ 1/4], [1/2, -3/4, 1/2, 3/4], [1/2, -1/4, 1/2, 1/4], [3/4, -3/4, 3/4, -1/2], [3/ 4, -3/4, 3/4, 1/2], [3/4, -1/2, 3/4, 1/4], [3/4, 1/4, 3/4, 1/2]], [[-4/5, -4/5, -2/5, -3/5], [-4/5, -4/5, -2/5, 2/5], [-4/5, -4/5, -1/5, -1/5], [ -4/5, -4/5, -1/5, 4/5], [-4/5, -4/5, 3/5, -3/5], [-4/5, -4/5, 3/5, 2/5], [-4/5, -4/5, 4/5, -1/5], [-4/5, -4/5, 4/5, 4/5], [-4/5, -3/5, -1/5, -2/5], [-4/5, -3/5 , -1/5, 3/5], [-4/5, -3/5, 4/5, -2/5], [-4/5, -3/5, 4/5, 3/5], [-4/5, -2/5, -3/ 5, -2/5], [-4/5, -2/5, -3/5, 3/5], [-4/5, -2/5, 2/5, -2/5], [-4/5, -2/5, 2/5, 3 /5], [-4/5, -1/5, -3/5, -3/5], [-4/5, -1/5, -3/5, 2/5], [-4/5, -1/5, -2/5, -1/5 ], [-4/5, -1/5, -2/5, 4/5], [-4/5, -1/5, 2/5, -3/5], [-4/5, -1/5, 2/5, 2/5], [-\ 4/5, -1/5, 3/5, -1/5], [-4/5, -1/5, 3/5, 4/5], [-4/5, 1/5, -2/5, -3/5], [-4/5, 1/5, -2/5, 2/5], [-4/5, 1/5, -1/5, -1/5], [-4/5, 1/5, 3/5, -3/5], [-4/5, 1/5, 3 /5, 2/5], [-4/5, 1/5, 4/5, -1/5], [-4/5, 2/5, -1/5, -2/5], [-4/5, 2/5, 4/5, -2/ 5], [-4/5, 3/5, -3/5, -2/5], [-4/5, 3/5, -3/5, 3/5], [-4/5, 3/5, 2/5, -2/5], [-\ 4/5, 3/5, 2/5, 3/5], [-4/5, 4/5, -3/5, -3/5], [-4/5, 4/5, -3/5, 2/5], [-4/5, 4/ 5, -2/5, -1/5], [-4/5, 4/5, -2/5, 4/5], [-4/5, 4/5, 2/5, -3/5], [-4/5, 4/5, 2/5 , 2/5], [-4/5, 4/5, 3/5, -1/5], [-3/5, -4/5, -1/5, -4/5], [-3/5, -4/5, -1/5, 1/ 5], [-3/5, -4/5, 4/5, -4/5], [-3/5, -4/5, 4/5, 1/5], [-3/5, -3/5, -2/5, -2/5], [-3/5, -3/5, -2/5, 3/5], [-3/5, -3/5, 1/5, -1/5], [-3/5, -3/5, 1/5, 4/5], [-3/5 , -3/5, 3/5, -2/5], [-3/5, -3/5, 3/5, 3/5], [-3/5, -2/5, -1/5, -1/5], [-3/5, -2 /5, -1/5, 4/5], [-3/5, -2/5, 1/5, -2/5], [-3/5, -2/5, 1/5, 3/5], [-3/5, -2/5, 4 /5, -1/5], [-3/5, -2/5, 4/5, 4/5], [-3/5, -1/5, -2/5, -4/5], [-3/5, -1/5, -2/5, 1/5], [-3/5, -1/5, 3/5, -4/5], [-3/5, -1/5, 3/5, 1/5], [-3/5, 1/5, -1/5, -4/5], [-3/5, 1/5, -1/5, 1/5], [-3/5, 1/5, 4/5, -4/5], [-3/5, 1/5, 4/5, 1/5], [-3/5, 2 /5, -2/5, -2/5], [-3/5, 2/5, 1/5, -1/5], [-3/5, 2/5, 1/5, 4/5], [-3/5, 2/5, 3/5 , -2/5], [-3/5, 3/5, -1/5, -1/5], [-3/5, 3/5, -1/5, 4/5], [-3/5, 3/5, 1/5, -2/5 ], [-3/5, 3/5, 1/5, 3/5], [-3/5, 3/5, 4/5, -1/5], [-3/5, 4/5, -2/5, -4/5], [-3/ 5, 4/5, 3/5, -4/5], [-2/5, -4/5, 2/5, -1/5], [-2/5, -4/5, 2/5, 4/5], [-2/5, -3/ 5, -1/5, -3/5], [-2/5, -3/5, -1/5, 2/5], [-2/5, -3/5, 1/5, -4/5], [-2/5, -3/5, 1/5, 1/5], [-2/5, -3/5, 4/5, -3/5], [-2/5, -3/5, 4/5, 2/5], [-2/5, -2/5, -1/5, -4/5], [-2/5, -2/5, -1/5, 1/5], [-2/5, -2/5, 2/5, -3/5], [-2/5, -2/5, 2/5, 2/5] , [-2/5, -2/5, 4/5, -4/5], [-2/5, -2/5, 4/5, 1/5], [-2/5, -1/5, 1/5, -1/5], [-2 /5, -1/5, 1/5, 4/5], [-2/5, 1/5, 2/5, -1/5], [-2/5, 2/5, -1/5, -3/5], [-2/5, 2/ 5, -1/5, 2/5], [-2/5, 2/5, 1/5, -4/5], [-2/5, 2/5, 1/5, 1/5], [-2/5, 2/5, 4/5, -3/5], [-2/5, 2/5, 4/5, 2/5], [-2/5, 3/5, -1/5, -4/5], [-2/5, 3/5, -1/5, 1/5], [-2/5, 3/5, 2/5, -3/5], [-2/5, 3/5, 4/5, -4/5], [-2/5, 3/5, 4/5, 1/5], [-2/5, 4 /5, 1/5, -1/5], [-2/5, 4/5, 1/5, 4/5], [-1/5, -4/5, 2/5, -4/5], [-1/5, -4/5, 2/ 5, 1/5], [-1/5, -4/5, 3/5, -2/5], [-1/5, -4/5, 3/5, 3/5], [-1/5, -3/5, 3/5, -3/ 5], [-1/5, -3/5, 3/5, 2/5], [-1/5, -2/5, 1/5, -3/5], [-1/5, -2/5, 1/5, 2/5], [-\ 1/5, -1/5, 1/5, -4/5], [-1/5, -1/5, 1/5, 1/5], [-1/5, -1/5, 2/5, -2/5], [-1/5, -1/5, 2/5, 3/5], [-1/5, 1/5, 2/5, -4/5], [-1/5, 1/5, 2/5, 1/5], [-1/5, 1/5, 3/5 , -2/5], [-1/5, 1/5, 3/5, 3/5], [-1/5, 2/5, 3/5, -3/5], [-1/5, 2/5, 3/5, 2/5], [-1/5, 3/5, 1/5, -3/5], [-1/5, 4/5, 1/5, -4/5], [-1/5, 4/5, 2/5, -2/5], [-1/5, 4/5, 2/5, 3/5], [1/5, -4/5, 3/5, -3/5], [1/5, -4/5, 3/5, 2/5], [1/5, -4/5, 4/5, -1/5], [1/5, -4/5, 4/5, 4/5], [1/5, -3/5, 4/5, -2/5], [1/5, -3/5, 4/5, 3/5], [1 /5, -2/5, 2/5, -2/5], [1/5, -2/5, 2/5, 3/5], [1/5, -1/5, 2/5, -3/5], [1/5, -1/5 , 2/5, 2/5], [1/5, -1/5, 3/5, -1/5], [1/5, -1/5, 3/5, 4/5], [1/5, 1/5, 3/5, -3/ 5], [1/5, 1/5, 3/5, 2/5], [1/5, 1/5, 4/5, -1/5], [1/5, 2/5, 4/5, -2/5], [1/5, 3 /5, 2/5, -2/5], [1/5, 3/5, 2/5, 3/5], [1/5, 4/5, 2/5, -3/5], [1/5, 4/5, 2/5, 2/ 5], [1/5, 4/5, 3/5, -1/5], [1/5, 4/5, 3/5, 4/5], [2/5, -4/5, 4/5, -4/5], [2/5, -4/5, 4/5, 1/5], [2/5, -3/5, 3/5, -2/5], [2/5, -3/5, 3/5, 3/5], [2/5, -2/5, 4/5 , -1/5], [2/5, -2/5, 4/5, 4/5], [2/5, -1/5, 3/5, -4/5], [2/5, -1/5, 3/5, 1/5], [2/5, 1/5, 4/5, -4/5], [2/5, 1/5, 4/5, 1/5], [2/5, 2/5, 3/5, -2/5], [2/5, 3/5, 4/5, -1/5], [2/5, 3/5, 4/5, 4/5], [2/5, 4/5, 3/5, -4/5], [3/5, -3/5, 4/5, -3/5] , [3/5, -3/5, 4/5, 2/5], [3/5, -2/5, 4/5, -4/5], [3/5, -2/5, 4/5, 1/5], [3/5, 2 /5, 4/5, -3/5], [3/5, 2/5, 4/5, 2/5], [3/5, 3/5, 4/5, -4/5], [3/5, 3/5, 4/5, 1/ 5]], [[-5/6, -5/6, -1/2, -1/2], [-5/6, -5/6, -1/2, 1/2], [-5/6, -5/6, -1/3, -2/3], [ -5/6, -5/6, -1/3, -1/6], [-5/6, -5/6, -1/3, 1/3], [-5/6, -5/6, -1/3, 5/6], [-5/ 6, -5/6, -1/6, -1/6], [-5/6, -5/6, -1/6, 5/6], [-5/6, -5/6, 1/2, -1/2], [-5/6, -5/6, 1/2, 1/2], [-5/6, -5/6, 2/3, -2/3], [-5/6, -5/6, 2/3, -1/6], [-5/6, -5/6, 2/3, 1/3], [-5/6, -5/6, 2/3, 5/6], [-5/6, -5/6, 5/6, -1/6], [-5/6, -5/6, 5/6, 5 /6], [-5/6, -2/3, -1/3, -2/3], [-5/6, -2/3, -1/3, -1/3], [-5/6, -2/3, -1/3, 1/3 ], [-5/6, -2/3, -1/3, 2/3], [-5/6, -2/3, 0, -1/3], [-5/6, -2/3, 2/3, -2/3], [-5 /6, -2/3, 2/3, -1/3], [-5/6, -2/3, 2/3, 1/3], [-5/6, -2/3, 2/3, 2/3], [-5/6, -1 /2, -2/3, -1/3], [-5/6, -1/2, -2/3, 2/3], [-5/6, -1/2, -1/6, -1/2], [-5/6, -1/2 , -1/6, 1/2], [-5/6, -1/2, 0, -1/2], [-5/6, -1/2, 0, 1/2], [-5/6, -1/2, 1/3, -1 /3], [-5/6, -1/2, 1/3, 2/3], [-5/6, -1/2, 5/6, -1/2], [-5/6, -1/2, 5/6, 1/2], [ -5/6, -1/3, -2/3, -1/3], [-5/6, -1/3, -2/3, 2/3], [-5/6, -1/3, -1/2, -1/2], [-5 /6, -1/3, -1/2, 1/2], [-5/6, -1/3, 1/3, -1/3], [-5/6, -1/3, 1/3, 2/3], [-5/6, -\ 1/3, 1/2, -1/2], [-5/6, -1/3, 1/2, 1/2], [-5/6, -1/6, -2/3, -2/3], [-5/6, -1/6, -2/3, -1/2], [-5/6, -1/6, -2/3, 1/3], [-5/6, -1/6, -2/3, 1/2], [-5/6, -1/6, -1/ 2, -2/3], [-5/6, -1/6, -1/2, -1/6], [-5/6, -1/6, -1/2, 1/3], [-5/6, -1/6, -1/2, 5/6], [-5/6, -1/6, -1/3, -1/3], [-5/6, -1/6, -1/3, -1/6], [-5/6, -1/6, -1/3, 2/ 3], [-5/6, -1/6, -1/3, 5/6], [-5/6, -1/6, 1/3, -2/3], [-5/6, -1/6, 1/3, -1/2], [-5/6, -1/6, 1/3, 1/3], [-5/6, -1/6, 1/3, 1/2], [-5/6, -1/6, 1/2, -2/3], [-5/6, -1/6, 1/2, -1/6], [-5/6, -1/6, 1/2, 1/3], [-5/6, -1/6, 1/2, 5/6], [-5/6, -1/6, 2/3, -1/3], [-5/6, -1/6, 2/3, -1/6], [-5/6, -1/6, 2/3, 2/3], [-5/6, -1/6, 2/3, 5/6], [-5/6, 1/6, -1/2, -1/2], [-5/6, 1/6, -1/2, 1/2], [-5/6, 1/6, -1/3, -2/3], [-5/6, 1/6, -1/3, -1/6], [-5/6, 1/6, -1/3, 1/3], [-5/6, 1/6, -1/6, -1/6], [-5/6 , 1/6, 1/2, -1/2], [-5/6, 1/6, 1/2, 1/2], [-5/6, 1/6, 2/3, -2/3], [-5/6, 1/6, 2 /3, -1/6], [-5/6, 1/6, 2/3, 1/3], [-5/6, 1/6, 5/6, -1/6], [-5/6, 1/3, -1/3, -2/ 3], [-5/6, 1/3, -1/3, -1/3], [-5/6, 1/3, -1/3, 1/3], [-5/6, 1/3, 0, -1/3], [-5/ 6, 1/3, 2/3, -2/3], [-5/6, 1/3, 2/3, -1/3], [-5/6, 1/3, 2/3, 1/3], [-5/6, 1/2, -2/3, -1/3], [-5/6, 1/2, -2/3, 2/3], [-5/6, 1/2, -1/6, -1/2], [-5/6, 1/2, 0, -1 /2], [-5/6, 1/2, 1/3, -1/3], [-5/6, 1/2, 1/3, 2/3], [-5/6, 1/2, 5/6, -1/2], [-5 /6, 2/3, -2/3, -1/3], [-5/6, 2/3, -2/3, 2/3], [-5/6, 2/3, -1/2, -1/2], [-5/6, 2 /3, -1/2, 1/2], [-5/6, 2/3, 1/3, -1/3], [-5/6, 2/3, 1/3, 2/3], [-5/6, 2/3, 1/2, -1/2], [-5/6, 2/3, 1/2, 1/2], [-5/6, 5/6, -2/3, -2/3], [-5/6, 5/6, -2/3, -1/2], [-5/6, 5/6, -2/3, 1/3], [-5/6, 5/6, -2/3, 1/2], [-5/6, 5/6, -1/2, -2/3], [-5/6, 5/6, -1/2, -1/6], [-5/6, 5/6, -1/2, 1/3], [-5/6, 5/6, -1/2, 5/6], [-5/6, 5/6, -\ 1/3, -1/3], [-5/6, 5/6, -1/3, -1/6], [-5/6, 5/6, -1/3, 2/3], [-5/6, 5/6, -1/3, 5/6], [-5/6, 5/6, 1/3, -2/3], [-5/6, 5/6, 1/3, -1/2], [-5/6, 5/6, 1/3, 1/3], [-\ 5/6, 5/6, 1/3, 1/2], [-5/6, 5/6, 1/2, -2/3], [-5/6, 5/6, 1/2, -1/6], [-5/6, 5/6 , 1/2, 1/3], [-5/6, 5/6, 1/2, 5/6], [-5/6, 5/6, 2/3, -1/3], [-5/6, 5/6, 2/3, -1 /6], [-5/6, 5/6, 2/3, 2/3], [-5/6, 5/6, 2/3, 5/6], [-2/3, -5/6, -1/2, -1/2], [-\ 2/3, -5/6, -1/2, 1/2], [-2/3, -5/6, -1/6, -5/6], [-2/3, -5/6, -1/6, -1/6], [-2/ 3, -5/6, -1/6, 1/6], [-2/3, -5/6, -1/6, 5/6], [-2/3, -5/6, 1/2, -1/2], [-2/3, -\ 5/6, 1/2, 1/2], [-2/3, -5/6, 5/6, -5/6], [-2/3, -5/6, 5/6, -1/6], [-2/3, -5/6, 5/6, 1/6], [-2/3, -5/6, 5/6, 5/6], [-2/3, -2/3, -1/2, -1/3], [-2/3, -2/3, -1/2, 2/3], [-2/3, -2/3, -1/6, -5/6], [-2/3, -2/3, -1/6, -1/3], [-2/3, -2/3, -1/6, 1/ 6], [-2/3, -2/3, -1/6, 2/3], [-2/3, -2/3, 1/6, -1/6], [-2/3, -2/3, 1/6, 5/6], [ -2/3, -2/3, 1/2, -1/3], [-2/3, -2/3, 1/2, 2/3], [-2/3, -2/3, 5/6, -5/6], [-2/3, -2/3, 5/6, -1/3], [-2/3, -2/3, 5/6, 1/6], [-2/3, -2/3, 5/6, 2/3], [-2/3, -1/2, -1/3, -1/2], [-2/3, -1/2, -1/3, 1/2], [-2/3, -1/2, 1/6, -1/6], [-2/3, -1/2, 1/6 , 5/6], [-2/3, -1/2, 1/2, -1/2], [-2/3, -1/2, 2/3, -1/2], [-2/3, -1/2, 2/3, 1/2 ], [-2/3, -1/3, -1/2, 0], [-2/3, -1/3, -1/2, 1/2], [-2/3, -1/3, -1/6, -1/3], [-\ 2/3, -1/3, -1/6, -1/6], [-2/3, -1/3, -1/6, 2/3], [-2/3, -1/3, -1/6, 5/6], [-2/3 , -1/3, 1/6, -1/2], [-2/3, -1/3, 1/6, -1/3], [-2/3, -1/3, 1/6, 1/2], [-2/3, -1/ 3, 1/6, 2/3], [-2/3, -1/3, 1/2, -1/2], [-2/3, -1/3, 1/2, 1/2], [-2/3, -1/3, 5/6 , -1/3], [-2/3, -1/3, 5/6, -1/6], [-2/3, -1/3, 5/6, 2/3], [-2/3, -1/3, 5/6, 5/6 ], [-2/3, -1/6, -1/2, -5/6], [-2/3, -1/6, -1/2, 1/6], [-2/3, -1/6, -1/3, -5/6], [-2/3, -1/6, -1/3, 1/6], [-2/3, -1/6, 1/2, -5/6], [-2/3, -1/6, 1/2, 1/6], [-2/3 , -1/6, 2/3, -5/6], [-2/3, -1/6, 2/3, 1/6], [-2/3, 1/6, -1/2, -1/2], [-2/3, 1/6 , -1/2, 1/2], [-2/3, 1/6, -1/6, -5/6], [-2/3, 1/6, -1/6, -1/6], [-2/3, 1/6, -1/ 6, 1/6], [-2/3, 1/6, 1/2, -1/2], [-2/3, 1/6, 1/2, 1/2], [-2/3, 1/6, 5/6, -5/6], [-2/3, 1/6, 5/6, -1/6], [-2/3, 1/6, 5/6, 1/6], [-2/3, 1/3, -1/2, -1/3], [-2/3, 1/3, -1/6, -5/6], [-2/3, 1/3, -1/6, -1/3], [-2/3, 1/3, -1/6, 1/6], [-2/3, 1/3, 1/6, -1/6], [-2/3, 1/3, 1/6, 5/6], [-2/3, 1/3, 1/2, -1/3], [-2/3, 1/3, 5/6, -5/ 6], [-2/3, 1/3, 5/6, -1/3], [-2/3, 1/3, 5/6, 1/6], [-2/3, 1/2, -1/3, -1/2], [-2 /3, 1/2, 1/6, -1/6], [-2/3, 1/2, 1/6, 5/6], [-2/3, 1/2, 2/3, -1/2], [-2/3, 2/3, -1/2, -1/2], [-2/3, 2/3, -1/2, 0], [-2/3, 2/3, -1/6, -1/3], [-2/3, 2/3, -1/6, -\ 1/6], [-2/3, 2/3, -1/6, 2/3], [-2/3, 2/3, -1/6, 5/6], [-2/3, 2/3, 1/6, -1/2], [ -2/3, 2/3, 1/6, -1/3], [-2/3, 2/3, 1/6, 1/2], [-2/3, 2/3, 1/6, 2/3], [-2/3, 2/3 , 1/2, -1/2], [-2/3, 2/3, 1/2, 1/2], [-2/3, 2/3, 5/6, -1/3], [-2/3, 2/3, 5/6, -\ 1/6], [-2/3, 2/3, 5/6, 2/3], [-2/3, 2/3, 5/6, 5/6], [-2/3, 5/6, -1/2, -5/6], [-\ 2/3, 5/6, -1/3, -5/6], [-2/3, 5/6, 1/2, -5/6], [-2/3, 5/6, 2/3, -5/6], [-1/2, -\ 5/6, -1/3, -2/3], [-1/2, -5/6, -1/3, 1/3], [-1/2, -5/6, -1/6, -5/6], [-1/2, -5/ 6, -1/6, 1/6], [-1/2, -5/6, 1/3, -1/6], [-1/2, -5/6, 1/3, 5/6], [-1/2, -5/6, 2/ 3, -2/3], [-1/2, -5/6, 2/3, 1/3], [-1/2, -5/6, 5/6, -5/6], [-1/2, -5/6, 5/6, 1/ 6], [-1/2, -2/3, -1/3, -1/3], [-1/2, -2/3, -1/3, 2/3], [-1/2, -2/3, 1/6, -1/6], [-1/2, -2/3, 1/6, 5/6], [-1/2, -2/3, 2/3, -1/3], [-1/2, -2/3, 2/3, 2/3], [-1/2, -1/2, -1/3, 0], [-1/2, -1/2, -1/3, 1/2], [-1/2, -1/2, -1/6, -2/3], [-1/2, -1/2, -1/6, -1/6], [-1/2, -1/2, -1/6, 1/3], [-1/2, -1/2, -1/6, 5/6], [-1/2, -1/2, 1/6 , -5/6], [-1/2, -1/2, 1/6, -1/3], [-1/2, -1/2, 1/6, 1/6], [-1/2, -1/2, 1/6, 2/3 ], [-1/2, -1/2, 1/3, -5/6], [-1/2, -1/2, 1/3, -1/3], [-1/2, -1/2, 1/3, 0], [-1/ 2, -1/2, 1/3, 1/2], [-1/2, -1/2, 1/3, 2/3], [-1/2, -1/2, 2/3, -2/3], [-1/2, -1/ 2, 2/3, -1/2], [-1/2, -1/2, 2/3, 0], [-1/2, -1/2, 2/3, 1/2], [-1/2, -1/2, 5/6, -2/3], [-1/2, -1/2, 5/6, -1/6], [-1/2, -1/2, 5/6, 1/3], [-1/2, -1/2, 5/6, 5/6], [-1/2, -1/3, -1/3, 1/3], [-1/2, -1/3, -1/6, -5/6], [-1/2, -1/3, -1/6, 1/6], [-1 /2, -1/3, 1/3, -2/3], [-1/2, -1/3, 1/3, 1/3], [-1/2, -1/3, 2/3, -2/3], [-1/2, -\ 1/3, 2/3, 1/3], [-1/2, -1/3, 5/6, -5/6], [-1/2, -1/3, 5/6, 1/6], [-1/2, -1/6, -\ 1/3, -5/6], [-1/2, -1/6, -1/3, 1/6], [-1/2, -1/6, 1/6, -1/6], [-1/2, -1/6, 1/6, 5/6], [-1/2, -1/6, 2/3, -5/6], [-1/2, -1/6, 2/3, 1/6], [-1/2, 0, 1/3, -1/3], [-\ 1/2, 0, 1/3, 2/3], [-1/2, 1/6, -1/3, -2/3], [-1/2, 1/6, -1/3, 1/3], [-1/2, 1/6, -1/6, -5/6], [-1/2, 1/6, -1/6, 1/6], [-1/2, 1/6, 1/3, -1/6], [-1/2, 1/6, 2/3, -\ 2/3], [-1/2, 1/6, 2/3, 1/3], [-1/2, 1/6, 5/6, -5/6], [-1/2, 1/6, 5/6, 1/6], [-1 /2, 1/3, -1/3, -1/3], [-1/2, 1/3, 1/6, -1/6], [-1/2, 1/3, 1/6, 5/6], [-1/2, 1/3 , 2/3, -1/3], [-1/2, 1/2, -1/3, -1/2], [-1/2, 1/2, -1/3, 0], [-1/2, 1/2, -1/6, -2/3], [-1/2, 1/2, -1/6, -1/6], [-1/2, 1/2, -1/6, 1/3], [-1/2, 1/2, -1/6, 5/6], [-1/2, 1/2, 1/6, -5/6], [-1/2, 1/2, 1/6, -1/3], [-1/2, 1/2, 1/6, 1/6], [-1/2, 1 /2, 1/6, 2/3], [-1/2, 1/2, 1/3, -5/6], [-1/2, 1/2, 1/3, -1/3], [-1/2, 1/2, 1/3, 0], [-1/2, 1/2, 1/3, 2/3], [-1/2, 1/2, 2/3, -1/2], [-1/2, 1/2, 5/6, -2/3], [-1/ 2, 1/2, 5/6, -1/6], [-1/2, 1/2, 5/6, 1/3], [-1/2, 1/2, 5/6, 5/6], [-1/2, 2/3, -\ 1/3, -2/3], [-1/2, 2/3, -1/6, -5/6], [-1/2, 2/3, -1/6, 1/6], [-1/2, 2/3, 1/3, -\ 2/3], [-1/2, 2/3, 2/3, -2/3], [-1/2, 2/3, 5/6, -5/6], [-1/2, 2/3, 5/6, 1/6], [-\ 1/2, 5/6, -1/3, -5/6], [-1/2, 5/6, 1/6, -1/6], [-1/2, 5/6, 1/6, 5/6], [-1/2, 5/ 6, 2/3, -5/6], [-1/3, -5/6, 1/3, -1/6], [-1/3, -5/6, 1/3, 5/6], [-1/3, -5/6, 1/ 2, -1/6], [-1/3, -5/6, 1/2, 5/6], [-1/3, -2/3, -1/6, -2/3], [-1/3, -2/3, -1/6, -1/2], [-1/3, -2/3, -1/6, 1/3], [-1/3, -2/3, -1/6, 1/2], [-1/3, -2/3, 1/6, -5/6 ], [-1/3, -2/3, 1/6, -2/3], [-1/3, -2/3, 1/6, 1/6], [-1/3, -2/3, 1/6, 1/3], [-1 /3, -2/3, 1/2, -5/6], [-1/3, -2/3, 1/2, 1/2], [-1/3, -2/3, 5/6, -2/3], [-1/3, -\ 2/3, 5/6, -1/2], [-1/3, -2/3, 5/6, 1/3], [-1/3, -2/3, 5/6, 1/2], [-1/3, -1/2, -\ 1/6, -5/6], [-1/3, -1/2, -1/6, 1/6], [-1/3, -1/2, 1/3, -1/2], [-1/3, -1/2, 1/3, 1/2], [-1/3, -1/2, 1/2, -1/2], [-1/3, -1/2, 1/2, 1/2], [-1/3, -1/2, 5/6, -5/6], [-1/3, -1/2, 5/6, 1/6], [-1/3, -1/3, -1/6, -5/6], [-1/3, -1/3, -1/6, 1/6], [-1/ 3, -1/3, 1/6, -2/3], [-1/3, -1/3, 1/6, -1/6], [-1/3, -1/3, 1/6, 1/3], [-1/3, -1 /3, 1/6, 5/6], [-1/3, -1/3, 1/2, -2/3], [-1/3, -1/3, 1/2, 1/3], [-1/3, -1/3, 5/ 6, -5/6], [-1/3, -1/3, 5/6, 1/6], [-1/3, -1/6, 1/6, -5/6], [-1/3, -1/6, 1/6, -1 /6], [-1/3, -1/6, 1/6, 1/6], [-1/3, -1/6, 1/6, 5/6], [-1/3, -1/6, 1/2, 1/2], [-\ 1/3, 0, 1/2, -1/2], [-1/3, 0, 1/2, 1/2], [-1/3, 1/6, 1/3, -1/6], [-1/3, 1/6, 1/ 2, -1/6], [-1/3, 1/3, -1/6, -2/3], [-1/3, 1/3, -1/6, -1/2], [-1/3, 1/3, -1/6, 1 /3], [-1/3, 1/3, -1/6, 1/2], [-1/3, 1/3, 1/6, -5/6], [-1/3, 1/3, 1/6, -2/3], [-\ 1/3, 1/3, 1/6, 1/6], [-1/3, 1/3, 1/6, 1/3], [-1/3, 1/3, 1/2, -5/6], [-1/3, 1/3, 1/2, -1/3], [-1/3, 1/3, 1/2, 0], [-1/3, 1/3, 5/6, -2/3], [-1/3, 1/3, 5/6, -1/2] , [-1/3, 1/3, 5/6, 1/3], [-1/3, 1/3, 5/6, 1/2], [-1/3, 1/2, -1/6, -5/6], [-1/3, 1/2, -1/6, 1/6], [-1/3, 1/2, 1/3, -1/2], [-1/3, 1/2, 1/2, -1/2], [-1/3, 1/2, 5/ 6, -5/6], [-1/3, 1/2, 5/6, 1/6], [-1/3, 2/3, -1/6, -5/6], [-1/3, 2/3, -1/6, 1/6 ], [-1/3, 2/3, 1/6, -2/3], [-1/3, 2/3, 1/6, -1/6], [-1/3, 2/3, 1/6, 5/6], [-1/3 , 2/3, 1/2, -2/3], [-1/3, 2/3, 5/6, -5/6], [-1/3, 2/3, 5/6, 1/6], [-1/3, 5/6, 1 /6, -5/6], [-1/3, 5/6, 1/6, -1/6], [-1/3, 5/6, 1/6, 5/6], [-1/6, -5/6, 1/3, -5/ 6], [-1/6, -5/6, 1/3, -2/3], [-1/6, -5/6, 1/3, 1/6], [-1/6, -5/6, 1/3, 1/3], [-\ 1/6, -5/6, 1/2, -5/6], [-1/6, -5/6, 1/2, -1/3], [-1/6, -5/6, 1/2, 1/6], [-1/6, -5/6, 1/2, 2/3], [-1/6, -5/6, 2/3, -1/2], [-1/6, -5/6, 2/3, -1/3], [-1/6, -5/6, 2/3, 1/2], [-1/6, -5/6, 2/3, 2/3], [-1/6, -2/3, 1/2, -1/2], [-1/6, -2/3, 1/2, 1 /2], [-1/6, -2/3, 2/3, -2/3], [-1/6, -2/3, 2/3, 1/3], [-1/6, -1/2, 1/6, -1/2], [-1/6, -1/2, 1/6, 1/2], [-1/6, -1/2, 2/3, -2/3], [-1/6, -1/2, 2/3, 1/3], [-1/6, -1/3, 1/3, -2/3], [-1/6, -1/3, 1/3, -1/3], [-1/6, -1/3, 1/3, 1/3], [-1/6, -1/3, 1/3, 2/3], [-1/6, -1/6, 1/6, -5/6], [-1/6, -1/6, 1/6, 1/6], [-1/6, -1/6, 1/3, -\ 5/6], [-1/6, -1/6, 1/3, -1/3], [-1/6, -1/6, 1/3, 1/6], [-1/6, -1/6, 1/3, 2/3], [-1/6, -1/6, 1/2, -1/2], [-1/6, -1/6, 1/2, 1/2], [-1/6, 1/6, 1/3, -5/6], [-1/6, 1/6, 1/3, -2/3], [-1/6, 1/6, 1/3, 1/6], [-1/6, 1/6, 1/3, 1/3], [-1/6, 1/6, 1/2, -5/6], [-1/6, 1/6, 1/2, -1/3], [-1/6, 1/6, 1/2, 1/6], [-1/6, 1/6, 1/2, 2/3], [-\ 1/6, 1/6, 2/3, -1/2], [-1/6, 1/6, 2/3, -1/3], [-1/6, 1/6, 2/3, 1/2], [-1/6, 1/6 , 2/3, 2/3], [-1/6, 1/3, 1/2, -1/2], [-1/6, 1/3, 1/2, 1/2], [-1/6, 1/3, 2/3, -2 /3], [-1/6, 1/3, 2/3, 1/3], [-1/6, 1/2, 1/6, -1/2], [-1/6, 1/2, 2/3, -2/3], [-1 /6, 1/2, 2/3, 1/3], [-1/6, 2/3, 1/3, -2/3], [-1/6, 2/3, 1/3, -1/3], [-1/6, 2/3, 1/3, 2/3], [-1/6, 5/6, 1/6, -5/6], [-1/6, 5/6, 1/3, -5/6], [-1/6, 5/6, 1/3, -1/ 3], [-1/6, 5/6, 1/3, 2/3], [-1/6, 5/6, 1/2, -1/2], [-1/6, 5/6, 1/2, 1/2], [0, -\ 1/2, 1/6, -1/2], [0, -1/2, 1/6, 1/2], [0, -1/3, 1/6, -2/3], [0, -1/3, 1/6, 1/3] , [0, 1/2, 1/6, -1/2], [0, 2/3, 1/6, -2/3], [1/6, -5/6, 1/2, -1/2], [1/6, -5/6, 1/2, 1/2], [1/6, -5/6, 2/3, -2/3], [1/6, -5/6, 2/3, -1/6], [1/6, -5/6, 2/3, 1/3 ], [1/6, -5/6, 2/3, 5/6], [1/6, -5/6, 5/6, -1/6], [1/6, -5/6, 5/6, 5/6], [1/6, -2/3, 2/3, -2/3], [1/6, -2/3, 2/3, -1/3], [1/6, -2/3, 2/3, 1/3], [1/6, -2/3, 2/ 3, 2/3], [1/6, -1/2, 1/3, -1/3], [1/6, -1/2, 1/3, 2/3], [1/6, -1/2, 5/6, -1/2], [1/6, -1/2, 5/6, 1/2], [1/6, -1/3, 1/3, -1/3], [1/6, -1/3, 1/3, 2/3], [1/6, -1/ 3, 1/2, -1/2], [1/6, -1/3, 1/2, 1/2], [1/6, -1/6, 1/3, -2/3], [1/6, -1/6, 1/3, -1/2], [1/6, -1/6, 1/3, 1/3], [1/6, -1/6, 1/3, 1/2], [1/6, -1/6, 1/2, -2/3], [1 /6, -1/6, 1/2, -1/6], [1/6, -1/6, 1/2, 1/3], [1/6, -1/6, 1/2, 5/6], [1/6, -1/6, 2/3, -1/3], [1/6, -1/6, 2/3, -1/6], [1/6, -1/6, 2/3, 2/3], [1/6, -1/6, 2/3, 5/6 ], [1/6, 1/6, 1/2, -1/2], [1/6, 1/6, 1/2, 1/2], [1/6, 1/6, 2/3, -2/3], [1/6, 1/ 6, 2/3, -1/6], [1/6, 1/6, 2/3, 1/3], [1/6, 1/6, 5/6, -1/6], [1/6, 1/3, 2/3, -2/ 3], [1/6, 1/3, 2/3, -1/3], [1/6, 1/3, 2/3, 1/3], [1/6, 1/2, 1/3, -1/3], [1/6, 1 /2, 1/3, 2/3], [1/6, 1/2, 5/6, -1/2], [1/6, 2/3, 1/3, -1/3], [1/6, 2/3, 1/3, 2/ 3], [1/6, 2/3, 1/2, -1/2], [1/6, 2/3, 1/2, 1/2], [1/6, 5/6, 1/3, -2/3], [1/6, 5 /6, 1/3, -1/2], [1/6, 5/6, 1/3, 1/3], [1/6, 5/6, 1/3, 1/2], [1/6, 5/6, 1/2, -2/ 3], [1/6, 5/6, 1/2, -1/6], [1/6, 5/6, 1/2, 1/3], [1/6, 5/6, 1/2, 5/6], [1/6, 5/ 6, 2/3, -1/3], [1/6, 5/6, 2/3, -1/6], [1/6, 5/6, 2/3, 2/3], [1/6, 5/6, 2/3, 5/6 ], [1/3, -5/6, 1/2, -1/2], [1/3, -5/6, 1/2, 1/2], [1/3, -5/6, 5/6, -5/6], [1/3, -5/6, 5/6, -1/6], [1/3, -5/6, 5/6, 1/6], [1/3, -5/6, 5/6, 5/6], [1/3, -2/3, 1/2 , -1/3], [1/3, -2/3, 1/2, 2/3], [1/3, -2/3, 5/6, -5/6], [1/3, -2/3, 5/6, -1/3], [1/3, -2/3, 5/6, 1/6], [1/3, -2/3, 5/6, 2/3], [1/3, -1/2, 1/2, 1/2], [1/3, -1/2 , 2/3, -1/2], [1/3, -1/2, 2/3, 1/2], [1/3, -1/3, 1/2, -1/2], [1/3, -1/3, 1/2, 0 ], [1/3, -1/3, 1/2, 1/2], [1/3, -1/3, 5/6, -1/3], [1/3, -1/3, 5/6, -1/6], [1/3, -1/3, 5/6, 2/3], [1/3, -1/3, 5/6, 5/6], [1/3, -1/6, 1/2, -5/6], [1/3, -1/6, 1/2 , 1/6], [1/3, -1/6, 2/3, -5/6], [1/3, -1/6, 2/3, 1/6], [1/3, 1/6, 1/2, -1/2], [ 1/3, 1/6, 1/2, 1/2], [1/3, 1/6, 5/6, -5/6], [1/3, 1/6, 5/6, -1/6], [1/3, 1/6, 5 /6, 1/6], [1/3, 1/3, 1/2, -1/3], [1/3, 1/3, 5/6, -5/6], [1/3, 1/3, 5/6, -1/3], [1/3, 1/3, 5/6, 1/6], [1/3, 1/2, 2/3, -1/2], [1/3, 2/3, 1/2, -2/3], [1/3, 2/3, 1/2, -1/2], [1/3, 2/3, 1/2, 0], [1/3, 2/3, 1/2, 1/2], [1/3, 2/3, 5/6, -1/3], [1 /3, 2/3, 5/6, -1/6], [1/3, 2/3, 5/6, 2/3], [1/3, 2/3, 5/6, 5/6], [1/3, 5/6, 1/2 , -5/6], [1/3, 5/6, 2/3, -5/6], [1/2, -5/6, 2/3, -2/3], [1/2, -5/6, 2/3, 1/3], [1/2, -5/6, 5/6, -5/6], [1/2, -5/6, 5/6, 1/6], [1/2, -2/3, 2/3, -1/3], [1/2, -2 /3, 2/3, 2/3], [1/2, -1/2, 2/3, -1/2], [1/2, -1/2, 2/3, 0], [1/2, -1/2, 2/3, 1/ 3], [1/2, -1/2, 5/6, -2/3], [1/2, -1/2, 5/6, -1/6], [1/2, -1/2, 5/6, 1/3], [1/2 , -1/2, 5/6, 5/6], [1/2, -1/3, 2/3, -2/3], [1/2, -1/3, 2/3, 1/3], [1/2, -1/3, 5 /6, -5/6], [1/2, -1/3, 5/6, 1/6], [1/2, -1/6, 2/3, -5/6], [1/2, -1/6, 2/3, 1/6] , [1/2, 1/6, 2/3, -2/3], [1/2, 1/6, 2/3, 1/3], [1/2, 1/6, 5/6, -5/6], [1/2, 1/6 , 5/6, 1/6], [1/2, 1/3, 2/3, -1/3], [1/2, 1/2, 2/3, -2/3], [1/2, 1/2, 2/3, -1/2 ], [1/2, 1/2, 2/3, 0], [1/2, 1/2, 5/6, -2/3], [1/2, 1/2, 5/6, -1/6], [1/2, 1/2, 5/6, 1/3], [1/2, 1/2, 5/6, 5/6], [1/2, 2/3, 5/6, -5/6], [1/2, 2/3, 5/6, 1/6], [ 1/2, 5/6, 2/3, -5/6], [2/3, -2/3, 5/6, -2/3], [2/3, -2/3, 5/6, -1/2], [2/3, -2/ 3, 5/6, 1/3], [2/3, -2/3, 5/6, 1/2], [2/3, -1/2, 5/6, -5/6], [2/3, -1/2, 5/6, 1 /6], [2/3, -1/3, 5/6, -5/6], [2/3, -1/3, 5/6, 1/6], [2/3, 1/3, 5/6, -2/3], [2/3 , 1/3, 5/6, -1/2], [2/3, 1/3, 5/6, 1/3], [2/3, 1/3, 5/6, 1/2], [2/3, 1/2, 5/6, -5/6], [2/3, 1/2, 5/6, 1/6], [2/3, 2/3, 5/6, -5/6], [2/3, 2/3, 5/6, 1/6]], [[-6/7, -6/7, -4/7, -5/7], [-6/7, -6/7, -4/7, -3/7], [-6/7, -6/7, -4/7, 2/7], [ -6/7, -6/7, -4/7, 4/7], [-6/7, -6/7, -1/7, -3/7], [-6/7, -6/7, -1/7, -1/7], [-6 /7, -6/7, -1/7, 4/7], [-6/7, -6/7, -1/7, 6/7], [-6/7, -6/7, 3/7, -5/7], [-6/7, -6/7, 3/7, -3/7], [-6/7, -6/7, 3/7, 2/7], [-6/7, -6/7, 3/7, 4/7], [-6/7, -6/7, 6/7, -3/7], [-6/7, -6/7, 6/7, -1/7], [-6/7, -6/7, 6/7, 4/7], [-6/7, -6/7, 6/7, 6/7], [-6/7, -5/7, -3/7, -5/7], [-6/7, -5/7, -2/7, -5/7], [-6/7, -5/7, -2/7, -1 /7], [-6/7, -5/7, -2/7, 2/7], [-6/7, -5/7, -2/7, 6/7], [-6/7, -5/7, -1/7, -4/7] , [-6/7, -5/7, -1/7, -2/7], [-6/7, -5/7, -1/7, 3/7], [-6/7, -5/7, -1/7, 5/7], [ -6/7, -5/7, 5/7, -5/7], [-6/7, -5/7, 5/7, -1/7], [-6/7, -5/7, 5/7, 2/7], [-6/7, -5/7, 5/7, 6/7], [-6/7, -5/7, 6/7, -4/7], [-6/7, -5/7, 6/7, -2/7], [-6/7, -5/7, 6/7, 3/7], [-6/7, -5/7, 6/7, 5/7], [-6/7, -4/7, -2/7, -2/7], [-6/7, -4/7, -2/7, 5/7], [-6/7, -4/7, -1/7, -3/7], [-6/7, -4/7, -1/7, -1/7], [-6/7, -4/7, -1/7, 4/ 7], [-6/7, -4/7, -1/7, 6/7], [-6/7, -4/7, 5/7, -2/7], [-6/7, -4/7, 5/7, 5/7], [ -6/7, -4/7, 6/7, -3/7], [-6/7, -4/7, 6/7, -1/7], [-6/7, -4/7, 6/7, 4/7], [-6/7, -4/7, 6/7, 6/7], [-6/7, -3/7, -5/7, -3/7], [-6/7, -3/7, -5/7, -2/7], [-6/7, -3/ 7, -5/7, 4/7], [-6/7, -3/7, -5/7, 5/7], [-6/7, -3/7, -4/7, -1/7], [-6/7, -3/7, -4/7, 6/7], [-6/7, -3/7, -1/7, -4/7], [-6/7, -3/7, -1/7, -2/7], [-6/7, -3/7, -1 /7, 3/7], [-6/7, -3/7, -1/7, 5/7], [-6/7, -3/7, 2/7, -3/7], [-6/7, -3/7, 2/7, -\ 2/7], [-6/7, -3/7, 2/7, 4/7], [-6/7, -3/7, 2/7, 5/7], [-6/7, -3/7, 3/7, -1/7], [-6/7, -3/7, 3/7, 6/7], [-6/7, -3/7, 6/7, -4/7], [-6/7, -3/7, 6/7, -2/7], [-6/7 , -3/7, 6/7, 3/7], [-6/7, -3/7, 6/7, 5/7], [-6/7, -2/7, -5/7, -4/7], [-6/7, -2/ 7, -5/7, 3/7], [-6/7, -2/7, -3/7, -4/7], [-6/7, -2/7, -3/7, 3/7], [-6/7, -2/7, 2/7, -4/7], [-6/7, -2/7, 2/7, 3/7], [-6/7, -2/7, 4/7, -4/7], [-6/7, -2/7, 4/7, 3/7], [-6/7, -1/7, -5/7, -4/7], [-6/7, -1/7, -5/7, 3/7], [-6/7, -1/7, -4/7, -1/ 7], [-6/7, -1/7, -4/7, 6/7], [-6/7, -1/7, -3/7, -5/7], [-6/7, -1/7, -3/7, 2/7], [-6/7, -1/7, -2/7, -2/7], [-6/7, -1/7, -2/7, 5/7], [-6/7, -1/7, 2/7, -4/7], [-6 /7, -1/7, 2/7, 3/7], [-6/7, -1/7, 3/7, -1/7], [-6/7, -1/7, 3/7, 6/7], [-6/7, -1 /7, 4/7, -5/7], [-6/7, -1/7, 4/7, 2/7], [-6/7, -1/7, 5/7, -2/7], [-6/7, -1/7, 5 /7, 5/7], [-6/7, 1/7, -4/7, -5/7], [-6/7, 1/7, -4/7, -3/7], [-6/7, 1/7, -4/7, 2 /7], [-6/7, 1/7, -4/7, 4/7], [-6/7, 1/7, -1/7, -3/7], [-6/7, 1/7, -1/7, -1/7], [-6/7, 1/7, -1/7, 4/7], [-6/7, 1/7, 3/7, -5/7], [-6/7, 1/7, 3/7, -3/7], [-6/7, 1/7, 3/7, 2/7], [-6/7, 1/7, 3/7, 4/7], [-6/7, 1/7, 6/7, -3/7], [-6/7, 1/7, 6/7, -1/7], [-6/7, 1/7, 6/7, 4/7], [-6/7, 2/7, -3/7, 2/7], [-6/7, 2/7, -2/7, -5/7], [-6/7, 2/7, -2/7, -1/7], [-6/7, 2/7, -2/7, 2/7], [-6/7, 2/7, -2/7, 6/7], [-6/7, 2/7, -1/7, -4/7], [-6/7, 2/7, -1/7, -2/7], [-6/7, 2/7, -1/7, 3/7], [-6/7, 2/7, 4/7, 2/7], [-6/7, 2/7, 5/7, -5/7], [-6/7, 2/7, 5/7, -1/7], [-6/7, 2/7, 5/7, 2/7 ], [-6/7, 2/7, 5/7, 6/7], [-6/7, 2/7, 6/7, -4/7], [-6/7, 2/7, 6/7, -2/7], [-6/7 , 2/7, 6/7, 3/7], [-6/7, 3/7, -2/7, -2/7], [-6/7, 3/7, -2/7, 5/7], [-6/7, 3/7, -1/7, -3/7], [-6/7, 3/7, -1/7, -1/7], [-6/7, 3/7, -1/7, 6/7], [-6/7, 3/7, 5/7, -2/7], [-6/7, 3/7, 5/7, 5/7], [-6/7, 3/7, 6/7, -3/7], [-6/7, 3/7, 6/7, -1/7], [ -6/7, 3/7, 6/7, 6/7], [-6/7, 4/7, -5/7, -3/7], [-6/7, 4/7, -5/7, -2/7], [-6/7, 4/7, -5/7, 4/7], [-6/7, 4/7, -5/7, 5/7], [-6/7, 4/7, -4/7, -1/7], [-6/7, 4/7, -\ 4/7, 6/7], [-6/7, 4/7, -1/7, -4/7], [-6/7, 4/7, -1/7, -2/7], [-6/7, 4/7, -1/7, 5/7], [-6/7, 4/7, 2/7, -3/7], [-6/7, 4/7, 2/7, -2/7], [-6/7, 4/7, 2/7, 4/7], [-\ 6/7, 4/7, 2/7, 5/7], [-6/7, 4/7, 3/7, -1/7], [-6/7, 4/7, 3/7, 6/7], [-6/7, 4/7, 6/7, -4/7], [-6/7, 4/7, 6/7, -2/7], [-6/7, 4/7, 6/7, 5/7], [-6/7, 5/7, -5/7, -4 /7], [-6/7, 5/7, -5/7, 3/7], [-6/7, 5/7, -3/7, -4/7], [-6/7, 5/7, -3/7, -1/7], [-6/7, 5/7, -3/7, 3/7], [-6/7, 5/7, 2/7, -4/7], [-6/7, 5/7, 2/7, 3/7], [-6/7, 5 /7, 4/7, -4/7], [-6/7, 5/7, 4/7, 3/7], [-6/7, 6/7, -5/7, -4/7], [-6/7, 6/7, -5/ 7, 3/7], [-6/7, 6/7, -4/7, -1/7], [-6/7, 6/7, -4/7, 6/7], [-6/7, 6/7, -3/7, -5/ 7], [-6/7, 6/7, -3/7, 2/7], [-6/7, 6/7, -2/7, -2/7], [-6/7, 6/7, -2/7, 5/7], [-\ 6/7, 6/7, 2/7, -4/7], [-6/7, 6/7, 2/7, 3/7], [-6/7, 6/7, 3/7, -1/7], [-6/7, 6/7 , 3/7, 6/7], [-6/7, 6/7, 4/7, -5/7], [-6/7, 6/7, 4/7, 2/7], [-6/7, 6/7, 5/7, -2 /7], [-6/7, 6/7, 5/7, 5/7], [-5/7, -6/7, -3/7, -6/7], [-5/7, -6/7, -3/7, -4/7], [-5/7, -6/7, -3/7, 1/7], [-5/7, -6/7, -3/7, 3/7], [-5/7, -6/7, -2/7, -4/7], [-5 /7, -6/7, -2/7, -1/7], [-5/7, -6/7, -2/7, 3/7], [-5/7, -6/7, -2/7, 6/7], [-5/7, -6/7, 4/7, -6/7], [-5/7, -6/7, 4/7, -4/7], [-5/7, -6/7, 4/7, 1/7], [-5/7, -6/7, 4/7, 3/7], [-5/7, -6/7, 5/7, -4/7], [-5/7, -6/7, 5/7, -1/7], [-5/7, -6/7, 5/7, 3/7], [-5/7, -6/7, 5/7, 6/7], [-5/7, -5/7, -2/7, -6/7], [-5/7, -5/7, -2/7, -2/7 ], [-5/7, -5/7, -2/7, 5/7], [-5/7, -5/7, -1/7, -6/7], [-5/7, -5/7, -1/7, 1/7], [-5/7, -5/7, 5/7, -2/7], [-5/7, -5/7, 5/7, 5/7], [-5/7, -5/7, 6/7, -6/7], [-5/7 , -5/7, 6/7, 1/7], [-5/7, -4/7, -3/7, -1/7], [-5/7, -4/7, -3/7, 6/7], [-5/7, -4 /7, 1/7, -2/7], [-5/7, -4/7, 1/7, -1/7], [-5/7, -4/7, 1/7, 5/7], [-5/7, -4/7, 1 /7, 6/7], [-5/7, -4/7, 4/7, -1/7], [-5/7, -4/7, 4/7, 6/7], [-5/7, -3/7, -4/7, -\ 3/7], [-5/7, -3/7, -4/7, -2/7], [-5/7, -3/7, -4/7, 4/7], [-5/7, -3/7, -4/7, 5/7 ], [-5/7, -3/7, -2/7, -4/7], [-5/7, -3/7, -2/7, 3/7], [-5/7, -3/7, 1/7, -3/7], [-5/7, -3/7, 1/7, 4/7], [-5/7, -3/7, 3/7, -3/7], [-5/7, -3/7, 3/7, -2/7], [-5/7 , -3/7, 3/7, 4/7], [-5/7, -3/7, 3/7, 5/7], [-5/7, -3/7, 5/7, -4/7], [-5/7, -3/7 , 5/7, 3/7], [-5/7, -2/7, -4/7, -4/7], [-5/7, -2/7, -4/7, 3/7], [-5/7, -2/7, -3 /7, -1/7], [-5/7, -2/7, -3/7, 6/7], [-5/7, -2/7, -1/7, -2/7], [-5/7, -2/7, -1/7 , 5/7], [-5/7, -2/7, 1/7, -3/7], [-5/7, -2/7, 1/7, 4/7], [-5/7, -2/7, 3/7, -4/7 ], [-5/7, -2/7, 3/7, 3/7], [-5/7, -2/7, 4/7, -1/7], [-5/7, -2/7, 4/7, 6/7], [-5 /7, -2/7, 6/7, -2/7], [-5/7, -2/7, 6/7, 5/7], [-5/7, -1/7, -4/7, -4/7], [-5/7, -1/7, -4/7, 3/7], [-5/7, -1/7, -2/7, -6/7], [-5/7, -1/7, -2/7, -2/7], [-5/7, -1 /7, -2/7, 1/7], [-5/7, -1/7, -2/7, 5/7], [-5/7, -1/7, 3/7, -4/7], [-5/7, -1/7, 3/7, 3/7], [-5/7, -1/7, 5/7, -6/7], [-5/7, -1/7, 5/7, -2/7], [-5/7, -1/7, 5/7, 1/7], [-5/7, -1/7, 5/7, 5/7], [-5/7, 1/7, -3/7, -6/7], [-5/7, 1/7, -3/7, -4/7], [-5/7, 1/7, -3/7, 1/7], [-5/7, 1/7, -3/7, 3/7], [-5/7, 1/7, -2/7, -4/7], [-5/7, 1/7, -2/7, -1/7], [-5/7, 1/7, -2/7, 3/7], [-5/7, 1/7, 4/7, -6/7], [-5/7, 1/7, 4 /7, -4/7], [-5/7, 1/7, 4/7, 1/7], [-5/7, 1/7, 4/7, 3/7], [-5/7, 1/7, 5/7, -4/7] , [-5/7, 1/7, 5/7, -1/7], [-5/7, 1/7, 5/7, 3/7], [-5/7, 2/7, -2/7, -2/7], [-5/7 , 2/7, -1/7, -6/7], [-5/7, 2/7, -1/7, 1/7], [-5/7, 2/7, 5/7, -2/7], [-5/7, 2/7, 6/7, -6/7], [-5/7, 2/7, 6/7, 1/7], [-5/7, 3/7, -3/7, -1/7], [-5/7, 3/7, -3/7, 6 /7], [-5/7, 3/7, 1/7, -2/7], [-5/7, 3/7, 1/7, -1/7], [-5/7, 3/7, 1/7, 5/7], [-5 /7, 3/7, 1/7, 6/7], [-5/7, 3/7, 4/7, -1/7], [-5/7, 3/7, 4/7, 6/7], [-5/7, 4/7, -4/7, -3/7], [-5/7, 4/7, -4/7, -2/7], [-5/7, 4/7, -4/7, 4/7], [-5/7, 4/7, -4/7, 5/7], [-5/7, 4/7, -2/7, -4/7], [-5/7, 4/7, 1/7, -3/7], [-5/7, 4/7, 1/7, 4/7], [ -5/7, 4/7, 3/7, -3/7], [-5/7, 4/7, 3/7, -2/7], [-5/7, 4/7, 3/7, 4/7], [-5/7, 4/ 7, 3/7, 5/7], [-5/7, 4/7, 5/7, -4/7], [-5/7, 5/7, -4/7, -4/7], [-5/7, 5/7, -4/7 , 3/7], [-5/7, 5/7, -3/7, -1/7], [-5/7, 5/7, -3/7, 6/7], [-5/7, 5/7, -1/7, -2/7 ], [-5/7, 5/7, -1/7, 5/7], [-5/7, 5/7, 1/7, -3/7], [-5/7, 5/7, 1/7, 4/7], [-5/7 , 5/7, 3/7, -4/7], [-5/7, 5/7, 3/7, 3/7], [-5/7, 5/7, 4/7, -1/7], [-5/7, 5/7, 4 /7, 6/7], [-5/7, 5/7, 6/7, -2/7], [-5/7, 5/7, 6/7, 5/7], [-5/7, 6/7, -4/7, -4/7 ], [-5/7, 6/7, -4/7, 3/7], [-5/7, 6/7, -2/7, -6/7], [-5/7, 6/7, -2/7, -2/7], [-\ 5/7, 6/7, -2/7, 5/7], [-5/7, 6/7, 3/7, -4/7], [-5/7, 6/7, 3/7, 3/7], [-5/7, 6/7 , 5/7, -6/7], [-5/7, 6/7, 5/7, -2/7], [-5/7, 6/7, 5/7, 5/7], [-4/7, -6/7, -2/7, -5/7], [-4/7, -6/7, -2/7, -3/7], [-4/7, -6/7, -2/7, 2/7], [-4/7, -6/7, -2/7, 4/ 7], [-4/7, -6/7, -1/7, -5/7], [-4/7, -6/7, -1/7, 2/7], [-4/7, -6/7, 5/7, -5/7], [-4/7, -6/7, 5/7, -3/7], [-4/7, -6/7, 5/7, 2/7], [-4/7, -6/7, 5/7, 4/7], [-4/7, -6/7, 6/7, -5/7], [-4/7, -6/7, 6/7, 2/7], [-4/7, -5/7, -3/7, -3/7], [-4/7, -5/7 , -3/7, -2/7], [-4/7, -5/7, -3/7, 4/7], [-4/7, -5/7, -3/7, 5/7], [-4/7, -5/7, 1 /7, -6/7], [-4/7, -5/7, 1/7, 1/7], [-4/7, -5/7, 4/7, -3/7], [-4/7, -5/7, 4/7, -\ 2/7], [-4/7, -5/7, 4/7, 4/7], [-4/7, -5/7, 4/7, 5/7], [-4/7, -4/7, -3/7, -3/7], [-4/7, -4/7, -3/7, -2/7], [-4/7, -4/7, -3/7, 4/7], [-4/7, -4/7, -3/7, 5/7], [-4 /7, -4/7, 2/7, -2/7], [-4/7, -4/7, 2/7, -1/7], [-4/7, -4/7, 2/7, 5/7], [-4/7, -\ 4/7, 2/7, 6/7], [-4/7, -4/7, 4/7, -3/7], [-4/7, -4/7, 4/7, -2/7], [-4/7, -4/7, 4/7, 4/7], [-4/7, -4/7, 4/7, 5/7], [-4/7, -3/7, -2/7, -1/7], [-4/7, -3/7, -2/7, 6/7], [-4/7, -3/7, -1/7, -5/7], [-4/7, -3/7, -1/7, 2/7], [-4/7, -3/7, 1/7, -6/7 ], [-4/7, -3/7, 1/7, 1/7], [-4/7, -3/7, 2/7, -3/7], [-4/7, -3/7, 2/7, 4/7], [-4 /7, -3/7, 5/7, -1/7], [-4/7, -3/7, 5/7, 6/7], [-4/7, -3/7, 6/7, -5/7], [-4/7, -\ 3/7, 6/7, 2/7], [-4/7, -2/7, -3/7, -6/7], [-4/7, -2/7, -3/7, -5/7], [-4/7, -2/7 , -3/7, 1/7], [-4/7, -2/7, -3/7, 2/7], [-4/7, -2/7, -1/7, -6/7], [-4/7, -2/7, -\ 1/7, -2/7], [-4/7, -2/7, -1/7, 1/7], [-4/7, -2/7, -1/7, 5/7], [-4/7, -2/7, 2/7, -3/7], [-4/7, -2/7, 2/7, 4/7], [-4/7, -2/7, 4/7, -6/7], [-4/7, -2/7, 4/7, -5/7] , [-4/7, -2/7, 4/7, 1/7], [-4/7, -2/7, 4/7, 2/7], [-4/7, -2/7, 6/7, -6/7], [-4/ 7, -2/7, 6/7, -2/7], [-4/7, -2/7, 6/7, 1/7], [-4/7, -2/7, 6/7, 5/7], [-4/7, -1/ 7, -3/7, -6/7], [-4/7, -1/7, -3/7, -5/7], [-4/7, -1/7, -3/7, 1/7], [-4/7, -1/7, -3/7, 2/7], [-4/7, -1/7, -2/7, -1/7], [-4/7, -1/7, -2/7, 6/7], [-4/7, -1/7, 1/7 , -3/7], [-4/7, -1/7, 1/7, -1/7], [-4/7, -1/7, 1/7, 4/7], [-4/7, -1/7, 1/7, 6/7 ], [-4/7, -1/7, 4/7, -6/7], [-4/7, -1/7, 4/7, -5/7], [-4/7, -1/7, 4/7, 1/7], [-\ 4/7, -1/7, 4/7, 2/7], [-4/7, -1/7, 5/7, -1/7], [-4/7, -1/7, 5/7, 6/7], [-4/7, 1 /7, -2/7, -5/7], [-4/7, 1/7, -2/7, -3/7], [-4/7, 1/7, -2/7, 2/7], [-4/7, 1/7, -\ 2/7, 4/7], [-4/7, 1/7, -1/7, -5/7], [-4/7, 1/7, -1/7, 2/7], [-4/7, 1/7, 5/7, -5 /7], [-4/7, 1/7, 5/7, -3/7], [-4/7, 1/7, 5/7, 2/7], [-4/7, 1/7, 5/7, 4/7], [-4/ 7, 1/7, 6/7, -5/7], [-4/7, 1/7, 6/7, 2/7], [-4/7, 2/7, -3/7, -3/7], [-4/7, 2/7, -3/7, -2/7], [-4/7, 2/7, -3/7, 4/7], [-4/7, 2/7, 1/7, -6/7], [-4/7, 2/7, 1/7, 1 /7], [-4/7, 2/7, 4/7, -3/7], [-4/7, 2/7, 4/7, -2/7], [-4/7, 2/7, 4/7, 4/7], [-4 /7, 3/7, -3/7, -3/7], [-4/7, 3/7, -3/7, -2/7], [-4/7, 3/7, -3/7, 5/7], [-4/7, 3 /7, 2/7, -2/7], [-4/7, 3/7, 2/7, -1/7], [-4/7, 3/7, 2/7, 5/7], [-4/7, 3/7, 2/7, 6/7], [-4/7, 3/7, 4/7, -3/7], [-4/7, 3/7, 4/7, -2/7], [-4/7, 3/7, 4/7, 5/7], [-\ 4/7, 4/7, -2/7, -1/7], [-4/7, 4/7, -2/7, 6/7], [-4/7, 4/7, -1/7, -5/7], [-4/7, 4/7, -1/7, 2/7], [-4/7, 4/7, 1/7, -6/7], [-4/7, 4/7, 1/7, 1/7], [-4/7, 4/7, 2/7 , -3/7], [-4/7, 4/7, 2/7, 4/7], [-4/7, 4/7, 5/7, -1/7], [-4/7, 4/7, 5/7, 6/7], [-4/7, 4/7, 6/7, -5/7], [-4/7, 4/7, 6/7, 2/7], [-4/7, 5/7, -3/7, -6/7], [-4/7, 5/7, -3/7, -5/7], [-4/7, 5/7, -3/7, 1/7], [-4/7, 5/7, -1/7, -6/7], [-4/7, 5/7, -1/7, -2/7], [-4/7, 5/7, -1/7, 1/7], [-4/7, 5/7, -1/7, 5/7], [-4/7, 5/7, 2/7, -\ 3/7], [-4/7, 5/7, 2/7, 4/7], [-4/7, 5/7, 4/7, -6/7], [-4/7, 5/7, 4/7, -5/7], [-\ 4/7, 5/7, 4/7, 1/7], [-4/7, 5/7, 6/7, -6/7], [-4/7, 5/7, 6/7, -2/7], [-4/7, 5/7 , 6/7, 1/7], [-4/7, 5/7, 6/7, 5/7], [-4/7, 6/7, -3/7, -6/7], [-4/7, 6/7, -3/7, -5/7], [-4/7, 6/7, -3/7, 2/7], [-4/7, 6/7, -2/7, -1/7], [-4/7, 6/7, -2/7, 6/7], [-4/7, 6/7, 1/7, -3/7], [-4/7, 6/7, 1/7, -1/7], [-4/7, 6/7, 1/7, 4/7], [-4/7, 6 /7, 1/7, 6/7], [-4/7, 6/7, 4/7, -6/7], [-4/7, 6/7, 4/7, -5/7], [-4/7, 6/7, 4/7, 2/7], [-4/7, 6/7, 5/7, -1/7], [-4/7, 6/7, 5/7, 6/7], [-3/7, -6/7, -1/7, -6/7], [-3/7, -6/7, -1/7, -4/7], [-3/7, -6/7, -1/7, 1/7], [-3/7, -6/7, -1/7, 3/7], [-3 /7, -6/7, 2/7, -6/7], [-3/7, -6/7, 2/7, 1/7], [-3/7, -6/7, 3/7, -2/7], [-3/7, -\ 6/7, 3/7, -1/7], [-3/7, -6/7, 3/7, 5/7], [-3/7, -6/7, 3/7, 6/7], [-3/7, -6/7, 6 /7, -6/7], [-3/7, -6/7, 6/7, -4/7], [-3/7, -6/7, 6/7, 1/7], [-3/7, -6/7, 6/7, 3 /7], [-3/7, -5/7, -2/7, -4/7], [-3/7, -5/7, -2/7, 3/7], [-3/7, -5/7, 1/7, -1/7] , [-3/7, -5/7, 1/7, 6/7], [-3/7, -5/7, 3/7, -2/7], [-3/7, -5/7, 3/7, -1/7], [-3 /7, -5/7, 3/7, 5/7], [-3/7, -5/7, 3/7, 6/7], [-3/7, -5/7, 5/7, -4/7], [-3/7, -5 /7, 5/7, 3/7], [-3/7, -4/7, -2/7, -4/7], [-3/7, -4/7, -2/7, 3/7], [-3/7, -4/7, -1/7, -1/7], [-3/7, -4/7, -1/7, 6/7], [-3/7, -4/7, 1/7, -2/7], [-3/7, -4/7, 1/7 , 5/7], [-3/7, -4/7, 2/7, -6/7], [-3/7, -4/7, 2/7, 1/7], [-3/7, -4/7, 5/7, -4/7 ], [-3/7, -4/7, 5/7, 3/7], [-3/7, -4/7, 6/7, -1/7], [-3/7, -4/7, 6/7, 6/7], [-3 /7, -3/7, -2/7, -6/7], [-3/7, -3/7, -2/7, -5/7], [-3/7, -3/7, -2/7, 1/7], [-3/7 , -3/7, -2/7, 2/7], [-3/7, -3/7, 3/7, -5/7], [-3/7, -3/7, 3/7, -4/7], [-3/7, -3 /7, 3/7, 2/7], [-3/7, -3/7, 3/7, 3/7], [-3/7, -3/7, 5/7, -6/7], [-3/7, -3/7, 5/ 7, -5/7], [-3/7, -3/7, 5/7, 1/7], [-3/7, -3/7, 5/7, 2/7], [-3/7, -2/7, -1/7, -1 /7], [-3/7, -2/7, -1/7, 6/7], [-3/7, -2/7, 3/7, -5/7], [-3/7, -2/7, 3/7, -4/7], [-3/7, -2/7, 3/7, 2/7], [-3/7, -2/7, 3/7, 3/7], [-3/7, -2/7, 6/7, -1/7], [-3/7, -2/7, 6/7, 6/7], [-3/7, -1/7, 2/7, -4/7], [-3/7, -1/7, 2/7, -2/7], [-3/7, -1/7, 2/7, 3/7], [-3/7, -1/7, 2/7, 5/7], [-3/7, 1/7, -1/7, -6/7], [-3/7, 1/7, -1/7, -\ 4/7], [-3/7, 1/7, -1/7, 1/7], [-3/7, 1/7, -1/7, 3/7], [-3/7, 1/7, 2/7, -6/7], [ -3/7, 1/7, 2/7, 1/7], [-3/7, 1/7, 3/7, -2/7], [-3/7, 1/7, 3/7, -1/7], [-3/7, 1/ 7, 3/7, 5/7], [-3/7, 1/7, 6/7, -6/7], [-3/7, 1/7, 6/7, -4/7], [-3/7, 1/7, 6/7, 1/7], [-3/7, 1/7, 6/7, 3/7], [-3/7, 2/7, -2/7, -4/7], [-3/7, 2/7, -2/7, 3/7], [ -3/7, 2/7, 1/7, -1/7], [-3/7, 2/7, 1/7, 6/7], [-3/7, 2/7, 3/7, -2/7], [-3/7, 2/ 7, 3/7, -1/7], [-3/7, 2/7, 3/7, 6/7], [-3/7, 2/7, 5/7, -4/7], [-3/7, 2/7, 5/7, 3/7], [-3/7, 3/7, -2/7, -4/7], [-3/7, 3/7, -2/7, 3/7], [-3/7, 3/7, -1/7, -1/7], [-3/7, 3/7, -1/7, 6/7], [-3/7, 3/7, 1/7, -2/7], [-3/7, 3/7, 1/7, 5/7], [-3/7, 3 /7, 2/7, -6/7], [-3/7, 3/7, 2/7, 1/7], [-3/7, 3/7, 5/7, -4/7], [-3/7, 3/7, 5/7, 3/7], [-3/7, 3/7, 6/7, -1/7], [-3/7, 3/7, 6/7, 6/7], [-3/7, 4/7, -2/7, -6/7], [ -3/7, 4/7, -2/7, -5/7], [-3/7, 4/7, -2/7, 1/7], [-3/7, 4/7, -2/7, 2/7], [-3/7, 4/7, 3/7, -5/7], [-3/7, 4/7, 3/7, -4/7], [-3/7, 4/7, 3/7, 2/7], [-3/7, 4/7, 5/7 , -6/7], [-3/7, 4/7, 5/7, -5/7], [-3/7, 4/7, 5/7, 1/7], [-3/7, 4/7, 5/7, 2/7], [-3/7, 5/7, -1/7, -1/7], [-3/7, 5/7, -1/7, 6/7], [-3/7, 5/7, 3/7, -5/7], [-3/7, 5/7, 3/7, -4/7], [-3/7, 5/7, 3/7, 3/7], [-3/7, 5/7, 6/7, -1/7], [-3/7, 5/7, 6/7 , 6/7], [-3/7, 6/7, 2/7, -4/7], [-3/7, 6/7, 2/7, -2/7], [-3/7, 6/7, 2/7, 3/7], [-3/7, 6/7, 2/7, 5/7], [-2/7, -6/7, 2/7, -1/7], [-2/7, -6/7, 2/7, 6/7], [-2/7, -6/7, 4/7, -3/7], [-2/7, -6/7, 4/7, 4/7], [-2/7, -5/7, -1/7, -4/7], [-2/7, -5/7 , -1/7, 3/7], [-2/7, -5/7, 1/7, -5/7], [-2/7, -5/7, 1/7, 2/7], [-2/7, -5/7, 3/7 , -6/7], [-2/7, -5/7, 3/7, 1/7], [-2/7, -5/7, 4/7, -3/7], [-2/7, -5/7, 4/7, 4/7 ], [-2/7, -5/7, 6/7, -4/7], [-2/7, -5/7, 6/7, 3/7], [-2/7, -4/7, -1/7, -4/7], [ -2/7, -4/7, -1/7, 3/7], [-2/7, -4/7, 2/7, -6/7], [-2/7, -4/7, 2/7, -3/7], [-2/7 , -4/7, 2/7, 1/7], [-2/7, -4/7, 2/7, 4/7], [-2/7, -4/7, 4/7, -5/7], [-2/7, -4/7 , 4/7, -4/7], [-2/7, -4/7, 4/7, 2/7], [-2/7, -4/7, 4/7, 3/7], [-2/7, -4/7, 6/7, -4/7], [-2/7, -4/7, 6/7, 3/7], [-2/7, -3/7, -1/7, -6/7], [-2/7, -3/7, -1/7, -5/ 7], [-2/7, -3/7, -1/7, 1/7], [-2/7, -3/7, -1/7, 2/7], [-2/7, -3/7, 3/7, -6/7], [-2/7, -3/7, 3/7, 1/7], [-2/7, -3/7, 6/7, -6/7], [-2/7, -3/7, 6/7, -5/7], [-2/7 , -3/7, 6/7, 1/7], [-2/7, -3/7, 6/7, 2/7], [-2/7, -2/7, 1/7, -4/7], [-2/7, -2/7 , 1/7, -1/7], [-2/7, -2/7, 1/7, 3/7], [-2/7, -2/7, 1/7, 6/7], [-2/7, -2/7, 2/7, -5/7], [-2/7, -2/7, 2/7, -1/7], [-2/7, -2/7, 2/7, 2/7], [-2/7, -2/7, 2/7, 6/7], [-2/7, -1/7, 1/7, -5/7], [-2/7, -1/7, 1/7, 2/7], [-2/7, -1/7, 2/7, -6/7], [-2/7 , -1/7, 2/7, 1/7], [-2/7, -1/7, 3/7, -3/7], [-2/7, -1/7, 3/7, -1/7], [-2/7, -1/ 7, 3/7, 4/7], [-2/7, -1/7, 3/7, 6/7], [-2/7, 1/7, 2/7, -1/7], [-2/7, 1/7, 4/7, -3/7], [-2/7, 1/7, 4/7, 4/7], [-2/7, 2/7, -1/7, -4/7], [-2/7, 2/7, -1/7, 3/7], [-2/7, 2/7, 1/7, -5/7], [-2/7, 2/7, 1/7, 2/7], [-2/7, 2/7, 3/7, -6/7], [-2/7, 2 /7, 3/7, 1/7], [-2/7, 2/7, 4/7, -3/7], [-2/7, 2/7, 4/7, 4/7], [-2/7, 2/7, 6/7, -4/7], [-2/7, 2/7, 6/7, 3/7], [-2/7, 3/7, -1/7, -4/7], [-2/7, 3/7, -1/7, 3/7], [-2/7, 3/7, 2/7, -6/7], [-2/7, 3/7, 2/7, -3/7], [-2/7, 3/7, 2/7, 1/7], [-2/7, 3 /7, 4/7, -5/7], [-2/7, 3/7, 4/7, -4/7], [-2/7, 3/7, 4/7, 2/7], [-2/7, 3/7, 4/7, 3/7], [-2/7, 3/7, 6/7, -4/7], [-2/7, 3/7, 6/7, 3/7], [-2/7, 4/7, -1/7, -6/7], [ -2/7, 4/7, -1/7, -5/7], [-2/7, 4/7, -1/7, 1/7], [-2/7, 4/7, -1/7, 2/7], [-2/7, 4/7, 3/7, -6/7], [-2/7, 4/7, 3/7, 1/7], [-2/7, 4/7, 6/7, -6/7], [-2/7, 4/7, 6/7 , -5/7], [-2/7, 4/7, 6/7, 1/7], [-2/7, 4/7, 6/7, 2/7], [-2/7, 5/7, 1/7, -4/7], [-2/7, 5/7, 1/7, -1/7], [-2/7, 5/7, 1/7, 3/7], [-2/7, 5/7, 1/7, 6/7], [-2/7, 5/ 7, 2/7, -5/7], [-2/7, 5/7, 2/7, -1/7], [-2/7, 5/7, 2/7, 6/7], [-2/7, 6/7, 1/7, -5/7], [-2/7, 6/7, 1/7, 2/7], [-2/7, 6/7, 2/7, -6/7], [-2/7, 6/7, 3/7, -3/7], [ -2/7, 6/7, 3/7, -1/7], [-2/7, 6/7, 3/7, 4/7], [-2/7, 6/7, 3/7, 6/7], [-1/7, -6/ 7, 2/7, -5/7], [-1/7, -6/7, 2/7, 2/7], [-1/7, -6/7, 3/7, -2/7], [-1/7, -6/7, 3/ 7, 5/7], [-1/7, -6/7, 4/7, -6/7], [-1/7, -6/7, 4/7, 1/7], [-1/7, -6/7, 5/7, -3/ 7], [-1/7, -6/7, 5/7, 4/7], [-1/7, -5/7, 3/7, -6/7], [-1/7, -5/7, 3/7, -3/7], [ -1/7, -5/7, 3/7, 1/7], [-1/7, -5/7, 3/7, 4/7], [-1/7, -5/7, 5/7, -3/7], [-1/7, -5/7, 5/7, 4/7], [-1/7, -4/7, 1/7, -5/7], [-1/7, -4/7, 1/7, -3/7], [-1/7, -4/7, 1/7, 2/7], [-1/7, -4/7, 1/7, 4/7], [-1/7, -4/7, 4/7, -6/7], [-1/7, -4/7, 4/7, 1 /7], [-1/7, -4/7, 5/7, -5/7], [-1/7, -4/7, 5/7, -4/7], [-1/7, -4/7, 5/7, 2/7], [-1/7, -4/7, 5/7, 3/7], [-1/7, -3/7, 1/7, -6/7], [-1/7, -3/7, 1/7, -4/7], [-1/7 , -3/7, 1/7, 1/7], [-1/7, -3/7, 1/7, 3/7], [-1/7, -3/7, 2/7, 2/7], [-1/7, -2/7, 1/7, -5/7], [-1/7, -2/7, 1/7, -3/7], [-1/7, -2/7, 1/7, 2/7], [-1/7, -2/7, 1/7, 4/7], [-1/7, -2/7, 2/7, -2/7], [-1/7, -2/7, 2/7, 5/7], [-1/7, -2/7, 3/7, -2/7], [-1/7, -2/7, 3/7, 5/7], [-1/7, -1/7, 1/7, -6/7], [-1/7, -1/7, 1/7, -4/7], [-1/7 , -1/7, 1/7, 1/7], [-1/7, -1/7, 1/7, 3/7], [-1/7, -1/7, 4/7, -4/7], [-1/7, -1/7 , 4/7, -2/7], [-1/7, -1/7, 4/7, 3/7], [-1/7, -1/7, 4/7, 5/7], [-1/7, 1/7, 2/7, -5/7], [-1/7, 1/7, 2/7, 2/7], [-1/7, 1/7, 3/7, -2/7], [-1/7, 1/7, 3/7, 5/7], [-\ 1/7, 1/7, 4/7, -6/7], [-1/7, 1/7, 4/7, 1/7], [-1/7, 1/7, 5/7, -3/7], [-1/7, 1/7 , 5/7, 4/7], [-1/7, 2/7, 3/7, -6/7], [-1/7, 2/7, 3/7, -3/7], [-1/7, 2/7, 3/7, 1 /7], [-1/7, 2/7, 3/7, 4/7], [-1/7, 2/7, 5/7, -3/7], [-1/7, 2/7, 5/7, 4/7], [-1/ 7, 3/7, 1/7, -5/7], [-1/7, 3/7, 1/7, -3/7], [-1/7, 3/7, 1/7, 2/7], [-1/7, 3/7, 4/7, -6/7], [-1/7, 3/7, 4/7, 1/7], [-1/7, 3/7, 5/7, -5/7], [-1/7, 3/7, 5/7, -4/ 7], [-1/7, 3/7, 5/7, 2/7], [-1/7, 3/7, 5/7, 3/7], [-1/7, 4/7, 1/7, -6/7], [-1/7 , 4/7, 1/7, -4/7], [-1/7, 4/7, 1/7, 1/7], [-1/7, 5/7, 1/7, -5/7], [-1/7, 5/7, 1 /7, -3/7], [-1/7, 5/7, 1/7, 4/7], [-1/7, 5/7, 2/7, -6/7], [-1/7, 5/7, 2/7, -2/7 ], [-1/7, 5/7, 2/7, 5/7], [-1/7, 5/7, 3/7, -2/7], [-1/7, 5/7, 3/7, 5/7], [-1/7, 6/7, 1/7, -6/7], [-1/7, 6/7, 1/7, -4/7], [-1/7, 6/7, 1/7, 3/7], [-1/7, 6/7, 4/7 , -4/7], [-1/7, 6/7, 4/7, -2/7], [-1/7, 6/7, 4/7, 3/7], [-1/7, 6/7, 4/7, 5/7], [1/7, -6/7, 3/7, -5/7], [1/7, -6/7, 3/7, -3/7], [1/7, -6/7, 3/7, 2/7], [1/7, -6 /7, 3/7, 4/7], [1/7, -6/7, 6/7, -3/7], [1/7, -6/7, 6/7, -1/7], [1/7, -6/7, 6/7, 4/7], [1/7, -6/7, 6/7, 6/7], [1/7, -5/7, 5/7, -5/7], [1/7, -5/7, 5/7, -1/7], [1 /7, -5/7, 5/7, 2/7], [1/7, -5/7, 5/7, 6/7], [1/7, -5/7, 6/7, -4/7], [1/7, -5/7, 6/7, -2/7], [1/7, -5/7, 6/7, 3/7], [1/7, -5/7, 6/7, 5/7], [1/7, -4/7, 5/7, -2/7 ], [1/7, -4/7, 5/7, 5/7], [1/7, -4/7, 6/7, -3/7], [1/7, -4/7, 6/7, -1/7], [1/7, -4/7, 6/7, 4/7], [1/7, -4/7, 6/7, 6/7], [1/7, -3/7, 2/7, -3/7], [1/7, -3/7, 2/7 , -2/7], [1/7, -3/7, 2/7, 4/7], [1/7, -3/7, 2/7, 5/7], [1/7, -3/7, 3/7, -1/7], [1/7, -3/7, 3/7, 6/7], [1/7, -3/7, 6/7, -4/7], [1/7, -3/7, 6/7, -2/7], [1/7, -3 /7, 6/7, 3/7], [1/7, -3/7, 6/7, 5/7], [1/7, -2/7, 2/7, -4/7], [1/7, -2/7, 2/7, 3/7], [1/7, -2/7, 4/7, -4/7], [1/7, -2/7, 4/7, 3/7], [1/7, -1/7, 2/7, -4/7], [1 /7, -1/7, 2/7, 3/7], [1/7, -1/7, 3/7, -1/7], [1/7, -1/7, 3/7, 6/7], [1/7, -1/7, 4/7, -5/7], [1/7, -1/7, 4/7, 2/7], [1/7, -1/7, 5/7, -2/7], [1/7, -1/7, 5/7, 5/7 ], [1/7, 1/7, 3/7, -5/7], [1/7, 1/7, 3/7, -3/7], [1/7, 1/7, 3/7, 2/7], [1/7, 1/ 7, 3/7, 4/7], [1/7, 1/7, 6/7, -3/7], [1/7, 1/7, 6/7, -1/7], [1/7, 1/7, 6/7, 4/7 ], [1/7, 2/7, 5/7, -5/7], [1/7, 2/7, 5/7, -1/7], [1/7, 2/7, 5/7, 2/7], [1/7, 2/ 7, 5/7, 6/7], [1/7, 2/7, 6/7, -4/7], [1/7, 2/7, 6/7, -2/7], [1/7, 2/7, 6/7, 3/7 ], [1/7, 3/7, 5/7, -2/7], [1/7, 3/7, 5/7, 5/7], [1/7, 3/7, 6/7, -3/7], [1/7, 3/ 7, 6/7, -1/7], [1/7, 3/7, 6/7, 6/7], [1/7, 4/7, 2/7, -3/7], [1/7, 4/7, 2/7, -2/ 7], [1/7, 4/7, 2/7, 4/7], [1/7, 4/7, 2/7, 5/7], [1/7, 4/7, 3/7, -1/7], [1/7, 4/ 7, 3/7, 6/7], [1/7, 4/7, 6/7, -4/7], [1/7, 4/7, 6/7, -2/7], [1/7, 4/7, 6/7, 5/7 ], [1/7, 5/7, 2/7, -4/7], [1/7, 5/7, 2/7, 3/7], [1/7, 5/7, 4/7, -4/7], [1/7, 5/ 7, 4/7, 3/7], [1/7, 6/7, 2/7, -4/7], [1/7, 6/7, 2/7, 3/7], [1/7, 6/7, 3/7, -1/7 ], [1/7, 6/7, 3/7, 6/7], [1/7, 6/7, 4/7, -5/7], [1/7, 6/7, 4/7, 2/7], [1/7, 6/7 , 5/7, -2/7], [1/7, 6/7, 5/7, 5/7], [2/7, -6/7, 4/7, -6/7], [2/7, -6/7, 4/7, -4 /7], [2/7, -6/7, 4/7, 1/7], [2/7, -6/7, 4/7, 3/7], [2/7, -6/7, 5/7, -4/7], [2/7 , -6/7, 5/7, -1/7], [2/7, -6/7, 5/7, 3/7], [2/7, -6/7, 5/7, 6/7], [2/7, -5/7, 5 /7, -2/7], [2/7, -5/7, 5/7, 5/7], [2/7, -5/7, 6/7, -6/7], [2/7, -5/7, 6/7, 1/7] , [2/7, -4/7, 4/7, -1/7], [2/7, -4/7, 4/7, 6/7], [2/7, -3/7, 3/7, -3/7], [2/7, -3/7, 3/7, -2/7], [2/7, -3/7, 3/7, 4/7], [2/7, -3/7, 3/7, 5/7], [2/7, -3/7, 5/7 , -4/7], [2/7, -3/7, 5/7, -1/7], [2/7, -3/7, 5/7, 3/7], [2/7, -2/7, 3/7, -4/7], [2/7, -2/7, 3/7, 3/7], [2/7, -2/7, 4/7, -1/7], [2/7, -2/7, 4/7, 6/7], [2/7, -2/ 7, 6/7, -2/7], [2/7, -2/7, 6/7, 5/7], [2/7, -1/7, 3/7, -4/7], [2/7, -1/7, 3/7, 3/7], [2/7, -1/7, 5/7, -6/7], [2/7, -1/7, 5/7, -2/7], [2/7, -1/7, 5/7, 1/7], [2 /7, -1/7, 5/7, 5/7], [2/7, 1/7, 4/7, -6/7], [2/7, 1/7, 4/7, -4/7], [2/7, 1/7, 4 /7, 1/7], [2/7, 1/7, 4/7, 3/7], [2/7, 1/7, 5/7, -4/7], [2/7, 1/7, 5/7, -1/7], [ 2/7, 1/7, 5/7, 3/7], [2/7, 2/7, 5/7, -6/7], [2/7, 2/7, 5/7, -2/7], [2/7, 2/7, 6 /7, -6/7], [2/7, 2/7, 6/7, 1/7], [2/7, 3/7, 4/7, -1/7], [2/7, 3/7, 4/7, 6/7], [ 2/7, 4/7, 3/7, -3/7], [2/7, 4/7, 3/7, -2/7], [2/7, 4/7, 3/7, 4/7], [2/7, 4/7, 3 /7, 5/7], [2/7, 4/7, 5/7, -4/7], [2/7, 5/7, 3/7, -4/7], [2/7, 5/7, 3/7, 3/7], [ 2/7, 5/7, 4/7, -1/7], [2/7, 5/7, 4/7, 6/7], [2/7, 5/7, 6/7, -2/7], [2/7, 5/7, 6 /7, 5/7], [2/7, 6/7, 3/7, -4/7], [2/7, 6/7, 3/7, 3/7], [2/7, 6/7, 5/7, -6/7], [ 2/7, 6/7, 5/7, -2/7], [2/7, 6/7, 5/7, 5/7], [3/7, -6/7, 5/7, -5/7], [3/7, -6/7, 5/7, -3/7], [3/7, -6/7, 5/7, 2/7], [3/7, -6/7, 5/7, 4/7], [3/7, -6/7, 6/7, -5/7 ], [3/7, -6/7, 6/7, 2/7], [3/7, -5/7, 4/7, -3/7], [3/7, -5/7, 4/7, -2/7], [3/7, -5/7, 4/7, 4/7], [3/7, -5/7, 4/7, 5/7], [3/7, -4/7, 4/7, -3/7], [3/7, -4/7, 4/7 , -2/7], [3/7, -4/7, 4/7, 4/7], [3/7, -4/7, 4/7, 5/7], [3/7, -3/7, 5/7, -1/7], [3/7, -3/7, 5/7, 6/7], [3/7, -3/7, 6/7, -5/7], [3/7, -3/7, 6/7, 2/7], [3/7, -2/ 7, 4/7, -6/7], [3/7, -2/7, 4/7, -5/7], [3/7, -2/7, 4/7, 1/7], [3/7, -2/7, 4/7, 2/7], [3/7, -2/7, 6/7, -6/7], [3/7, -2/7, 6/7, -2/7], [3/7, -2/7, 6/7, 1/7], [3 /7, -2/7, 6/7, 5/7], [3/7, -1/7, 4/7, -6/7], [3/7, -1/7, 4/7, -5/7], [3/7, -1/7 , 4/7, 1/7], [3/7, -1/7, 4/7, 2/7], [3/7, -1/7, 5/7, -1/7], [3/7, -1/7, 5/7, 6/ 7], [3/7, 1/7, 5/7, -5/7], [3/7, 1/7, 5/7, -3/7], [3/7, 1/7, 5/7, 2/7], [3/7, 1 /7, 5/7, 4/7], [3/7, 1/7, 6/7, -5/7], [3/7, 1/7, 6/7, 2/7], [3/7, 2/7, 4/7, -3/ 7], [3/7, 2/7, 4/7, -2/7], [3/7, 2/7, 4/7, 4/7], [3/7, 3/7, 4/7, -3/7], [3/7, 3 /7, 4/7, -2/7], [3/7, 3/7, 4/7, 5/7], [3/7, 4/7, 5/7, -1/7], [3/7, 4/7, 5/7, 6/ 7], [3/7, 4/7, 6/7, -5/7], [3/7, 4/7, 6/7, 2/7], [3/7, 5/7, 4/7, -6/7], [3/7, 5 /7, 4/7, -5/7], [3/7, 5/7, 4/7, 1/7], [3/7, 5/7, 6/7, -6/7], [3/7, 5/7, 6/7, -2 /7], [3/7, 5/7, 6/7, 1/7], [3/7, 5/7, 6/7, 5/7], [3/7, 6/7, 4/7, -6/7], [3/7, 6 /7, 4/7, -5/7], [3/7, 6/7, 4/7, 2/7], [3/7, 6/7, 5/7, -1/7], [3/7, 6/7, 5/7, 6/ 7], [4/7, -6/7, 6/7, -6/7], [4/7, -6/7, 6/7, -4/7], [4/7, -6/7, 6/7, 1/7], [4/7 , -6/7, 6/7, 3/7], [4/7, -5/7, 5/7, -4/7], [4/7, -5/7, 5/7, 3/7], [4/7, -4/7, 5 /7, -4/7], [4/7, -4/7, 5/7, 3/7], [4/7, -4/7, 6/7, -1/7], [4/7, -4/7, 6/7, 6/7] , [4/7, -3/7, 5/7, -6/7], [4/7, -3/7, 5/7, -5/7], [4/7, -3/7, 5/7, 1/7], [4/7, -3/7, 5/7, 2/7], [4/7, -2/7, 6/7, -1/7], [4/7, -2/7, 6/7, 6/7], [4/7, 1/7, 6/7, -6/7], [4/7, 1/7, 6/7, -4/7], [4/7, 1/7, 6/7, 1/7], [4/7, 1/7, 6/7, 3/7], [4/7, 2/7, 5/7, -4/7], [4/7, 2/7, 5/7, 3/7], [4/7, 3/7, 5/7, -4/7], [4/7, 3/7, 5/7, 3 /7], [4/7, 3/7, 6/7, -1/7], [4/7, 3/7, 6/7, 6/7], [4/7, 4/7, 5/7, -6/7], [4/7, 4/7, 5/7, -5/7], [4/7, 4/7, 5/7, 1/7], [4/7, 4/7, 5/7, 2/7], [4/7, 5/7, 6/7, -1 /7], [4/7, 5/7, 6/7, 6/7], [5/7, -5/7, 6/7, -4/7], [5/7, -5/7, 6/7, 3/7], [5/7, -4/7, 6/7, -4/7], [5/7, -4/7, 6/7, 3/7], [5/7, -3/7, 6/7, -6/7], [5/7, -3/7, 6/ 7, -5/7], [5/7, -3/7, 6/7, 1/7], [5/7, -3/7, 6/7, 2/7], [5/7, 2/7, 6/7, -4/7], [5/7, 2/7, 6/7, 3/7], [5/7, 3/7, 6/7, -4/7], [5/7, 3/7, 6/7, 3/7], [5/7, 4/7, 6 /7, -6/7], [5/7, 4/7, 6/7, -5/7], [5/7, 4/7, 6/7, 1/7], [5/7, 4/7, 6/7, 2/7]] ]: end: AlmostHopefuls1G:=proc():[[0, 0, 1/3, 0, 1/2], [1/3, 0, 0, 0, 1/2], [2/3, 2/3, 0, 1/2, 1/2], [1/3, 1/3, 0, 1/2, 1/2]]:end: Hopefuls1G:=proc(): [ [2/3, 0, 0, 0, 1/2], [0, 0, 0, 0, 1/2] #,[1/2, 0, 1/2, 0, 1/2] ]: end: Hopefuls1:=proc(): [[[0, 0, 0, 0], .160376328282995365630650037915397621728928601629473517662941887093415487440248087647248677678121518, 1/6*Pi^2, 1/6*Pi^2], [[1/2, 0, 0, 0], .2154464\ 06424598151262168999617658868512485219126761727588124913699012907249772226740948093718322976, arcsinh(15/8), 2*ln(2)], [[3/2, 0, 0, 0], .166836981627750005879354379\ 653292869850893026629198799852660714262138415414482514946546100577966226, 2/3-2/3*ln(2), (-4/3+4/3*ln(2))*undefined], [[5/2, 0, 0, 0], .1231202465221477609631440042\ 35422251425266242442746382143772502329776045148689719343663790627405749, 8/5-6/5*ln(2), (-16/15+4/5*ln(2))*undefined], [[5/3, 5/3, 0, 0], .1089758980846213061309503\ 58824770117731793593303480987855061282057214950716954422285424878997274086, 6.28931910992790499083170956069901802519769274732983680579783890954337245357689543715777\ 4983496884236], [[2/3, 5/3, 0, 0], .79427820438207856136462885505148001158517349587376950111071029851387999533856968645044703607043207e-1, 8.12759872846843570118815\ 6515284311464568132496185481151139769870776246362252707767368249976424120338], [[4/3, 4/3, 0, 0], .13425814677987284161587612658217116568237660245803757559430401384\ 1294598691826664978175406982941537, -3.392249205292772313242597822052694665355082810115925719462356169235153976407942354605156235265075211], [[2/3, 2/3, 0, 0], .\ 77555472942058299294890245772734397686394140727445794410953968480254870078278865225780393768078929e-1, 2.40689968211710892529703912882107786614203312404637028778494\ 2467694061590563176941842062494106030084], [[4/3, 1/3, 0, 0], .80292413538282695578209820858592042607139681906615304682354872731858098975614075589518997038285761e-1 , -.1568996821171089252970391288210778661420331240463702877849424676940615905631769418420624941060300844], [[1/3, 1/3, 0, 0], .1145078921418362632389713583308245678\ 91283265654490297402507477702947791834722240260568005653457960, 1/3*Pi*3^(1/2)], [[2/3, 2/3, 1/2, 0], .\ 8534813295373098656678565432808812260389557801171205987199801353840375831777527247459289326419961e-2, 1.778880661310756710839363682262016180191100844089420639623266\ 647525728758775766255861041472749498289], [[1/3, 2/3, 1/2, 0], .62063859138631951918830664834530216548277442892012316711029498246954617281970843278608631097812307e-\ 1, 2.103273157988181391762528618575441203194533308135979144272990980614427148972704944106278399727537177, 1/6*Pi^(3/2)*(I*3^(1/2)-1)/GAMMA(2/3)/GAMMA(5/6)*3^(1/2)], [[2/3, 1/3, 1/2, 0], .8512659681647715474312113899794985919242782480448555885110711696075396491135209415458676916925656e-2, 1.29355477961489526747675751256560581882\ 8929257420200788177626770763033747278022225220322143942310013, -1/4/Pi^(1/2)*(3*I+3^(1/2))*GAMMA(2/3)*GAMMA(5/6)*3^(1/2)], [[1/3, 1/3, 1/2, 0], .\ 48012102379455875774226363652309251068540896340614084544482158212964711829988469139773884354234550e-1, 1.47458599237119248035285239560458739592183828655305837044573\ 7770225992212437276431256560550559864208], [[4/3, 1/3, 1/2, 0], .18680612933934640881521627991766476906237971272327613170999879798523448383836634147866754275116701e\ -1, .3050828015257615039294295208790825208156323426893883259108524459548015575125447137486878898880271584, 0], [[4/3, 4/3, 1/2, 0], .\ 31336975241847688066933897563300305132550466500373672720124119657761889067955042565983042423133728e-1, -.96610509732991736812349833846160558857264340029357042965600\ 82195790972743530467509397961926959524728, 0], [[1/3, 4/3, 1/2, 0], .\ 35168026675768535702082519401691662975126384606441057926017505154838115268995029776632386043495126e-1, -2.2372929961855962401764261978022936979609191432765291852228\ 68885112996106218638215628280275279932104, 0], [[2/3, 5/3, 1/2, 0], .\ 6679648097534732947244127066457732958062515685180661814001618112624338974324666003029695655969177e-2, 3.697201653276891777098409205655040450477752110223551599058166\ 618814321896939415639652603681873745722], [[5/3, 5/3, 1/2, 0], .8450134528211736716720029799132886149040764182330178136736577944220389780519724660353963406536421e-2 , 3.333515584717557824863035804443246068232519515175647684974273771925538633309540859727045750043657353], [[2/3, 2/3, 3/2, 0], .\ 45990725461055595377622290656752554054821245125554968054987075854175574220814657266791051981828482e-1, -.22111933868924328916063631773798381980889915591057936037673\ 33524742712412242337441389585272505017113, 0], [[1/3, 2/3, 3/2, 0], .\ 18870440581602688763698192575873349249798362219652008617619083406016692194631613644919279551255572e-1, -.70109105266272713058750953952514706773151110271199304809099\ 69935381423829909016480354261332425123924, 0], [[5/3, 2/3, 3/2, 0], .\ 16540650478429310245595015565837977054287130735245043381363016449519786076949793719899994098430361e-1, -2.5577613226215134216787273645240323603822016881788412792465\ 33295051457517551532511722082945498996577, 0], [[2/3, 1/3, 3/2, 0], .\ 11523429780165650732046049820208170280048644329061030500497508618642172149798877315665719267672350e-1, .431184926538298422492252504188535272942976419140066929392542\ 2569210112490926740750734407146474366711, 0], [[1/3, 1/3, 3/2, 0], .\ 54733959194415774208096046415347947740989586187176376185306428594787540862459911769197136008739405e-1, .105082801525761503929429520879082520815632342689388325910852\ 4459548015575125447137486878898880271584, 0], [[1/4, 3/4, 3/2, 0], .\ 6174857123506901740155162188103229385598092139607246883164926147559532209261619649834527891352606e-2, -1.31102877714605990523241979494555970684137747571581158140841\ 0851900395293535207125115147766480714547, 0], [[4/3, 4/3, 3/2, 0], .\ 57080763330935117519183367972079316473647113109225680664109708869084027444133087847864104691324432e-1, 2.11864649809279812008821309890114684898045957163826459261143\ 4442556498053109319107814140137639966052, 0], [[1/3, 4/3, 3/2, 0], .\ 34275055268555036020870920918514230647635686698917094049688031452955719945886036230260969748758443e-1, 1.76270700381440375982357380219770630203908085672347081477713\ 1114887003893781361784371719724720067896, 0], [[5/3, 5/3, 3/2, 0], .\ 21759061056958017821726757242898101766801345014922488002063944522713901155567698900776251265988309e-1, -.84860082663844588854920460282752022523887605511177579952908\ 33094071609484697078198263018409368728609], [[2/3, 2/3, 5/2, 0], .14050745296496346514632849177894226050585170283278969403347674682346832099385731844785224576001215\ e-1, -.7595414400483784767727921094385367567333553340940986293787143267305812311947865945834825583939322384, 0], [[1/3, 2/3, 5/2, 0], .\ 12178173924175540179499094164125184835472752517283072929116754854283575503928909719683401277717602e-1, -1.6358791228796966380375222588920098247068592396613171122123\ 26318255665560312103845415994310899195582, 0], [[5/3, 2/3, 5/2, 0], .\ 56636174555062574158713747846282923813256178257386925996443707453446303764852838939142798841732059e-1, -.32671603213545973496381790642790291885339493546347616226040\ 01148456274473454024648337511635030102676, 0], [[1/3, 1/3, 5/2, 0], .\ 19707640313118494251578220072897380940583583804075211535369098479962831781699489252835565318632870e-1, .382430802912817416592547267132793903375298108770650440375263\ 7604591666097966762717020405170589609388, 0], [[4/3, 1/3, 5/2, 0], .\ 69946056723345908140947640928532606751140544878731880027597294663796961111599788701709552108372052e-1, .684751595422715488211711437362752437553102971931835022267442\ 6621355953274623658587539363303359185248, 0], [[4/3, 4/3, 5/2, 0], .\ 65367811334792290037305298408907280761189255679704928025861618518240588395834638782133374259129591e-1, 3.64406050572160563973536070329655945305862128508520622216569\ 6672330505840672042676557579587080101844, 0], [[1/3, 4/3, 5/2, 0], .\ 38204073319455351399453963321802274048608434070910337416235959140843481279430626723926100308021977e-1, 6.60336941602049579125900996923036646856413959823857742206395\ 0682525416353881719494361222843824285163, 0], [[2/3, 5/3, 5/2, 0], .\ 25867528860838575676510557352070258583606873440621761696823001876370090741634096234339620150033897e-1, 4.90839504016932466870477238303487864856674366932934520282550\ 0143557034309181753081042188954378762835], [[1/3, 0, 5/3, 0], .64102958178967597786497191815391791080609952668713253490321907401019356059545234156874039416987197e-1 , -.1045997880780726168646927525473852440946887493642468585232949784627077270421179612280416627373533896, undefined], [[1/2, 1/2, 5/3, 0], .\ 52122665489671418843991262359262154823048120605590975603982469306691909746901768423497191156444029e-1, -.70109105266272713058750953952514706773151110271199304809099\ 69935381423829909016480354261332425123924, 0], [[2/3, 0, 4/3, 0], .\ 77440410652469971117584683804280108413696392053447793078410426809700374570167977158676255031614567e-1, .802299894039036308432346376273692622047344374682123429261647\ 4892313538635210589806140208313686766948, undefined], [[1/2, 1/2, 4/3, 0], .\ 12856811824821736978725300168073003933869095642604059788924795180518596409583120933356246521283485e-1, .431184926538298422492252504188535272942976419140066929392542\ 2569210112490926740750734407146474366711, 0], [[1/6, 1/2, 4/3, 0], .\ 12984609452726757122041483674445629629511706008452306237888465232560736585804960363983501094504379e-1, .254235667938134586607857934065902100679693618907823604925710\ 3716290012979271205947905732415733559653, 0], [[1/6, 5/2, 4/3, 0], .\ 65043690264544996479894720895647503341740418256130637457473802943127353269191373420097568102244741e-1, .809791223493690142163413489621457656235249174463379160481265\ 9271845568534826761503461287971289115209], [[1/6, 3/2, 4/3, 0], .35518757216316468304243496914113076327135737713086554390358414710217948261033626829080070764598143e\ -1, 1.175138002542935839882382534798470868026053904482313876518087409924669262520907856247813149813378597], [[1/3, 0, 2/3, 0], .114278625461300786643597068627770913\ 945086731959330099720885746739255139009680041134955153344236286, 2/9*Pi*3^(1/2), 2/9*Pi*3^(1/2)], [[1/2, 1/2, 2/3, 0], .\ 62019395540823614173051823407943690646092589431996281485773318842507493943248709915281940163956735e-1, 1.40218210532545426117501907905029413546302220542398609618199\ 3987076284765981803296070852266485024785, 2/9*Pi^(3/2)*3^(1/2)/GAMMA(2/3)/GAMMA(5/6)], [[5/6, 1/2, 2/3, 0], .\ 8131019265800217346393011915162586052748491018350714252085301640430742944386124181481740744537750e-2, 1.185920440873837807226242454841344120127400562726280426415511\ 098350485839183844170574027648499665526], [[5/6, 5/2, 2/3, 0], .39922157926305418069715192242242940513709593592828940505256517963405749704301303108340999519486807e-\ 1, 1.909245546629038962510050581547804744762945851260145510483222190320659042404054870879513565693608259], [[5/6, 3/2, 2/3, 0], .\ 14705939933339902485200491031644567373103480636573951587543933589664191086721972610694895422988836e-1, 1.70517421508100894778581824301602157358813445878589418616435\ 5530034305011701021674481388630332664385], [[1/2, 1/2, 1/3, 0], .41554337044461010679739525540818002650076063684313827581877601612321049046547493046060440602080968e\ -1, 1.724739706153193689969010016754141091771905676560267717570169027684044996370696300293762858589746685, 2*GAMMA(2/3)/Pi^(1/2)*GAMMA(5/6)], [[1/6, 1/2, 1/3, 0], .\ 48026111905934226065219208445225199690060840594318543845575064155998637573396681555726998016093023e-1, 1.96611465649492330713713652747278319456245104873741116059431\ 7026967989616583035241675414067413152277], [[1/6, 5/2, 1/3, 0], .83993645601174156781426604438713258754019661066659679426532950124870895615547740214884518990793780e\ -1, -7.043340424100957725385384166056677500236013208585933432299745165047090344277181594461939245937415666], [[1/6, 1/6, 0, 1/2], .\ 48167739163119469339031621660296642063957659582516942459984651114970862753073093266953863081352579e-1, 2.94917198474238496070570479120917479184367657310611674089147\ 5540451984424874552862513121101119728416], [[2/3, 1/3, 5/6, 1/2], .\ 50650410384634165913813072620628502426328782155099083611022322798493659258463300786019388908401531e-1, 2^(2/3)], [[5/6, 1/6, 2/3, 1/2], .\ 59791640643195334882500340674373891710603106494581233289572102360145176044051368853821838502221090e-1, 2^(1/3)], [[1/3, 2/3, 1/2, 1/2], .\ 51915093490223523791984400933061514770956195653999304009759326094885709960576836285284594515740445e-1, -1.4263482556253197100152581984233159695007415004810879114376\ 68717272602319082043789415517143646941323, (I*3^(1/2)-1)*infinity/Pi^2*3^(1/2)], [[1/6, 2/3, 1/2, 1/2], .\ 26006449579947277885757863886777342782642432883082573324061397938035111196346361489658754249917948e-1, -3^(1/2)], [[2/3, 1/3, 1/2, 1/2], .\ 69878518975659469241755644340510470805934107758408759496800178894892090834502989609302500785755853e-1, 2.31919053392785673153998410314004176389033052687956571052621\ 0119495947514410572517316170502102292142], [[5/6, 1/3, 1/2, 1/2], .\ 26006449579947277885757863886777342782642432883082573324061397938035111196346361489658754249917948e-1, 3^(1/2)], [[3/4, 1/4, 1/2, 1/2], .\ 5207034476478486165140302112069151212910308695626072119106142598601078123459199688601084476616982e-2, 1.669253683348146372562859465598093617987986026980694004899654\ 740207363985419052823739382320702550648], [[1/3, 1/6, 1/2, 1/2], .62063859138631951918830664834530216548277442892012316711029498246954617281970843278608631097812307\ e-1, 2.103273157988181391762528618575441203194533308135979144272990980614427148972704944106278399727537177], [[1/6, 1/6, 1/2, 1/2], .\ 23762874489777959057035951948795586972510978455671573772728517399651936832572860042934271538892650e-1, 4/3*3^(1/2)], [[5/6, 5/6, 1/2, 1/2], .\ 36497862071004723865798078829913646920949847208570318711671030560108254859539764740033174962323785e-1, 1/6*3^(1/2)], [[1/6, 5/6, 1/3, 1/2], .\ 53863899283678419523976673712787636772988938469043961199050776090794003952860865844701224400333750e-1, -1/2*2^(2/3), (I*3^(1/2)+1)*infinity/Pi/Beta(1/2,2/3)], [[1/3 , 2/3, 1/6, 1/2], .56527740060893324860237006911898845841745249978257833146178990549234806444618792156037738363896348e-1, -2*2^(1/3), (I*3^(1/2)-1)*infinity/Pi*3^(1 /2)/Beta(1/2,5/6)], [[1/4, 3/4, 5/4, 1/2], .48985327039254602214521331767407922018675753425168589334058065474045351665391660847591827448034175e-1, 2*2^(1/2), undefined*I], [[3/4, 1/4, 3/4, 1/2], .69782515043065317842209831020537345636906349005988216038929698467903786864473098719380658030314078e-1, 2^(1/2)], [[1/4, 3/4, 1 /4, 1/2], .69782515043065317842209831020537345636906349005988216038929698467903786864473098719380658030314078e-1, -2^(1/2), infinity*I/Pi*2^(1/2)/Beta(1/2,3/4)], [[ 1/6, 5/6, 4/3, 1/2], .17986191042409422765736956575772920959126937148353818787145975263140775119156259100676227830862672e-1, 2*2^(2/3), undefined], [[5/6, 1/6, 5/3, 1/2], .7707391324429871957806534470220359000151417737210283924146244252809373264250628961083334641717519e-2, 2*2^(1/3), 0], [[2/3, 1/3, 5/6, 3/2], .\ 14172569689766397280847608448965884854255356544375581125388716245359516824578408358530776671849051e-1, 6/5*2^(2/3)], [[5/6, 1/6, 2/3, 3/2], .\ 35477273886545303417034789177388628572810357171006958807825780709860428223415945721941544485531269e-1, 3/2*2^(1/3)], [[1/6, 5/6, 1/3, 3/2], .\ 21509258277205051801934310900066352453539380917589990889590538701029420208805650648642433752542309e-1, 3/4*2^(2/3), (I*3^(1/2)+1)*infinity/int(2/y^(1/3)/(1-y)^(3/2) *Pi,y = 0 .. 1,AllSolutions)], [[1/3, 2/3, 1/6, 3/2], .26404687786197627411929732378610555427472982776176503995687163406388438782627444234914038055157856e-1, 6/7*2^ (1/3), (I*3^(1/2)-1)*infinity/int(2/3/y^(1/6)/(1-y)^(3/2)*Pi*3^(1/2),y = 0 .. 1,AllSolutions)], [[1/4, 3/4, 5/4, 3/2], .\ 5245788014220327934165680425889174545224995859572353958344000186558414208876771232308180741874053e-2, 8/5*2^(1/2), infinity*I/int(1/y^(5/4)/(1-y)^(3/2)*Pi*2^(1/2),y = 0 .. 1,AllSolutions)], [[3/4, 1/4, 3/4, 3/2], .10890545764100094027725369330050343784921090856187135339428499769083657227947319691819075512676193e-1, 4/3*2^(1/2)] , [[1/4, 3/4, 1/4, 3/2], .11675004613180594005504453787671709400657817799413954677186022174430086741243922561542250675218033e-1, 4/5*2^(1/2), infinity*I/int(1/y^(1/ 4)/(1-y)^(3/2)*Pi*2^(1/2),y = 0 .. 1,AllSolutions)], [[1/6, 1/6, 0, 5/2], .\ 84034110887481792842211526955860035921110925180938410795877147408523192741228405764761417019452312e-1, -6.3390063816908619528468457494510097502124118877273400890697\ 70648542381309849463435015745321343674099, 0], [[5/6, 1/6, 5/3, 5/3], .\ 45981513051461335199496908857425232364981601736713246123326085635082824339775104040094100889794667e-1, 27/20*2^(2/3)], [[1/6, 5/6, 2/3, 5/3], .\ 28314611737932654785998523269163299017914491162617131585632257982332946008293451120913102946660449e-1, 7/27*2^(2/3)], [[5/6, 1/6, 2/3, 5/3], .\ 14172569689766397280847608448965884854255356544375581125388716245359516824578408358530776671849051e-1, 6/5*2^(2/3)], [[1/3, 2/3, 1/6, 5/3], .\ 21509258277205051801934310900066352453539380917589990889590538701029420208805650648642433752542309e-1, 3/4*2^(2/3)], [[0, 2/3, 5/6, 5/3], .\ 56253568190013814312057061450918864805867918098729324219543847042073438811133640939286363516682508e-1, .\ 8167900803386493374095447660697572971334873386586904056510002871140686183635061620843779087575256691e-1], [[1/3, 2/3, 5/6, 5/3], .\ 37690357222342528523978113919225409452120273064285035908071846104520044489760302841191059022212229e-1, 7/24*2^(2/3)], [[1/6, 4/3, 0, 4/3], .\ 55626419102179116172226262358231148814039177181697608772306902025365666168339026799183568226600647e-1, .423729299618559624017642619780229369796091914327652918522286\ 8885112996106218638215628280275279932104], [[1/6, 1/3, 0, 4/3], .33886863302217908226416939536867343593446770288559918676182868986827918385872360516864838751450216e\ -1, -1.118646498092798120088213098901146848980459571638264592611434442556498053109319107814140137639966052, 0], [[2/3, 1/3, 5/6, 4/3], .\ 35477273886545303417034789177388628572810357171006958807825780709860428223415945721941544485531269e-1, 3/2*2^(1/3)], [[1/6, 5/6, 1/3, 4/3], .\ 26404687786197627411929732378610555427472982776176503995687163406388438782627444234914038055157856e-1, 6/7*2^(1/3), undefined], [[5/6, 1/6, 1/3, 4/3], .\ 56049434604400065697488328396559516382689443106555333392984209747945599169464643140568397071012506e-1, 1/3*2^(1/3), 0], [[2/3, 1/3, 1/6, 4/3], .\ 59185202848712477384380363785642300263279692532687616129398699777221155001461999236306773347935102e-1, 1/4*2^(1/3)], [[5/6, 1/6, 4/3, 4/3], .\ 22290588077472696763950615924094180146326699388090410339747361134062993495371340753161146072812841e-1, 5/12*2^(1/3), 0], [[1/6, 1/6, 4/3, 4/3], .\ 74683391990641604440381743090857050040633635195017880803715688589807031509694622724348295948958883e-1, -1.8079193257045258136861857289379207292551716198863917037790\ 71103559325545770609764589893883893197541, 0], [[1/6, 5/6, 4/3, 4/3], .\ 21118643847597301842442022962699612658917563609447119625779468729386445069119853529319055329962545e-1, 27/14*2^(1/3), undefined], [[1/6, 5/6, 3/2, 4/3], .\ 10420776754093291892926803454006962137165209870216229479998441398229311845051953263808072767764501e-1, 16/7*3^(1/2), (I*3^(1/2)+1)*infinity/int(2/y^(3/2)/(1-y)^(4/3 )*Pi,y = 0 .. 1,AllSolutions)], [[5/6, 2/3, 0, 2/3], .45990725461055595377622290656752554054821245125554968054987075854175574220814657266791051981828482e-1, .221119\ 3386892432891606363177379838198088991559105793603767333524742712412242337441389585272505017113], [[1/3, 2/3, 5/6, 2/3], .\ 53161134223179944882842740674694108209193507949530637443516134026460493859109825088357764715603835e-1, 1/4*2^(2/3)], [[1/6, 5/6, 2/3, 2/3], .\ 60797634440080760374877456949148357252327855355538251568294856421404426118128942833387568756337013e-1, 1/6*2^(2/3)], [[5/6, 1/6, 2/3, 2/3], .\ 50650410384634165913813072620628502426328782155099083611022322798493659258463300786019388908401531e-1, 2^(2/3)], [[5/6, 1/6, 1/2, 2/3], .\ 26006449579947277885757863886777342782642432883082573324061397938035111196346361489658754249917948e-1, 3^(1/2)], [[5/6, 5/6, 1/3, 2/3], .\ 56049434604400065697488328396559516382689443106555333392984209747945599169464643140568397071012506e-1, 1/3*2^(1/3)], [[1/6, 2/3, 1/3, 2/3], .\ 53863899283678419523976673712787636772988938469043961199050776090794003952860865844701224400333750e-1, -1/2*2^(2/3)], [[1/6, 5/6, 5/3, 2/3], .\ 7226053080472746235938532833531782254025196073520483322946400095352182963221490071688154192201137e-2, 7/12*2^(2/3), 0], [[5/6, 1/6, 5/3, 2/3], .\ 54002578038601584925395633543791584385268348028578362421579105750943500726579075789440733442953305e-1, 3/2*2^(2/3), 0], [[1/6, 1/3, 0, 1/3], .\ 48167739163119469339031621660296642063957659582516942459984651114970862753073093266953863081352579e-1, 2.94917198474238496070570479120917479184367657310611674089147\ 5540451984424874552862513121101119728416], [[1/6, 5/6, 1/2, 1/3], .\ 26006449579947277885757863886777342782642432883082573324061397938035111196346361489658754249917948e-1, -3^(1/2), (I*3^(1/2)+1)*infinity/Pi/Beta(1/2,2/3)], [[1/6, 5/ 6, 3/2, 1/3], .17340280564345620319605936726255478604343655228169415120833413445237623137189312147951313387163758e-1, 4*3^(1/2), undefined], [[1/6, 5/6, 5/2, 1/3], .25905507342158754058715770814265476401634299041152319263594290656646335631069471258538032793539003e-1, 8*3^(1/2), undefined], [[1/6, 5/6, 4/3, 1/3], .\ 45981987103434007313530879969220490954262767674137527220518809918128157302260271793511117648213994e-1, 3*2^(1/3), undefined], [[5/6, 1/6, 4/3, 1/3], .\ 40126597994164597502170902709519307163276130987753250729494216592985525015252211659913364363523019e-1, 1/2*2^(1/3), 0], [[5/6, 1/3, 2/3, 1/3], .\ 59791640643195334882500340674373891710603106494581233289572102360145176044051368853821838502221090e-1, 2^(1/3)], [[1/6, 1/3, 2/3, 1/3], .\ 50957881331989650091726773865137039665058640915949776832649000913901460745117424574700372170086665e-1, 3/2*2^(1/3)], [[1/2, 1/6, 2/3, 1/3], .\ 62019395540823614173051823407943690646092589431996281485773318842507493943248709915281940163956735e-1, 1.40218210532545426117501907905029413546302220542398609618199\ 3987076284765981803296070852266485024785], [[1/6, 1/6, 2/3, 1/3], .\ 64991656408293583545380770909654010425163407451681549398974410439531480598424054411083992759985180e-1, 2^(2/3)], [[5/6, 1/6, 1/3, 1/3], .\ 47161319885690265544397908540337481729759025538971811611496175673761553057171842921996528476935652e-1, 2^(1/3)], [[1/6, 1/6, 1/3, 1/3], .\ 48026111905934226065219208445225199690060840594318543845575064155998637573396681555726998016093023e-1, 1.96611465649492330713713652747278319456245104873741116059431\ 7026967989616583035241675414067413152277], [[1/6, 5/6, 1/3, 1/3], .\ 56527740060893324860237006911898845841745249978257833146178990549234806444618792156037738363896348e-1, -2*2^(1/3), (I*3^(1/2)+1)*infinity/Pi/Beta(2/3,2/3)], [[3/4, 1/4, 5/4, 1/4], .101626736878245302656159039408421793289606967879171190831297196618784771407498032884387279340726214, 1/2*2^(1/2), 0], [[1/4, 1/4, 3/4, 1/4], .\ 51080370329062117013938299975684130319918831925764426429682381867032148262993030425194847008955025e-1, 2^(1/2)], [[5/4, 5/4, 3/4, 1/4], .\ 57419184494520613780707337586225887385674403267490174927291407765003347275150514821540566569822097e-1, 3/8*2^(1/2), 0], [[1/4, 5/4, 3/4, 1/4], .\ 63557337854481162845853910464817079395188855935610111069436085492382734017279035910534743676337185e-1, 1/4*2^(1/2), 0], [[1/4, 3/4, 3/4, 3/4], .\ 63557337854481162845853910464817079395188855935610111069436085492382734017279035910534743676337185e-1, 1/4*2^(1/2)], [[2/5, 2/5, 1/5, 4/5], 1.0071814687096519566600\ 43702275742642571607408524920133864263732714588645314283320402479590276852588, -1/2*5^(1/2)-1/2], [[3/5, 4/5, 1/5, 4/5], .905329492806548513895924184552871081525962\ 719455040928217155017807662807997366037058680464650814907, -1/6+1/6*5^(1/2)], [[2/5, 3/5, 4/5, 4/5], .91972431713638922250277780739877628064114976849765731042135703\ 6459670030034382341218098796679278406, 1/4*5^(1/2)-1/4], [[4/5, 1/5, 3/5, 3/5], 1.0071814687096519566600437022757426425716074085249201338642637327145886453142833204\ 02479590276852588, 1/2*5^(1/2)+1/2], [[1/5, 3/5, 2/5, 3/5], 1.007181468709651956660043702275742642571607408524920133864263732714588645314283320402479590276852588, -\ 1/2*5^(1/2)-1/2], [[1/5, 1/5, 3/5, 2/5], 1.016639551257697244142801339362822666498253379648673421266557832347990411108116591003136155431487586, -3/2+3/2*5^(1/2)], [ [4/5, 2/5, 3/5, 2/5], 1.007181468709651956660043702275742642571607408524920133864263732714588645314283320402479590276852588, 1/2*5^(1/2)+1/2], [[2/5, 1/5, 4/5, 1/5] , 1.001159933687149510606381217650540192155749427368520626209789402002525815757384903912309643549392729, 5^(1/2)-1], [[1/2, 1/6, 5/6, 1/6], .\ 23429090420402243249733063598425367217066811550969638516084283346698485144700704230653413993560260e-1, 2/3*3^(1/2)], [[1/3, 1/6, 5/6, 1/6], .\ 72462517832845913459157745715244683282063611734719405007398551604232426039510686275867092509168135e-1, 3/4*2^(2/3)], [[4/3, 1/6, 5/6, 1/6], .\ 99835477392990255485416945530040353155425990079009161425148391030698473019484321100484350536582093e-1, 1/2*2^(2/3), 0], [[5/2, 1/6, 5/6, 1/6], .\ 61844501011971451140187284514828259102026039128051952195749704734627389057261061303223624739268139e-1, 5/12*3^(1/2), 0], [[3/2, 1/6, 5/6, 1/6], .\ 57186966966792442603620301251727293924340541244839479070646551238769337391167287669768724327348719e-1, 1/3*3^(1/2), 0], [[1/3, 1/6, 1/2, 1/6], .\ 48012102379455875774226363652309251068540896340614084544482158212964711829988469139773884354234550e-1, 1.47458599237119248035285239560458739592183828655305837044573\ 7770225992212437276431256560550559864208], [[5/2, 1/6, 4/3, 1/6], .\ 74581621126992891683378679769986446350409007850163598525297880886723178115294120735144782845866486e-1, 1.35593949427839436026463929670344054694137871491479377783430\ 3327669494159327957323442420412919898156, 0], [[5/2, 5/6, 2/3, 5/6], .\ 55132272772304340834324654603083993811712251082161003694955882168451089611115078436254125671724125e-1, 1.11354938002116558358809654787935983107084295866616815035318\ 7517944629288647719135130273619297345354, 0], [[1/6, 5/6, 2/3, 5/6], .\ 59185202848712477384380363785642300263279692532687616129398699777221155001461999236306773347935102e-1, 1/4*2^(1/3)], [[1/6, 5/6, 1/2, 5/6], .\ 36381826327953079356867555839609676598219050088373114289733787207371433984810080505710430378013371e-1, 1/12*3^(1/2)], [[5/3, 5/6, 1/6, 5/6], .\ 83301927575911164522073451539166992003952850786589966716817725146507531765841923188749508453455542e-1, 2/3*2^(1/3), 0], [[3/2, 5/6, 1/6, 5/6], .\ 31191854754932834030429133735450372714246289213022818804793453512413506722719498213783442013683764e-1, 7/24*3^(1/2), 0], [[1/7, 3/7, 5/7, 5/7], .\ 58466665031380552114835136918950813848348633489869199839812932359450372310879831017178024362028959e-1, -1.7465660045176690243810851920880298632303311502608052774574\ 27315345732966667990515441309294523224346], [[3/7, 3/7, 4/7, 5/7], .\ 45362908442242122649656933546779402529881826151668052545036742946206465655405755250259217645633763e-1, -1.5170717288128924056299385359246618287727396937829198552066\ 33754870441822569017078505729359318706228], [[2/7, 4/7, 3/7, 5/7], .\ 85351658959773830800165786233643934219571118508778710274726817060670306667600313709111551907938598e-1, -.75853586440644620281496926796233091438636984689145992760331\ 68774352209112845085392528646796593531141], [[4/7, 1/7, 3/7, 5/7], .\ 40370574193883684608855191367235847749662246124715783967066907833878764472682898046925653142575613e-1, 3.20150725854689963187467469228965709496206286372466510409746\ 9435548693123541410387592266366522756432], [[3/7, 3/7, 2/7, 5/7], .\ 88078018281919177629921991810901591091624999711933658597095225988059258090911561419719779825830138e-1, -1/12*(-28+84*I*3^(1/2))^(1/3)-7/3/(-28+84*I*3^(1/2))^(1/3)-2 /3+1/2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2))^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3))], [[1/7, 4/7, 2/7, 5/7], .\ 68965186249222348994391517892275275357479886234695397781877723401193299450525728434921941634659305e-1, -1/12*(-28+84*I*3^(1/2))^(1/3)-7/3/(-28+84*I*3^(1/2))^(1/3)+1 /3+1/2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2))^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3))], [[4/7, 3/7, 1/7, 5/7], .105566623617240268384579783013748426622014567541413755923329\ 382884591000074478843194264508981329730, -1/12*(28+84*I*3^(1/2))^(1/3)-7/3/(28+84*I*3^(1/2))^(1/3)-1/3+1/2*I*3^(1/2)*(1/6*(28+84*I*3^(1/2))^(1/3)-14/3/(28+84*I*3^(1 /2))^(1/3)), -1/(sin(1/7*Pi)^12+6*sin(1/7*Pi)^10*cos(1/7*Pi)^2+15*sin(1/7*Pi)^8*cos(1/7*Pi)^4+20*sin(1/7*Pi)^6*cos(1/7*Pi)^6+15*sin(1/7*Pi)^4*cos(1/7*Pi)^8+6*sin(1/ 7*Pi)^2*cos(1/7*Pi)^10+cos(1/7*Pi)^12+2*sin(1/7*Pi)^6-30*sin(1/7*Pi)^4*cos(1/7*Pi)^2+30*sin(1/7*Pi)^2*cos(1/7*Pi)^4-2*cos(1/7*Pi)^6+1)^(1/2)*(-15*sin(1/7*Pi)^2*cos( 3/7*Pi)^2*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+15*sin(1/7*Pi)^2*sin(3/7*Pi)^2*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1 /2)+2*cos(1/7*Pi))^(1/2)-6*sin(1/7*Pi)*cos(3/7*Pi)^2*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+6*sin(1/7*Pi)*sin(3/7*Pi)^2*cos(1/7* Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-2*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2 )+2*sin(1/7*Pi)^6*cos(3/7*Pi)*sin(3/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-6*sin(1/7*Pi)^5*cos(3/7*Pi)^2*cos(1/7*Pi)*(2*(cos(1/7*Pi)^2+ sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+6*sin(1/7*Pi)^5*sin(3/7*Pi)^2*cos(1/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+15*sin(1/7*Pi)^4*cos (3/7*Pi)^2*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-15*sin(1/7*Pi)^4*sin(3/7*Pi)^2*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^( 1/2)+2*cos(1/7*Pi))^(1/2)+20*sin(1/7*Pi)^3*cos(3/7*Pi)^2*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-20*sin(1/7*Pi)^3*sin(3/7*Pi)^2* cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-I*sin(1/7*Pi)^6*sin(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)- I*cos(3/7*Pi)^2*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-cos(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+ sin(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+2*cos(3/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)*sin(3/7*Pi)-I* sin(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+I*cos(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+2*I*cos(3/7*Pi )*sin(3/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-12*sin(1/7*Pi)^5*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2 )+2*cos(1/7*Pi))^(1/2)-30*sin(1/7*Pi)^4*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+40*sin(1/7*Pi)^3*cos(3/7* Pi)*sin(3/7*Pi)*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+30*sin(1/7*Pi)^2*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2+ sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-12*sin(1/7*Pi)*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-20*I*sin( 1/7*Pi)^3*sin(3/7*Pi)^2*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-15*I*sin(1/7*Pi)^2*sin(3/7*Pi)^2*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2+ sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-6*I*sin(1/7*Pi)*cos(3/7*Pi)^2*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-2*I*cos(3/7*Pi)* sin(3/7*Pi)*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-6*I*sin(1/7*Pi)^5*cos(3/7*Pi)^2*cos(1/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^( 1/2)+2*cos(1/7*Pi))^(1/2)-15*I*sin(1/7*Pi)^4*cos(3/7*Pi)^2*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+I*sin(1/7*Pi)^6*cos(3/7*Pi)^2*( 2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+I*sin(3/7*Pi)^2*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-sin(3/7*Pi)^2* cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-sin(1/7*Pi)^6*cos(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+ sin(1/7*Pi)^6*sin(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+cos(3/7*Pi)^2*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7 *Pi))^(1/2)+12*I*sin(1/7*Pi)^5*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+30*I*sin(1/7*Pi)^2*cos(3/7*Pi)*sin(3/ 7*Pi)*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+12*I*sin(1/7*Pi)*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi) ^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+20*I*sin(1/7*Pi)^3*cos(3/7*Pi)^2*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+15*I*sin(1/7*Pi)^2*cos(3/7 *Pi)^2*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+6*I*sin(1/7*Pi)*sin(3/7*Pi)^2*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+ 2*cos(1/7*Pi))^(1/2)+2*I*sin(1/7*Pi)^6*cos(3/7*Pi)*sin(3/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+6*I*sin(1/7*Pi)^5*sin(3/7*Pi)^2*cos(1/7* Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+15*I*sin(1/7*Pi)^4*sin(3/7*Pi)^2*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi)) ^(1/2)-30*I*sin(1/7*Pi)^4*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-40*I*sin(1/7*Pi)^3*cos(3/7*Pi)*sin(3/7* Pi)*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2))*infinity/(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)/Beta(3/7,4/7)/Beta(2/7,6/7)], [[2/7, 3/7 , 1/7, 5/7], .40370574193883684608855191367235847749662246124715783967066907833878764472682898046925653142575613e-1, -3.20150725854689963187467469228965709496206286\ 3724665104097469435548693123541410387592266366522756432], [[2/7, 4/7, 1/7, 4/7], .\ 40370574193883684608855191367235847749662246124715783967066907833878764472682898046925653142575613e-1, -3.2015072585468996318746746922896570949620628637246651040974\ 69435548693123541410387592266366522756432], [[3/7, 4/7, 2/7, 4/7], .\ 88078018281919177629921991810901591091624999711933658597095225988059258090911561419719779825830138e-1, -1/12*(-28+84*I*3^(1/2))^(1/3)-7/3/(-28+84*I*3^(1/2))^(1/3)-2 /3+1/2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2))^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3)), 1/(sin(1/7*Pi)^2+cos(1/7*Pi)^2+2*cos(1/7*Pi)+1)^(1/2)*(12*sin(1/7*Pi)^2*cos(3/7*Pi)* sin(3/7*Pi)*cos(1/7*Pi)^2+6*sin(1/7*Pi)^2*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)-6*I*sin(1/7*Pi)^2*cos(3/7*Pi)^2*cos(1/7*Pi)^2-2*I*sin(1/7*Pi)^3*cos(3/7*Pi)*sin(3/7*Pi )-3*I*sin(1/7*Pi)^2*cos(3/7*Pi)^2*cos(1/7*Pi)-sin(1/7*Pi)^3*cos(3/7*Pi)^2+sin(1/7*Pi)^3*sin(3/7*Pi)^2-2*sin(1/7*Pi)^4*cos(3/7*Pi)*sin(3/7*Pi)-4*sin(1/7*Pi)^3*cos(3/ 7*Pi)^2*cos(1/7*Pi)+4*sin(1/7*Pi)^3*sin(3/7*Pi)^2*cos(1/7*Pi)+4*sin(1/7*Pi)*cos(3/7*Pi)^2*cos(1/7*Pi)^3-4*sin(1/7*Pi)*sin(3/7*Pi)^2*cos(1/7*Pi)^3-2*cos(3/7*Pi)*sin( 3/7*Pi)*cos(1/7*Pi)^4+3*sin(1/7*Pi)*cos(3/7*Pi)^2*cos(1/7*Pi)^2-3*sin(1/7*Pi)*sin(3/7*Pi)^2*cos(1/7*Pi)^2-2*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^3-I*sin(1/7*Pi)^4* sin(3/7*Pi)^2-I*sin(3/7*Pi)^2*cos(1/7*Pi)^4-I*sin(3/7*Pi)^2*cos(1/7*Pi)^3+I*sin(1/7*Pi)^4*cos(3/7*Pi)^2+I*cos(3/7*Pi)^2*cos(1/7*Pi)^4+I*cos(3/7*Pi)^2*cos(1/7*Pi)^3+ 6*I*sin(1/7*Pi)^2*sin(3/7*Pi)^2*cos(1/7*Pi)^2+3*I*sin(1/7*Pi)^2*sin(3/7*Pi)^2*cos(1/7*Pi)-8*I*sin(1/7*Pi)^3*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)+8*I*sin(1/7*Pi)*cos( 3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^3+6*I*sin(1/7*Pi)*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^2)*infinity/(sin(1/7*Pi)^6+3*sin(1/7*Pi)^4*cos(1/7*Pi)^2+3*sin(1/7*Pi)^2*cos(1 /7*Pi)^4+cos(1/7*Pi)^6)/Beta(3/7,4/7)/Beta(3/7,5/7)], [[1/7, 1/7, 3/7, 4/7], .\ 81540603130989681635904789036432040951594683791108706496858621582945088816543450737743235457288671e-1, -5/12*(28+84*I*3^(1/2))^(1/3)-35/3/(28+84*I*3^(1/2))^(1/3)+10 /3-5/2*I*3^(1/2)*(1/6*(28+84*I*3^(1/2))^(1/3)-14/3/(28+84*I*3^(1/2))^(1/3))], [[5/7, 1/7, 3/7, 4/7], .\ 20007485983747786024378727648947742559339741175107535955194851095201874277359647229619675440016996e-1, 1.70926855029938766608449599921368693939267175545535206811907\ 9753477574900954914064209838235137626314], [[3/7, 2/7, 4/7, 4/7], .\ 40370574193883684608855191367235847749662246124715783967066907833878764472682898046925653142575613e-1, 3.20150725854689963187467469228965709496206286372466510409746\ 9435548693123541410387592266366522756432], [[5/7, 2/7, 4/7, 4/7], .\ 88078018281919177629921991810901591091624999711933658597095225988059258090911561419719779825830138e-1, 1/6*(28+84*I*3^(1/2))^(1/3)+14/3/(28+84*I*3^(1/2))^(1/3)+2/3] , [[5/7, 1/7, 4/7, 4/7], .40240907943639400634731909714944040401663866234509128441141288245906601201135715703240860399416667e-1, 1.600753629273449815937337346144828\ 547481031431862332552048734717774346561770705193796133183261378216], [[3/7, 1/7, 5/7, 4/7], .\ 22484766844264544479390930223782163050452172118954328541375955582593363323072508956791302734671867e-1, 1.83537817448657947703172958916641892025017393557074950568053\ 5317940230809527228085264994118764699311], [[4/7, 3/7, 5/7, 3/7], .\ 88078018281919177629921991810901591091624999711933658597095225988059258090911561419719779825830138e-1, 1/6*(28+84*I*3^(1/2))^(1/3)+14/3/(28+84*I*3^(1/2))^(1/3)+2/3] , [[4/7, 2/7, 5/7, 3/7], .40240907943639400634731909714944040401663866234509128441141288245906601201135715703240860399416667e-1, 1.600753629273449815937337346144828\ 547481031431862332552048734717774346561770705193796133183261378216], [[2/7, 1/7, 5/7, 3/7], .\ 55210307436119093878591161105780910246949329956504197093145473725407787883487155564595538949084380e-1, 1.58218866817255634146036173069600995441011038342026842581914\ 2438448577655555996838480436431507741449], [[2/7, 1/7, 4/7, 3/7], .1221623312291496769575117849200784644012114867776589705809085692606053787111964960895582660302813\ 06, -1/3*(-28+84*I*3^(1/2))^(1/3)-28/3/(-28+84*I*3^(1/2))^(1/3)+4/3-2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2))^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3))], [[5/7, 2/7, 3/7, 3/7] , .20007485983747786024378727648947742559339741175107535955194851095201874277359647229619675440016996e-1, 1.70926855029938766608449599921368693939267175545535206811\ 9079753477574900954914064209838235137626314], [[5/7, 2/7, 1/7, 2/7], .\ 49930196017904037493722134677636770309684950974266965570445891366683105653869070714678343914623318e-1, 1/3*(-28+84*I*3^(1/2))^(1/3)+28/3/(-28+84*I*3^(1/2))^(1/3)-4/ 3], [[4/7, 2/7, 1/7, 2/7], .86437813845228667397080863352785443661973608971473755243597893818197917736766023182394602195496222e-1, 1.8325956706845836035417266127654\ 41181185658464154901138595120535382678993805458866779467188498922960], [[5/7, 1/7, 2/7, 2/7], .\ 86317887995754242118846051821596241440753907102595370601850876885566124103650030389204040067762268e-1, 1.37444675301343770265629495957408088588924384811617585394634\ 0401537009245354094150084600391374192220], [[1/7, 1/7, 3/7, 2/7], .1203344614191030396294638538527480880202968182400648988516951034098080502681368967762542885660907\ 75, 1.759488587938981416853672734385613866595459824225324761225058958693595610561327868438380921160881264], [[3/7, 1/7, 5/7, 2/7], .12359736727842401666848696287054\ 1019852310230020915237766487230677250205619075282699225659139151051, -1/4*(-28+84*I*3^(1/2))^(1/3)-7/(-28+84*I*3^(1/2))^(1/3)+1-3/2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2) )^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3))], [[2/7, 1/7, 4/7, 1/7], .129921447227972874582045487520858830231885591085006542455571016624555336908588419216636583662676051 , 1.407590870351185133482938187508491093276367859380259808980047166954876488449062294750704736928705011]]: end: Hopefuls2:=proc(): [[[[0, 0, 0, 0], .160376328282995365630650037915397621728928601629473517662941887093415487440248087647248677678121518, 1/6*Pi^2, 1/6*Pi^2], .9142517408e-1], [[[1/2, 0, 0, 0], .215446406424598151262168999617658868512485219126761727588124913699012907249772226740948093718322976, arcsinh(15/8), 2*ln(2)], .9198665767e-1], [[[3/2, 0, 0, 0], .166836981627750005879354379653292869850893026629198799852660714262138415414482514946546100577966226, 2/3-2/3*ln(2), (-4/3+4/3*ln(2))*undefined], .9105610898\ e-1], [[[5/2, 0, 0, 0], .123120246522147760963144004235422251425266242442746382143772502329776045148689719343663790627405749, 8/5-6/5*ln(2), (-16/15+4/5*ln(2))* undefined], .9096427979e-1], [[[5/3, 5/3, 0, 0], .108975898084621306130950358824770117731793593303480987855061282057214950716954422285424878997274086, 6.28931910992\ 7904990831709560699018025197692747329836805797838909543372453576895437157774983496884236], .6854633076e-1], [[[2/3, 5/3, 0, 0], .\ 79427820438207856136462885505148001158517349587376950111071029851387999533856968645044703607043207e-1, 8.12759872846843570118815651528431146456813249618548115113976\ 9870776246362252707767368249976424120338], .6902010054e-1], [[[4/3, 4/3, 0, 0], .13425814677987284161587612658217116568237660245803757559430401384129459869182666497\ 8175406982941537, -3.392249205292772313242597822052694665355082810115925719462356169235153976407942354605156235265075211], .6907877552e-1], [[[2/3, 2/3, 0, 0], .\ 77555472942058299294890245772734397686394140727445794410953968480254870078278865225780393768078929e-1, 2.40689968211710892529703912882107786614203312404637028778494\ 2467694061590563176941842062494106030084], .6918535314e-1], [[[4/3, 1/3, 0, 0], .\ 80292413538282695578209820858592042607139681906615304682354872731858098975614075589518997038285761e-1, -.15689968211710892529703912882107786614203312404637028778494\ 24676940615905631769418420624941060300844], .6889758797e-1], [[[1/3, 1/3, 0, 0], .1145078921418362632389713583308245678912832656544902974025074777029477918347222402\ 60568005653457960, 1/3*Pi*3^(1/2)], .6994292759e-1], [[[1/3, 2/3, 1/2, 0], .\ 62063859138631951918830664834530216548277442892012316711029498246954617281970843278608631097812307e-1, 2.10327315798818139176252861857544120319453330813597914427299\ 0980614427148972704944106278399727537177, 1/6*Pi^(3/2)*(I*3^(1/2)-1)/GAMMA(2/3)/GAMMA(5/6)*3^(1/2)], .1545305638e-2], [[[2/3, 1/3, 1/2, 0], .\ 8512659681647715474312113899794985919242782480448555885110711696075396491135209415458676916925656e-2, 1.293554779614895267476757512565605818828929257420200788177626\ 770763033747278022225220322143942310013, -1/4/Pi^(1/2)*(3*I+3^(1/2))*GAMMA(2/3)*GAMMA(5/6)*3^(1/2)], .8813140347e-3], [[[1/3, 2/3, 3/2, 0], .\ 18870440581602688763698192575873349249798362219652008617619083406016692194631613644919279551255572e-1, -.70109105266272713058750953952514706773151110271199304809099\ 69935381423829909016480354261332425123924, 0], .1315446466e-2], [[[2/3, 1/3, 3/2, 0], .\ 11523429780165650732046049820208170280048644329061030500497508618642172149798877315665719267672350e-1, .431184926538298422492252504188535272942976419140066929392542\ 2569210112490926740750734407146474366711, 0], .2944543401e-3], [[[1/3, 2/3, 5/2, 0], .\ 12178173924175540179499094164125184835472752517283072929116754854283575503928909719683401277717602e-1, -1.6358791228796966380375222588920098247068592396613171122123\ 26318255665560312103845415994310899195582, 0], .7790353411e-3], [[[1/3, 0, 5/3, 0], .\ 64102958178967597786497191815391791080609952668713253490321907401019356059545234156874039416987197e-1, -.10459978807807261686469275254738524409468874936424685852329\ 49784627077270421179612280416627373533896, undefined], .6889035589e-1], [[[1/2, 1/2, 5/3, 0], .\ 52122665489671418843991262359262154823048120605590975603982469306691909746901768423497191156444029e-1, -.70109105266272713058750953952514706773151110271199304809099\ 69935381423829909016480354261332425123924, 0], .2222391869e-2], [[[2/3, 0, 4/3, 0], .\ 77440410652469971117584683804280108413696392053447793078410426809700374570167977158676255031614567e-1, .802299894039036308432346376273692622047344374682123429261647\ 4892313538635210589806140208313686766948, undefined], .6914340679e-1], [[[1/2, 1/2, 4/3, 0], .\ 12856811824821736978725300168073003933869095642604059788924795180518596409583120933356246521283485e-1, .431184926538298422492252504188535272942976419140066929392542\ 2569210112490926740750734407146474366711, 0], .6842761305e-3], [[[1/3, 0, 2/3, 0], .11427862546130078664359706862777091394508673195933009972088574673925513900968004\ 1134955153344236286, 2/9*Pi*3^(1/2), 2/9*Pi*3^(1/2)], .6988065559e-1], [[[1/2, 1/2, 2/3, 0], .\ 62019395540823614173051823407943690646092589431996281485773318842507493943248709915281940163956735e-1, 1.40218210532545426117501907905029413546302220542398609618199\ 3987076284765981803296070852266485024785, 2/9*Pi^(3/2)*3^(1/2)/GAMMA(2/3)/GAMMA(5/6)], .1603816582e-2], [[[1/2, 1/2, 1/3, 0], .\ 41554337044461010679739525540818002650076063684313827581877601612321049046547493046060440602080968e-1, 1.72473970615319368996901001675414109177190567656026771757016\ 9027684044996370696300293762858589746685, 2*GAMMA(2/3)/Pi^(1/2)*GAMMA(5/6)], .9112684198e-3], [[[2/3, 1/3, 5/6, 1/2], .\ 50650410384634165913813072620628502426328782155099083611022322798493659258463300786019388908401531e-1, 2^(2/3)], .4874301014e-1], [[[5/6, 1/6, 2/3, 1/2], .\ 59791640643195334882500340674373891710603106494581233289572102360145176044051368853821838502221090e-1, 2^(1/3)], .4816610407e-1], [[[1/3, 2/3, 1/2, 1/2], .\ 51915093490223523791984400933061514770956195653999304009759326094885709960576836285284594515740445e-1, -1.4263482556253197100152581984233159695007415004810879114376\ 68717272602319082043789415517143646941323, (I*3^(1/2)-1)*infinity/Pi^2*3^(1/2)], .1849530553e-2], [[[1/6, 2/3, 1/2, 1/2], .\ 26006449579947277885757863886777342782642432883082573324061397938035111196346361489658754249917948e-1, -3^(1/2)], .2306088004e-1], [[[2/3, 1/3, 1/2, 1/2], .\ 69878518975659469241755644340510470805934107758408759496800178894892090834502989609302500785755853e-1, 2.31919053392785673153998410314004176389033052687956571052621\ 0119495947514410572517316170502102292142], .1025358237e-2], [[[5/6, 1/3, 1/2, 1/2], .\ 26006449579947277885757863886777342782642432883082573324061397938035111196346361489658754249917948e-1, 3^(1/2)], .2300872792e-1], [[[1/3, 1/6, 1/2, 1/2], .\ 62063859138631951918830664834530216548277442892012316711029498246954617281970843278608631097812307e-1, 2.10327315798818139176252861857544120319453330813597914427299\ 0980614427148972704944106278399727537177], .1565709698e-2], [[[1/6, 1/6, 1/2, 1/2], .\ 23762874489777959057035951948795586972510978455671573772728517399651936832572860042934271538892650e-1, 4/3*3^(1/2)], .2341824205e-1], [[[5/6, 5/6, 1/2, 1/2], .\ 36497862071004723865798078829913646920949847208570318711671030560108254859539764740033174962323785e-1, 1/6*3^(1/2)], .2345436372e-1], [[[1/6, 5/6, 1/3, 1/2], .\ 53863899283678419523976673712787636772988938469043961199050776090794003952860865844701224400333750e-1, -1/2*2^(2/3), (I*3^(1/2)+1)*infinity/Pi/Beta(1/2,2/3)], .\ 4883317030e-1], [[[1/3, 2/3, 1/6, 1/2], .56527740060893324860237006911898845841745249978257833146178990549234806444618792156037738363896348e-1, -2*2^(1/3), (I*3^(1/ 2)-1)*infinity/Pi*3^(1/2)/Beta(1/2,5/6)], .4820311571e-1], [[[1/4, 3/4, 5/4, 1/2], .\ 48985327039254602214521331767407922018675753425168589334058065474045351665391660847591827448034175e-1, 2*2^(1/2), undefined*I], .2938186868e-1], [[[3/4, 1/4, 3/4, 1 /2], .69782515043065317842209831020537345636906349005988216038929698467903786864473098719380658030314078e-1, 2^(1/2)], .2939043672e-1], [[[1/4, 3/4, 1/4, 1/2], .\ 69782515043065317842209831020537345636906349005988216038929698467903786864473098719380658030314078e-1, -2^(1/2), infinity*I/Pi*2^(1/2)/Beta(1/2,3/4)], .2944814447e-\ 1], [[[1/6, 5/6, 4/3, 1/2], .17986191042409422765736956575772920959126937148353818787145975263140775119156259100676227830862672e-1, 2*2^(2/3), undefined], .\ 4810127481e-1], [[[5/6, 1/6, 5/3, 1/2], .7707391324429871957806534470220359000151417737210283924146244252809373264250628961083334641717519e-2, 2*2^(1/3), 0], .\ 4688753643e-1], [[[2/3, 1/3, 5/6, 3/2], .14172569689766397280847608448965884854255356544375581125388716245359516824578408358530776671849051e-1, 6/5*2^(2/3)], .\ 4835075151e-1], [[[5/6, 1/6, 2/3, 3/2], .35477273886545303417034789177388628572810357171006958807825780709860428223415945721941544485531269e-1, 3/2*2^(1/3)], .\ 4731752080e-1], [[[1/6, 5/6, 1/3, 3/2], .21509258277205051801934310900066352453539380917589990889590538701029420208805650648642433752542309e-1, 3/4*2^(2/3), (I*3^(1 /2)+1)*infinity/int(2/y^(1/3)/(1-y)^(3/2)*Pi,y = 0 .. 1,AllSolutions)], .4859891546e-1], [[[1/3, 2/3, 1/6, 3/2], .\ 26404687786197627411929732378610555427472982776176503995687163406388438782627444234914038055157856e-1, 6/7*2^(1/3), (I*3^(1/2)-1)*infinity/int(2/3/y^(1/6)/(1-y)^(3/ 2)*Pi*3^(1/2),y = 0 .. 1,AllSolutions)], .4735448507e-1], [[[1/4, 3/4, 5/4, 3/2], .\ 5245788014220327934165680425889174545224995859572353958344000186558414208876771232308180741874053e-2, 8/5*2^(1/2), infinity*I/int(1/y^(5/4)/(1-y)^(3/2)*Pi*2^(1/2),y = 0 .. 1,AllSolutions)], .2854700031e-1], [[[3/4, 1/4, 3/4, 3/2], .\ 10890545764100094027725369330050343784921090856187135339428499769083657227947319691819075512676193e-1, 4/3*2^(1/2)], .2866393517e-1], [[[1/4, 3/4, 1/4, 3/2], .\ 11675004613180594005504453787671709400657817799413954677186022174430086741243922561542250675218033e-1, 4/5*2^(1/2), infinity*I/int(1/y^(1/4)/(1-y)^(3/2)*Pi*2^(1/2), y = 0 .. 1,AllSolutions)], .2872159337e-1], [[[5/6, 1/6, 5/3, 5/3], .\ 45981513051461335199496908857425232364981601736713246123326085635082824339775104040094100889794667e-1, 27/20*2^(2/3)], .4845161546e-1], [[[1/6, 5/6, 2/3, 5/3], .\ 28314611737932654785998523269163299017914491162617131585632257982332946008293451120913102946660449e-1, 7/27*2^(2/3)], .4677451012e-1], [[[5/6, 1/6, 2/3, 5/3], .\ 14172569689766397280847608448965884854255356544375581125388716245359516824578408358530776671849051e-1, 6/5*2^(2/3)], .4835506878e-1], [[[1/3, 2/3, 1/6, 5/3], .\ 21509258277205051801934310900066352453539380917589990889590538701029420208805650648642433752542309e-1, 3/4*2^(2/3)], .4864507296e-1], [[[1/3, 2/3, 5/6, 5/3], .\ 37690357222342528523978113919225409452120273064285035908071846104520044489760302841191059022212229e-1, 7/24*2^(2/3)], .4690823866e-1], [[[2/3, 1/3, 5/6, 4/3], .\ 35477273886545303417034789177388628572810357171006958807825780709860428223415945721941544485531269e-1, 3/2*2^(1/3)], .4729332713e-1], [[[1/6, 5/6, 1/3, 4/3], .\ 26404687786197627411929732378610555427472982776176503995687163406388438782627444234914038055157856e-1, 6/7*2^(1/3), undefined], .4728854245e-1], [[[5/6, 1/6, 1/3, 4 /3], .56049434604400065697488328396559516382689443106555333392984209747945599169464643140568397071012506e-1, 1/3*2^(1/3), 0], .4877040022e-1], [[[2/3, 1/3, 1/6, 4/3 ], .59185202848712477384380363785642300263279692532687616129398699777221155001461999236306773347935102e-1, 1/4*2^(1/3)], .4890055155e-1], [[[5/6, 1/6, 4/3, 4/3], .\ 22290588077472696763950615924094180146326699388090410339747361134062993495371340753161146072812841e-1, 5/12*2^(1/3), 0], .4806231481e-1], [[[1/6, 5/6, 4/3, 4/3], .\ 21118643847597301842442022962699612658917563609447119625779468729386445069119853529319055329962545e-1, 27/14*2^(1/3), undefined], .4734452372e-1], [[[1/6, 5/6, 3/2, 4/3], .10420776754093291892926803454006962137165209870216229479998441398229311845051953263808072767764501e-1, 16/7*3^(1/2), (I*3^(1/2)+1)*infinity/int(2/y^(3/2)/(1- y)^(4/3)*Pi,y = 0 .. 1,AllSolutions)], .2214628706e-1], [[[1/3, 2/3, 5/6, 2/3], .\ 53161134223179944882842740674694108209193507949530637443516134026460493859109825088357764715603835e-1, 1/4*2^(2/3)], .4783042545e-1], [[[1/6, 5/6, 2/3, 2/3], .\ 60797634440080760374877456949148357252327855355538251568294856421404426118128942833387568756337013e-1, 1/6*2^(2/3)], .4777104453e-1], [[[5/6, 1/6, 2/3, 2/3], .\ 50650410384634165913813072620628502426328782155099083611022322798493659258463300786019388908401531e-1, 2^(2/3)], .4872535023e-1], [[[5/6, 1/6, 1/2, 2/3], .\ 26006449579947277885757863886777342782642432883082573324061397938035111196346361489658754249917948e-1, 3^(1/2)], .2299192949e-1], [[[5/6, 5/6, 1/3, 2/3], .\ 56049434604400065697488328396559516382689443106555333392984209747945599169464643140568397071012506e-1, 1/3*2^(1/3)], .4868037152e-1], [[[1/6, 2/3, 1/3, 2/3], .\ 53863899283678419523976673712787636772988938469043961199050776090794003952860865844701224400333750e-1, -1/2*2^(2/3)], .4885750238e-1], [[[1/6, 5/6, 5/3, 2/3], .\ 7226053080472746235938532833531782254025196073520483322946400095352182963221490071688154192201137e-2, 7/12*2^(2/3), 0], .4644601775e-1], [[[5/6, 1/6, 5/3, 2/3], .\ 54002578038601584925395633543791584385268348028578362421579105750943500726579075789440733442953305e-1, 3/2*2^(2/3), 0], .4871806469e-1], [[[1/6, 5/6, 1/2, 1/3], .\ 26006449579947277885757863886777342782642432883082573324061397938035111196346361489658754249917948e-1, -3^(1/2), (I*3^(1/2)+1)*infinity/Pi/Beta(1/2,2/3)], .\ 2302727900e-1], [[[1/6, 5/6, 3/2, 1/3], .17340280564345620319605936726255478604343655228169415120833413445237623137189312147951313387163758e-1, 4*3^(1/2), undefined ], .2274043348e-1], [[[1/6, 5/6, 5/2, 1/3], .25905507342158754058715770814265476401634299041152319263594290656646335631069471258538032793539003e-1, 8*3^(1/2), undefined], .2173496936e-1], [[[1/6, 5/6, 4/3, 1/3], .45981987103434007313530879969220490954262767674137527220518809918128157302260271793511117648213994e-1, 3*2^(1/ 3), undefined], .4735817615e-1], [[[5/6, 1/6, 4/3, 1/3], .40126597994164597502170902709519307163276130987753250729494216592985525015252211659913364363523019e-1, 1/2 *2^(1/3), 0], .4855104388e-1], [[[5/6, 1/3, 2/3, 1/3], .59791640643195334882500340674373891710603106494581233289572102360145176044051368853821838502221090e-1, 2^(1/ 3)], .4817274244e-1], [[[1/6, 1/3, 2/3, 1/3], .50957881331989650091726773865137039665058640915949776832649000913901460745117424574700372170086665e-1, 3/2*2^(1/3)], .4877638338e-1], [[[1/2, 1/6, 2/3, 1/3], .62019395540823614173051823407943690646092589431996281485773318842507493943248709915281940163956735e-1, 1.40218210532545426\ 1175019079050294135463022205423986096181993987076284765981803296070852266485024785], .1614167304e-2], [[[1/6, 1/6, 2/3, 1/3], .\ 64991656408293583545380770909654010425163407451681549398974410439531480598424054411083992759985180e-1, 2^(2/3)], .4848880901e-1], [[[5/6, 1/6, 1/3, 1/3], .\ 47161319885690265544397908540337481729759025538971811611496175673761553057171842921996528476935652e-1, 2^(1/3)], .4866808045e-1], [[[1/6, 5/6, 1/3, 1/3], .\ 56527740060893324860237006911898845841745249978257833146178990549234806444618792156037738363896348e-1, -2*2^(1/3), (I*3^(1/2)+1)*infinity/Pi/Beta(2/3,2/3)], .\ 4816793694e-1], [[[3/4, 1/4, 5/4, 1/4], .101626736878245302656159039408421793289606967879171190831297196618784771407498032884387279340726214, 1/2*2^(1/2), 0], .\ 2983452761e-1], [[[1/4, 1/4, 3/4, 1/4], .51080370329062117013938299975684130319918831925764426429682381867032148262993030425194847008955025e-1, 2^(1/2)], .\ 2972302062e-1], [[[5/4, 5/4, 3/4, 1/4], .57419184494520613780707337586225887385674403267490174927291407765003347275150514821540566569822097e-1, 3/8*2^(1/2), 0], .\ 2977341901e-1], [[[1/4, 5/4, 3/4, 1/4], .63557337854481162845853910464817079395188855935610111069436085492382734017279035910534743676337185e-1, 1/4*2^(1/2), 0], .\ 2944283281e-1], [[[1/4, 3/4, 3/4, 3/4], .63557337854481162845853910464817079395188855935610111069436085492382734017279035910534743676337185e-1, 1/4*2^(1/2)], .\ 2938508690e-1], [[[2/5, 2/5, 1/5, 4/5], 1.007181468709651956660043702275742642571607408524920133864263732714588645314283320402479590276852588, -1/2*5^(1/2)-1/2], .9\ 973917967], [[[3/5, 4/5, 1/5, 4/5], .905329492806548513895924184552871081525962719455040928217155017807662807997366037058680464650814907, -1/6+1/6*5^(1/2)], .994566\ 8290], [[[2/5, 3/5, 4/5, 4/5], .919724317136389222502777807398776280641149768497657310421357036459670030034382341218098796679278406, 1/4*5^(1/2)-1/4], .9946090507], [[[4/5, 1/5, 3/5, 3/5], 1.007181468709651956660043702275742642571607408524920133864263732714588645314283320402479590276852588, 1/2*5^(1/2)+1/2], .9972361438], [[[1/ 5, 3/5, 2/5, 3/5], 1.007181468709651956660043702275742642571607408524920133864263732714588645314283320402479590276852588, -1/2*5^(1/2)-1/2], .9974833126], [[[1/5, 1 /5, 3/5, 2/5], 1.016639551257697244142801339362822666498253379648673421266557832347990411108116591003136155431487586, -3/2+3/2*5^(1/2)], .9974832753], [[[4/5, 2/5, 3/5, 2/5], 1.007181468709651956660043702275742642571607408524920133864263732714588645314283320402479590276852588, 1/2*5^(1/2)+1/2], .9972784977], [[[2/5, 1/5, 4/5, 1/5], 1.001159933687149510606381217650540192155749427368520626209789402002525815757384903912309643549392729, 5^(1/2)-1], .9973925395], [[[1/2, 1/6, 5/6, 1/6], .\ 23429090420402243249733063598425367217066811550969638516084283346698485144700704230653413993560260e-1, 2/3*3^(1/2)], .2333418293e-1], [[[1/3, 1/6, 5/6, 1/6], .\ 72462517832845913459157745715244683282063611734719405007398551604232426039510686275867092509168135e-1, 3/4*2^(2/3)], .4853731578e-1], [[[4/3, 1/6, 5/6, 1/6], .\ 99835477392990255485416945530040353155425990079009161425148391030698473019484321100484350536582093e-1, 1/2*2^(2/3), 0], .4810917545e-1], [[[5/2, 1/6, 5/6, 1/6], .\ 61844501011971451140187284514828259102026039128051952195749704734627389057261061303223624739268139e-1, 5/12*3^(1/2), 0], .2299554893e-1], [[[3/2, 1/6, 5/6, 1/6], .\ 57186966966792442603620301251727293924340541244839479070646551238769337391167287669768724327348719e-1, 1/3*3^(1/2), 0], .2366284711e-1], [[[1/6, 5/6, 2/3, 5/6], .\ 59185202848712477384380363785642300263279692532687616129398699777221155001461999236306773347935102e-1, 1/4*2^(1/3)], .4876856501e-1], [[[1/6, 5/6, 1/2, 5/6], .\ 36381826327953079356867555839609676598219050088373114289733787207371433984810080505710430378013371e-1, 1/12*3^(1/2)], .2343757002e-1], [[[5/3, 5/6, 1/6, 5/6], .\ 83301927575911164522073451539166992003952850786589966716817725146507531765841923188749508453455542e-1, 2/3*2^(1/3), 0], .4893894214e-1], [[[3/2, 5/6, 1/6, 5/6], .\ 31191854754932834030429133735450372714246289213022818804793453512413506722719498213783442013683764e-1, 7/24*3^(1/2), 0], .2302211104e-1], [[[1/7, 3/7, 5/7, 5/7], .\ 58466665031380552114835136918950813848348633489869199839812932359450372310879831017178024362028959e-1, -1.7465660045176690243810851920880298632303311502608052774574\ 27315345732966667990515441309294523224346], .2884048386e-1], [[[3/7, 3/7, 4/7, 5/7], .\ 45362908442242122649656933546779402529881826151668052545036742946206465655405755250259217645633763e-1, -1.5170717288128924056299385359246618287727396937829198552066\ 33754870441822569017078505729359318706228], .2430421143e-1], [[[2/7, 4/7, 3/7, 5/7], .\ 85351658959773830800165786233643934219571118508778710274726817060670306667600313709111551907938598e-1, -.75853586440644620281496926796233091438636984689145992760331\ 68774352209112845085392528646796593531141], .2430834862e-1], [[[4/7, 1/7, 3/7, 5/7], .\ 40370574193883684608855191367235847749662246124715783967066907833878764472682898046925653142575613e-1, 3.20150725854689963187467469228965709496206286372466510409746\ 9435548693123541410387592266366522756432], .2422338175e-1], [[[3/7, 3/7, 2/7, 5/7], .\ 88078018281919177629921991810901591091624999711933658597095225988059258090911561419719779825830138e-1, -1/12*(-28+84*I*3^(1/2))^(1/3)-7/3/(-28+84*I*3^(1/2))^(1/3)-2 /3+1/2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2))^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3))], .5089984286e-1], [[[1/7, 4/7, 2/7, 5/7], .\ 68965186249222348994391517892275275357479886234695397781877723401193299450525728434921941634659305e-1, -1/12*(-28+84*I*3^(1/2))^(1/3)-7/3/(-28+84*I*3^(1/2))^(1/3)+1 /3+1/2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2))^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3))], .4575921189e-1], [[[4/7, 3/7, 1/7, 5/7], .105566623617240268384579783013748426622014\ 567541413755923329382884591000074478843194264508981329730, -1/12*(28+84*I*3^(1/2))^(1/3)-7/3/(28+84*I*3^(1/2))^(1/3)-1/3+1/2*I*3^(1/2)*(1/6*(28+84*I*3^(1/2))^(1/3)-\ 14/3/(28+84*I*3^(1/2))^(1/3)), -1/(sin(1/7*Pi)^12+6*sin(1/7*Pi)^10*cos(1/7*Pi)^2+15*sin(1/7*Pi)^8*cos(1/7*Pi)^4+20*sin(1/7*Pi)^6*cos(1/7*Pi)^6+15*sin(1/7*Pi)^4*cos( 1/7*Pi)^8+6*sin(1/7*Pi)^2*cos(1/7*Pi)^10+cos(1/7*Pi)^12+2*sin(1/7*Pi)^6-30*sin(1/7*Pi)^4*cos(1/7*Pi)^2+30*sin(1/7*Pi)^2*cos(1/7*Pi)^4-2*cos(1/7*Pi)^6+1)^(1/2)*(-15* sin(1/7*Pi)^2*cos(3/7*Pi)^2*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+15*sin(1/7*Pi)^2*sin(3/7*Pi)^2*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2 +sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-6*sin(1/7*Pi)*cos(3/7*Pi)^2*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+6*sin(1/7*Pi)*sin(3 /7*Pi)^2*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-2*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2* cos(1/7*Pi))^(1/2)-I*sin(1/7*Pi)^6*sin(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-I*cos(3/7*Pi)^2*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7 *Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+I*sin(1/7*Pi)^6*cos(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+I*sin(3/7*Pi)^2*cos(1/7*Pi)^6*(2*(cos(1 /7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+2*sin(1/7*Pi)^6*cos(3/7*Pi)*sin(3/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-6*sin(1/7*Pi) ^5*cos(3/7*Pi)^2*cos(1/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+6*sin(1/7*Pi)^5*sin(3/7*Pi)^2*cos(1/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^ (1/2)-2*cos(1/7*Pi))^(1/2)+15*sin(1/7*Pi)^4*cos(3/7*Pi)^2*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-15*sin(1/7*Pi)^4*sin(3/7*Pi)^2* cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+20*sin(1/7*Pi)^3*cos(3/7*Pi)^2*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos( 1/7*Pi))^(1/2)-20*sin(1/7*Pi)^3*sin(3/7*Pi)^2*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-cos(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^ 2)^(1/2)+2*cos(1/7*Pi))^(1/2)+sin(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+2*cos(3/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1 /7*Pi))^(1/2)*sin(3/7*Pi)-I*sin(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+I*cos(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1 /7*Pi))^(1/2)+2*I*cos(3/7*Pi)*sin(3/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-12*sin(1/7*Pi)^5*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)*(2*(cos(1 /7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-30*sin(1/7*Pi)^4*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2 )+40*sin(1/7*Pi)^3*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+30*sin(1/7*Pi)^2*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/ 7*Pi)^4*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-12*sin(1/7*Pi)*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2* cos(1/7*Pi))^(1/2)-20*I*sin(1/7*Pi)^3*sin(3/7*Pi)^2*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-15*I*sin(1/7*Pi)^2*sin(3/7*Pi)^2*cos(1 /7*Pi)^4*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-6*I*sin(1/7*Pi)*cos(3/7*Pi)^2*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi ))^(1/2)-2*I*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-6*I*sin(1/7*Pi)^5*cos(3/7*Pi)^2*cos(1/7*Pi)*(2*(cos(1 /7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-15*I*sin(1/7*Pi)^4*cos(3/7*Pi)^2*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)-sin(1/ 7*Pi)^6*cos(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+sin(1/7*Pi)^6*sin(3/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^ (1/2)+cos(3/7*Pi)^2*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-sin(3/7*Pi)^2*cos(1/7*Pi)^6*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2* cos(1/7*Pi))^(1/2)+12*I*sin(1/7*Pi)^5*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+30*I*sin(1/7*Pi)^2*cos(3/7*Pi) *sin(3/7*Pi)*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+12*I*sin(1/7*Pi)*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin( 1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+20*I*sin(1/7*Pi)^3*cos(3/7*Pi)^2*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+15*I*sin(1/7*Pi)^2* cos(3/7*Pi)^2*cos(1/7*Pi)^4*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2)+6*I*sin(1/7*Pi)*sin(3/7*Pi)^2*cos(1/7*Pi)^5*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2) ^(1/2)+2*cos(1/7*Pi))^(1/2)+2*I*sin(1/7*Pi)^6*cos(3/7*Pi)*sin(3/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+6*I*sin(1/7*Pi)^5*sin(3/7*Pi)^2* cos(1/7*Pi)*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)+15*I*sin(1/7*Pi)^4*sin(3/7*Pi)^2*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos( 1/7*Pi))^(1/2)-30*I*sin(1/7*Pi)^4*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^2*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)+2*cos(1/7*Pi))^(1/2)-40*I*sin(1/7*Pi)^3*cos(3/7*Pi)* sin(3/7*Pi)*cos(1/7*Pi)^3*(2*(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)-2*cos(1/7*Pi))^(1/2))*infinity/(cos(1/7*Pi)^2+sin(1/7*Pi)^2)^(1/2)/Beta(3/7,4/7)/Beta(2/7,6/7)], .\ 5653944712e-1], [[[2/7, 3/7, 1/7, 5/7], .40370574193883684608855191367235847749662246124715783967066907833878764472682898046925653142575613e-1, -3.20150725854689963\ 1874674692289657094962062863724665104097469435548693123541410387592266366522756432], .2424631612e-1], [[[2/7, 4/7, 1/7, 4/7], .\ 40370574193883684608855191367235847749662246124715783967066907833878764472682898046925653142575613e-1, -3.2015072585468996318746746922896570949620628637246651040974\ 69435548693123541410387592266366522756432], .2425636574e-1], [[[3/7, 4/7, 2/7, 4/7], .\ 88078018281919177629921991810901591091624999711933658597095225988059258090911561419719779825830138e-1, -1/12*(-28+84*I*3^(1/2))^(1/3)-7/3/(-28+84*I*3^(1/2))^(1/3)-2 /3+1/2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2))^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3)), 1/(sin(1/7*Pi)^2+cos(1/7*Pi)^2+2*cos(1/7*Pi)+1)^(1/2)*(-sin(1/7*Pi)^3*cos(3/7*Pi)^2+ sin(1/7*Pi)^3*sin(3/7*Pi)^2+12*sin(1/7*Pi)^2*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^2+6*sin(1/7*Pi)^2*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)-6*I*sin(1/7*Pi)^2*cos(3/7*Pi) ^2*cos(1/7*Pi)^2-2*I*sin(1/7*Pi)^3*cos(3/7*Pi)*sin(3/7*Pi)-3*I*sin(1/7*Pi)^2*cos(3/7*Pi)^2*cos(1/7*Pi)-2*sin(1/7*Pi)^4*cos(3/7*Pi)*sin(3/7*Pi)-4*sin(1/7*Pi)^3*cos(3 /7*Pi)^2*cos(1/7*Pi)+4*sin(1/7*Pi)^3*sin(3/7*Pi)^2*cos(1/7*Pi)+4*sin(1/7*Pi)*cos(3/7*Pi)^2*cos(1/7*Pi)^3-4*sin(1/7*Pi)*sin(3/7*Pi)^2*cos(1/7*Pi)^3-2*cos(3/7*Pi)*sin (3/7*Pi)*cos(1/7*Pi)^4+3*sin(1/7*Pi)*cos(3/7*Pi)^2*cos(1/7*Pi)^2-3*sin(1/7*Pi)*sin(3/7*Pi)^2*cos(1/7*Pi)^2-2*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^3-I*sin(1/7*Pi)^4* sin(3/7*Pi)^2-I*sin(3/7*Pi)^2*cos(1/7*Pi)^4-I*sin(3/7*Pi)^2*cos(1/7*Pi)^3+I*sin(1/7*Pi)^4*cos(3/7*Pi)^2+I*cos(3/7*Pi)^2*cos(1/7*Pi)^4+I*cos(3/7*Pi)^2*cos(1/7*Pi)^3-\ 8*I*sin(1/7*Pi)^3*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)+6*I*sin(1/7*Pi)^2*sin(3/7*Pi)^2*cos(1/7*Pi)^2+3*I*sin(1/7*Pi)^2*sin(3/7*Pi)^2*cos(1/7*Pi)+8*I*sin(1/7*Pi)*cos( 3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^3+6*I*sin(1/7*Pi)*cos(3/7*Pi)*sin(3/7*Pi)*cos(1/7*Pi)^2)*infinity/(sin(1/7*Pi)^6+3*sin(1/7*Pi)^4*cos(1/7*Pi)^2+3*sin(1/7*Pi)^2*cos(1 /7*Pi)^4+cos(1/7*Pi)^6)/Beta(3/7,4/7)/Beta(3/7,5/7)], .5091046478e-1], [[[1/7, 1/7, 3/7, 4/7], .\ 81540603130989681635904789036432040951594683791108706496858621582945088816543450737743235457288671e-1, -5/12*(28+84*I*3^(1/2))^(1/3)-35/3/(28+84*I*3^(1/2))^(1/3)+10 /3-5/2*I*3^(1/2)*(1/6*(28+84*I*3^(1/2))^(1/3)-14/3/(28+84*I*3^(1/2))^(1/3))], .5646093677e-1], [[[3/7, 2/7, 4/7, 4/7], .\ 40370574193883684608855191367235847749662246124715783967066907833878764472682898046925653142575613e-1, 3.20150725854689963187467469228965709496206286372466510409746\ 9435548693123541410387592266366522756432], .2424356552e-1], [[[5/7, 2/7, 4/7, 4/7], .\ 88078018281919177629921991810901591091624999711933658597095225988059258090911561419719779825830138e-1, 1/6*(28+84*I*3^(1/2))^(1/3)+14/3/(28+84*I*3^(1/2))^(1/3)+2/3] , .5086926078e-1], [[[5/7, 1/7, 4/7, 4/7], .40240907943639400634731909714944040401663866234509128441141288245906601201135715703240860399416667e-1, 1.600753629273449\ 815937337346144828547481031431862332552048734717774346561770705193796133183261378216], .2420566272e-1], [[[3/7, 1/7, 5/7, 4/7], .\ 22484766844264544479390930223782163050452172118954328541375955582593363323072508956791302734671867e-1, 1.83537817448657947703172958916641892025017393557074950568053\ 5317940230809527228085264994118764699311], .2650774072e-1], [[[4/7, 3/7, 5/7, 3/7], .\ 88078018281919177629921991810901591091624999711933658597095225988059258090911561419719779825830138e-1, 1/6*(28+84*I*3^(1/2))^(1/3)+14/3/(28+84*I*3^(1/2))^(1/3)+2/3] , .5087560228e-1], [[[4/7, 2/7, 5/7, 3/7], .40240907943639400634731909714944040401663866234509128441141288245906601201135715703240860399416667e-1, 1.600753629273449\ 815937337346144828547481031431862332552048734717774346561770705193796133183261378216], .2421579677e-1], [[[2/7, 1/7, 5/7, 3/7], .\ 55210307436119093878591161105780910246949329956504197093145473725407787883487155564595538949084380e-1, 1.58218866817255634146036173069600995441011038342026842581914\ 2438448577655555996838480436431507741449], .2933164798e-1], [[[2/7, 1/7, 4/7, 3/7], .1221623312291496769575117849200784644012114867776589705809085692606053787111964\ 96089558266030281306, -1/3*(-28+84*I*3^(1/2))^(1/3)-28/3/(-28+84*I*3^(1/2))^(1/3)+4/3-2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2))^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3))], .\ 5082602393e-1], [[[5/7, 2/7, 1/7, 2/7], .49930196017904037493722134677636770309684950974266965570445891366683105653869070714678343914623318e-1, 1/3*(-28+84*I*3^(1/2 ))^(1/3)+28/3/(-28+84*I*3^(1/2))^(1/3)-4/3], .4572847263e-1], [[[4/7, 2/7, 1/7, 2/7], .\ 86437813845228667397080863352785443661973608971473755243597893818197917736766023182394602195496222e-1, 1.83259567068458360354172661276544118118565846415490113859512\ 0535382678993805458866779467188498922960], .2255786762e-1], [[[5/7, 1/7, 2/7, 2/7], .\ 86317887995754242118846051821596241440753907102595370601850876885566124103650030389204040067762268e-1, 1.37444675301343770265629495957408088588924384811617585394634\ 0401537009245354094150084600391374192220], .2252700143e-1], [[[1/7, 1/7, 3/7, 2/7], .1203344614191030396294638538527480880202968182400648988516951034098080502681368\ 96776254288566090775, 1.759488587938981416853672734385613866595459824225324761225058958693595610561327868438380921160881264], .2413871059e-1], [[[3/7, 1/7, 5/7, 2/7 ], .123597367278424016668486962870541019852310230020915237766487230677250205619075282699225659139151051, -1/4*(-28+84*I*3^(1/2))^(1/3)-7/(-28+84*I*3^(1/2))^(1/3)+1-\ 3/2*I*3^(1/2)*(1/6*(-28+84*I*3^(1/2))^(1/3)-14/3/(-28+84*I*3^(1/2))^(1/3))], .5081540372e-1], [[[2/7, 1/7, 4/7, 1/7], .129921447227972874582045487520858830231885591\ 085006542455571016624555336908588419216636583662676051, 1.407590870351185133482938187508491093276367859380259808980047166954876488449062294750704736928705011], .\ 2411645952e-1]]: end: #Hopefuls1C(r): A list of length 21 of equivalence classes of qudraples based on Hopefuls1. Try: #Hopefuls1C(r); Hopefuls1C:=proc(r): [[[[0, 0, 0, 0], r[1]]], [[[0, 2/3, 5/6, 5/3], r[2]], [[2/3, 2/3, 1/2, 0], 11/6-2/3*r[2]], [[2/3, 2/3, 3/2, 0], -1/6-2/3*r[2]], [[2/3, 2/3, 5/2, 0], -9/14-10/7*r[2] ], [[2/3, 5/3, 1/2, 0], 23/6-5/3*r[2]], [[2/3, 5/3, 5/2, 0], 9/2+5*r[2]], [[5/2, 5/6, 2/3, 5/6], 17/16+5/8*r[2]], [[5/3, 2/3, 3/2, 0], -8/3+4/3*r[2]], [[5/3, 2/3, 5 /2, 0], -4*r[2]], [[5/3, 5/3, 1/2, 0], 289/84-55/42*r[2]], [[5/3, 5/3, 3/2, 0], -11/12+5/6*r[2]], [[5/6, 1/2, 2/3, 0], 11/9-4/9*r[2]], [[5/6, 2/3, 0, 2/3], 1/6+2/3* r[2]], [[5/6, 3/2, 2/3, 0], 16/9-8/9*r[2]], [[5/6, 5/2, 2/3, 0], 2-10/9*r[2]]], [[[1/2, 0, 0, 0], r[3]], [[3/2, 0, 0, 0], 2/3-1/3*r[3]], [[5/2, 0, 0, 0], 8/5-3/5*r[ 3]]], [[[1/2, 1/2, 1/3, 0], r[4]], [[1/2, 1/2, 4/3, 0], 1/4*r[4]], [[2/3, 1/3, 1/2, 0], 3/4*r[4]], [[2/3, 1/3, 1/2, 1/2], 4/r[4]], [[2/3, 1/3, 3/2, 0], 1/4*r[4]]], [[[1/2, 1/2, 2/3, 0], r[5]], [[1/2, 1/2, 5/3, 0], -1/2*r[5]], [[1/2, 1/6, 2/3, 1/3], r[5]], [[1/3, 1/6, 1/2, 1/2], 3/2*r[5]], [[1/3, 2/3, 1/2, 0], 3/2*r[5]], [[1/3, 2/3, 1/2, 1/2], -2/r[5]], [[1/3, 2/3, 3/2, 0], -1/2*r[5]], [[1/3, 2/3, 5/2, 0], -7/6*r[5]]], [[[1/2, 1/6, 5/6, 1/6], r[6]], [[1/6, 1/6, 1/2, 1/2], 2*r[6]], [[1/6, 2 /3, 1/2, 1/2], -2/r[6]], [[1/6, 5/6, 1/2, 1/3], -2/r[6]], [[1/6, 5/6, 1/2, 5/6], 1/6/r[6]], [[1/6, 5/6, 3/2, 1/3], 6*r[6]], [[1/6, 5/6, 3/2, 4/3], 32/7/r[6]], [[1/6 , 5/6, 5/2, 1/3], 12*r[6]], [[3/2, 1/6, 5/6, 1/6], 1/2*r[6]], [[3/2, 5/6, 1/6, 5/6], 7/12/r[6]], [[5/2, 1/6, 5/6, 1/6], -(5+5*r[6])/(-8-6*r[6])], [[5/6, 1/3, 1/2, 1 /2], 2/r[6]], [[5/6, 1/6, 1/2, 2/3], 2/r[6]], [[5/6, 5/6, 1/2, 1/2], 1/4*r[6]]], [[[1/3, 0, 2/3, 0], r[7]], [[1/3, 0, 5/3, 0], 1/2-1/2*r[7]], [[1/3, 1/3, 0, 0], 3/2 *r[7]], [[2/3, 0, 4/3, 0], 1/2+1/4*r[7]], [[2/3, 2/3, 0, 0], 3/2+3/4*r[7]], [[2/3, 5/3, 0, 0], 9/2+3*r[7]], [[4/3, 1/3, 0, 0], 3/4-3/4*r[7]], [[4/3, 4/3, 0, 0], -9/ 8-15/8*r[7]], [[5/3, 5/3, 0, 0], 15/4+21/10*r[7]]], [[[1/3, 1/3, 1/2, 0], r[8]], [[1/3, 1/3, 3/2, 0], 2/5-1/5*r[8]], [[1/3, 1/3, 5/2, 0], 52/55-21/55*r[8]], [[1/3, 1/6, 1/2, 1/6], r[8]], [[1/3, 4/3, 1/2, 0], -3/2-1/2*r[8]], [[1/3, 4/3, 3/2, 0], 5/2-1/2*r[8]], [[1/3, 4/3, 5/2, 0], 97/10-21/10*r[8]], [[1/6, 1/2, 1/3, 0], 4/3*r[8 ]], [[1/6, 1/2, 4/3, 0], 1/2-1/6*r[8]], [[1/6, 1/3, 0, 1/3], 2*r[8]], [[1/6, 1/3, 0, 4/3], -3/4-1/4*r[8]], [[1/6, 1/6, 0, 1/2], 2*r[8]], [[1/6, 1/6, 0, 5/2], -14/5-\ 12/5*r[8]], [[1/6, 1/6, 1/3, 1/3], 4/3*r[8]], [[1/6, 1/6, 4/3, 4/3], -1/3-r[8]], [[1/6, 3/2, 4/3, 0], 5/3-1/3*r[8]], [[1/6, 4/3, 0, 4/3], 7/20+1/20*r[8]], [[1/6, 5/ 2, 1/3, 0], -28/9-8/3*r[8]], [[1/6, 5/2, 4/3, 0], 19/18-1/6*r[8]], [[4/3, 1/3, 1/2, 0], 3/5-1/5*r[8]], [[4/3, 1/3, 5/2, 0], -1/5+3/5*r[8]], [[4/3, 4/3, 1/2, 0], -9/ 20-7/20*r[8]], [[4/3, 4/3, 3/2, 0], 7/4+1/4*r[8]], [[4/3, 4/3, 5/2, 0], 19/4-3/4*r[8]], [[5/2, 1/6, 4/3, 1/6], 1/4+3/4*r[8]]], [[[1/3, 1/6, 5/6, 1/6], r[9]], [[1/3, 2/3, 1/6, 1/2], -3/r[9]], [[1/3, 2/3, 1/6, 3/2], 9/7/r[9]], [[1/3, 2/3, 1/6, 5/3], r[9]], [[1/3, 2/3, 5/6, 2/3], 1/3*r[9]], [[1/3, 2/3, 5/6, 5/3], 7/18*r[9]], [[1/6 , 1/3, 2/3, 1/3], 9/4/r[9]], [[1/6, 1/6, 2/3, 1/3], 4/3*r[9]], [[1/6, 2/3, 1/3, 2/3], -2/3*r[9]], [[1/6, 5/6, 1/3, 1/2], -2/3*r[9]], [[1/6, 5/6, 1/3, 1/3], -3/r[9]] , [[1/6, 5/6, 1/3, 3/2], r[9]], [[1/6, 5/6, 1/3, 4/3], 9/7/r[9]], [[1/6, 5/6, 2/3, 2/3], 2/9*r[9]], [[1/6, 5/6, 2/3, 5/3], 28/81*r[9]], [[1/6, 5/6, 2/3, 5/6], 3/8/r [9]], [[1/6, 5/6, 4/3, 1/2], 8/3*r[9]], [[1/6, 5/6, 4/3, 1/3], 9/2/r[9]], [[1/6, 5/6, 4/3, 4/3], 81/28/r[9]], [[1/6, 5/6, 5/3, 2/3], 7/9*r[9]], [[2/3, 1/3, 1/6, 4/3 ], 3/8/r[9]], [[2/3, 1/3, 5/6, 1/2], 4/3*r[9]], [[2/3, 1/3, 5/6, 3/2], 8/5*r[9]], [[2/3, 1/3, 5/6, 4/3], 9/4/r[9]], [[4/3, 1/6, 5/6, 1/6], 2/3*r[9]], [[5/3, 5/6, 1/ 6, 5/6], 1/r[9]], [[5/6, 1/3, 2/3, 1/3], 3/2/r[9]], [[5/6, 1/6, 1/3, 1/3], 3/2/r[9]], [[5/6, 1/6, 1/3, 4/3], 1/2/r[9]], [[5/6, 1/6, 2/3, 1/2], 3/2/r[9]], [[5/6, 1/6 , 2/3, 2/3], 4/3*r[9]], [[5/6, 1/6, 2/3, 3/2], 9/4/r[9]], [[5/6, 1/6, 2/3, 5/3], 8/5*r[9]], [[5/6, 1/6, 4/3, 1/3], 3/4/r[9]], [[5/6, 1/6, 4/3, 4/3], 5/8/r[9]], [[5/ 6, 1/6, 5/3, 1/2], 3/r[9]], [[5/6, 1/6, 5/3, 2/3], 2*r[9]], [[5/6, 1/6, 5/3, 5/3], 9/5*r[9]], [[5/6, 5/6, 1/3, 2/3], 1/2/r[9]]], [[[1/4, 1/4, 3/4, 1/4], r[10]], [[1 /4, 3/4, 1/4, 1/2], -r[10]], [[1/4, 3/4, 1/4, 3/2], 4/5*r[10]], [[1/4, 3/4, 3/4, 3/4], 1/2/r[10]], [[1/4, 3/4, 5/4, 1/2], 2*r[10]], [[1/4, 3/4, 5/4, 3/2], -(16+8*r[ 10])/(-5-5*r[10])], [[1/4, 5/4, 3/4, 1/4], 1/2/r[10]], [[3/4, 1/4, 3/4, 1/2], r[10]], [[3/4, 1/4, 3/4, 3/2], 8/3/r[10]], [[3/4, 1/4, 5/4, 1/4], 1/r[10]], [[5/4, 5/4 , 3/4, 1/4], 3/4/r[10]]], [[[1/4, 3/4, 3/2, 0], r[11]]], [[[1/5, 1/5, 3/5, 2/5], r[12]], [[1/5, 3/5, 2/5, 3/5], -r[12]/(3-r[12])], [[2/5, 1/5, 4/5, 1/5], 2/3*r[12]] , [[2/5, 2/5, 1/5, 4/5], -r[12]/(3-r[12])], [[2/5, 3/5, 4/5, 4/5], -1/2*(-3+r[12])/r[12]], [[3/5, 4/5, 1/5, 4/5], -(1-r[12])/(6-r[12])], [[4/5, 1/5, 3/5, 3/5], -r[ 12]/(-3+r[12])], [[4/5, 2/5, 3/5, 2/5], -r[12]/(-3+r[12])]], [[[1/7, 1/7, 3/7, 2/7], r[13]], [[2/7, 1/7, 4/7, 1/7], 4/5*r[13]]], [[[1/7, 1/7, 3/7, 4/7], r[14]], [[1 /7, 4/7, 2/7, 5/7], -r[14]/(5-r[14])], [[2/7, 1/7, 4/7, 3/7], 4-4/5*r[14]], [[3/7, 1/7, 5/7, 2/7], 3-3/5*r[14]], [[3/7, 3/7, 2/7, 5/7], -5/(5-r[14])], [[3/7, 4/7, 2 /7, 4/7], -5/(5-r[14])], [[4/7, 3/7, 1/7, 5/7], -5/r[14]], [[4/7, 3/7, 5/7, 3/7], -5/(-5+r[14])], [[5/7, 2/7, 1/7, 2/7], -(-10+2*r[14])/r[14]], [[5/7, 2/7, 4/7, 4/7 ], -5/(-5+r[14])]], [[[1/7, 3/7, 5/7, 5/7], r[15]], [[2/7, 1/7, 5/7, 3/7], 1-1/3*r[15]]], [[[2/7, 3/7, 1/7, 5/7], r[16]], [[2/7, 4/7, 1/7, 4/7], r[16]], [[3/7, 2/7, 4/7, 4/7], -r[16]], [[4/7, 1/7, 3/7, 5/7], -r[16]], [[4/7, 2/7, 5/7, 3/7], -1/2*r[16]], [[5/7, 1/7, 4/7, 4/7], -1/2*r[16]]], [[[2/7, 4/7, 3/7, 5/7], r[17]], [[3/7, 3/7, 4/7, 5/7], 2*r[17]]], [[[3/4, 1/4, 1/2, 1/2], r[18]]], [[[3/7, 1/7, 5/7, 4/7], r[19]]], [[[4/7, 2/7, 1/7, 2/7], r[20]], [[5/7, 1/7, 2/7, 2/7], 3/4*r[20]]], [[[ 5/7, 1/7, 3/7, 4/7], r[21]], [[5/7, 2/7, 3/7, 3/7], r[21]]]]: end: #Hopefuls2C(r): A list of length 16 of equivalence classes of qudruples based on Hopefuls2(). Try: #Hopefuls2C(r); Hopefuls2C:=proc(r): [[[[0, 0, 0, 0], r[1]]], [[[1/2, 0, 0, 0], r[2]], [[3/2, 0, 0, 0], 2/3-1/3*r[2]], [[5/2, 0, 0, 0], 8/5-3/5*r[2]]], [[[1/2, 1/2, 1/3, 0], r[3]], [[1/2, 1/2, 4/3, 0], 1/4*r[3]], [[2/3, 1/3, 1/2, 0], 3/4*r[3]], [[2/3, 1/3, 1/2, 1/2], 4/r[3]], [[2/3, 1/3, 3/2, 0], 1/4*r[3]]], [[[1/2, 1/2, 2/3, 0], r[4]], [[1/2, 1/2, 5/3, 0], -1/2*r [4]], [[1/2, 1/6, 2/3, 1/3], r[4]], [[1/3, 1/6, 1/2, 1/2], 3/2*r[4]], [[1/3, 2/3, 1/2, 0], 3/2*r[4]], [[1/3, 2/3, 1/2, 1/2], -2/r[4]], [[1/3, 2/3, 3/2, 0], -1/2*r[4 ]], [[1/3, 2/3, 5/2, 0], -7/6*r[4]]], [[[1/2, 1/6, 5/6, 1/6], r[5]], [[1/6, 1/6, 1/2, 1/2], 2*r[5]], [[1/6, 2/3, 1/2, 1/2], -2/r[5]], [[1/6, 5/6, 1/2, 1/3], -2/r[5] ], [[1/6, 5/6, 1/2, 5/6], 1/6/r[5]], [[1/6, 5/6, 3/2, 1/3], 6*r[5]], [[1/6, 5/6, 3/2, 4/3], 32/7/r[5]], [[1/6, 5/6, 5/2, 1/3], 12*r[5]], [[3/2, 1/6, 5/6, 1/6], 1/2* r[5]], [[3/2, 5/6, 1/6, 5/6], 7/12/r[5]], [[5/2, 1/6, 5/6, 1/6], -(5+5*r[5])/(-8-6*r[5])], [[5/6, 1/3, 1/2, 1/2], 2/r[5]], [[5/6, 1/6, 1/2, 2/3], 2/r[5]], [[5/6, 5/ 6, 1/2, 1/2], 1/4*r[5]]], [[[1/3, 0, 2/3, 0], r[6]], [[1/3, 0, 5/3, 0], 1/2-1/2*r[6]], [[1/3, 1/3, 0, 0], 3/2*r[6]], [[2/3, 0, 4/3, 0], 1/2+1/4*r[6]], [[2/3, 2/3, 0 , 0], 3/2+3/4*r[6]], [[2/3, 5/3, 0, 0], 9/2+3*r[6]], [[4/3, 1/3, 0, 0], 3/4-3/4*r[6]], [[4/3, 4/3, 0, 0], -9/8-15/8*r[6]], [[5/3, 5/3, 0, 0], 15/4+21/10*r[6]]], [[[ 1/3, 1/6, 5/6, 1/6], r[7]], [[1/3, 2/3, 1/6, 1/2], -3/r[7]], [[1/3, 2/3, 1/6, 3/2], 9/7/r[7]], [[1/3, 2/3, 1/6, 5/3], r[7]], [[1/3, 2/3, 5/6, 2/3], 1/3*r[7]], [[1/3 , 2/3, 5/6, 5/3], 7/18*r[7]], [[1/6, 1/3, 2/3, 1/3], 9/4/r[7]], [[1/6, 1/6, 2/3, 1/3], 4/3*r[7]], [[1/6, 2/3, 1/3, 2/3], -2/3*r[7]], [[1/6, 5/6, 1/3, 1/2], -2/3*r[7 ]], [[1/6, 5/6, 1/3, 1/3], -3/r[7]], [[1/6, 5/6, 1/3, 3/2], r[7]], [[1/6, 5/6, 1/3, 4/3], 9/7/r[7]], [[1/6, 5/6, 2/3, 2/3], 2/9*r[7]], [[1/6, 5/6, 2/3, 5/3], 28/81* r[7]], [[1/6, 5/6, 2/3, 5/6], 3/8/r[7]], [[1/6, 5/6, 4/3, 1/2], 8/3*r[7]], [[1/6, 5/6, 4/3, 1/3], 9/2/r[7]], [[1/6, 5/6, 4/3, 4/3], 81/28/r[7]], [[1/6, 5/6, 5/3, 2/ 3], 7/9*r[7]], [[2/3, 1/3, 1/6, 4/3], 3/8/r[7]], [[2/3, 1/3, 5/6, 1/2], 4/3*r[7]], [[2/3, 1/3, 5/6, 3/2], 8/5*r[7]], [[2/3, 1/3, 5/6, 4/3], 9/4/r[7]], [[4/3, 1/6, 5 /6, 1/6], 2/3*r[7]], [[5/3, 5/6, 1/6, 5/6], 1/r[7]], [[5/6, 1/3, 2/3, 1/3], 3/2/r[7]], [[5/6, 1/6, 1/3, 1/3], 3/2/r[7]], [[5/6, 1/6, 1/3, 4/3], 1/2/r[7]], [[5/6, 1/ 6, 2/3, 1/2], 3/2/r[7]], [[5/6, 1/6, 2/3, 2/3], 4/3*r[7]], [[5/6, 1/6, 2/3, 3/2], 9/4/r[7]], [[5/6, 1/6, 2/3, 5/3], 8/5*r[7]], [[5/6, 1/6, 4/3, 1/3], 3/4/r[7]], [[5 /6, 1/6, 4/3, 4/3], 5/8/r[7]], [[5/6, 1/6, 5/3, 1/2], 3/r[7]], [[5/6, 1/6, 5/3, 2/3], 2*r[7]], [[5/6, 1/6, 5/3, 5/3], 9/5*r[7]], [[5/6, 5/6, 1/3, 2/3], 1/2/r[7]]], [[[1/4, 1/4, 3/4, 1/4], r[8]], [[1/4, 3/4, 1/4, 1/2], -r[8]], [[1/4, 3/4, 1/4, 3/2], 4/5*r[8]], [[1/4, 3/4, 3/4, 3/4], 1/2/r[8]], [[1/4, 3/4, 5/4, 1/2], 2*r[8]], [[ 1/4, 3/4, 5/4, 3/2], -(16+8*r[8])/(-5-5*r[8])], [[1/4, 5/4, 3/4, 1/4], 1/2/r[8]], [[3/4, 1/4, 3/4, 1/2], r[8]], [[3/4, 1/4, 3/4, 3/2], 8/3/r[8]], [[3/4, 1/4, 5/4, 1 /4], 1/r[8]], [[5/4, 5/4, 3/4, 1/4], 3/4/r[8]]], [[[1/5, 1/5, 3/5, 2/5], r[9]], [[1/5, 3/5, 2/5, 3/5], -r[9]/(3-r[9])], [[2/5, 1/5, 4/5, 1/5], 2/3*r[9]], [[2/5, 2/5 , 1/5, 4/5], -r[9]/(3-r[9])], [[2/5, 3/5, 4/5, 4/5], -1/2*(-3+r[9])/r[9]], [[3/5, 4/5, 1/5, 4/5], -(1-r[9])/(6-r[9])], [[4/5, 1/5, 3/5, 3/5], -r[9]/(-3+r[9])], [[4/ 5, 2/5, 3/5, 2/5], -r[9]/(-3+r[9])]], [[[1/7, 1/7, 3/7, 2/7], r[10]], [[2/7, 1/7, 4/7, 1/7], 4/5*r[10]]], [[[1/7, 1/7, 3/7, 4/7], r[11]], [[1/7, 4/7, 2/7, 5/7], -r[ 11]/(5-r[11])], [[2/7, 1/7, 4/7, 3/7], 4-4/5*r[11]], [[3/7, 1/7, 5/7, 2/7], 3-3/5*r[11]], [[3/7, 3/7, 2/7, 5/7], -5/(5-r[11])], [[3/7, 4/7, 2/7, 4/7], -5/(5-r[11])] , [[4/7, 3/7, 1/7, 5/7], -5/r[11]], [[4/7, 3/7, 5/7, 3/7], -5/(-5+r[11])], [[5/7, 2/7, 1/7, 2/7], -(-10+2*r[11])/r[11]], [[5/7, 2/7, 4/7, 4/7], -5/(-5+r[11])]], [[[ 1/7, 3/7, 5/7, 5/7], r[12]], [[2/7, 1/7, 5/7, 3/7], 1-1/3*r[12]]], [[[2/7, 3/7, 1/7, 5/7], r[13]], [[2/7, 4/7, 1/7, 4/7], r[13]], [[3/7, 2/7, 4/7, 4/7], -r[13]], [[ 4/7, 1/7, 3/7, 5/7], -r[13]], [[4/7, 2/7, 5/7, 3/7], -1/2*r[13]], [[5/7, 1/7, 4/7, 4/7], -1/2*r[13]]], [[[2/7, 4/7, 3/7, 5/7], r[14]], [[3/7, 3/7, 4/7, 5/7], 2*r[14 ]]], [[[3/7, 1/7, 5/7, 4/7], r[15]]], [[[4/7, 2/7, 1/7, 2/7], r[16]], [[5/7, 1/7, 2/7, 2/7], 3/4*r[16]]]]: end: #Hopefuls3C(r): A list of length 9 of equivalence classes of qudruples based on Hopefuls4(). Try: #Hopefuls3C(r); Hopefuls3C:=proc(r): [[[[1/2, 1/2, 1/3, 0], r[1]], [[1/2, 1/2, 4/3, 0], 1/4*r[1]], [[2/3, 1/3, 1/2, 0], 3/4*r[1]], [[2/3, 1/3, 1/2, 1/2], 4/r[1]], [[2/3, 1/3, 3/2, 0], 1/4*r[1]]], [[[1/ 2, 1/2, 2/3, 0], r[2]], [[1/2, 1/2, 5/3, 0], -1/2*r[2]], [[1/2, 1/6, 2/3, 1/3], r[2]], [[1/3, 1/6, 1/2, 1/2], 3/2*r[2]], [[1/3, 2/3, 1/2, 0], 3/2*r[2]], [[1/3, 2/3, 1/2, 1/2], -2/r[2]], [[1/3, 2/3, 3/2, 0], -1/2*r[2]], [[1/3, 2/3, 5/2, 0], -7/6*r[2]]], [[[1/3, 0, 5/3, 0], r[3]], [[2/3, 0, 4/3, 0], 3/4-1/2*r[3]], [[2/3, 2/3, 0, 0], 9/4-3/2*r[3]], [[2/3, 5/3, 0, 0], 15/2-6*r[3]], [[4/3, 1/3, 0, 0], 3/2*r[3]], [[4/3, 4/3, 0, 0], -3+15/4*r[3]], [[5/3, 5/3, 0, 0], 117/20-21/5*r[3]]], [[[1/7, 1 /7, 3/7, 2/7], r[4]], [[2/7, 1/7, 4/7, 1/7], 4/5*r[4]]], [[[1/7, 3/7, 5/7, 5/7], r[5]], [[2/7, 1/7, 5/7, 3/7], 1-1/3*r[5]]], [[[2/7, 3/7, 1/7, 5/7], r[6]], [[2/7, 4 /7, 1/7, 4/7], r[6]], [[3/7, 2/7, 4/7, 4/7], -r[6]], [[4/7, 1/7, 3/7, 5/7], -r[6]], [[4/7, 2/7, 5/7, 3/7], -1/2*r[6]], [[5/7, 1/7, 4/7, 4/7], -1/2*r[6]]], [[[2/7, 4 /7, 3/7, 5/7], r[7]], [[3/7, 3/7, 4/7, 5/7], 2*r[7]]], [[[3/7, 1/7, 5/7, 4/7], r[8]]], [[[4/7, 2/7, 1/7, 2/7], r[9]], [[5/7, 1/7, 2/7, 2/7], 3/4*r[9]]]]: end: #Hopefuls4C(r): A list of length 9 of equivalence classes of qudruples based on Hopefuls4(). Try: #Hopefuls4C(r); Hopefuls4C:=proc(r): [[[[0, 0, 0, 0], r[1]]], [[[1/2, 0, 0, 0], r[2]], [[3/2, 0, 0, 0], 2/3-1/3*r[2]], [[5/2, 0, 0, 0], 8/5-3/5*r[2]]], [[[1/2, 1/6, 5/6, 1/6], r[3]], [[1/6, 1/6, 1/2, 1 /2], 2*r[3]], [[1/6, 2/3, 1/2, 1/2], -2/r[3]], [[1/6, 5/6, 1/2, 1/3], -2/r[3]], [[1/6, 5/6, 1/2, 5/6], 1/6/r[3]], [[1/6, 5/6, 3/2, 1/3], 6*r[3]], [[1/6, 5/6, 3/2, 4 /3], 32/7/r[3]], [[1/6, 5/6, 5/2, 1/3], 12*r[3]], [[3/2, 1/6, 5/6, 1/6], 1/2*r[3]], [[3/2, 5/6, 1/6, 5/6], 7/12/r[3]], [[5/2, 1/6, 5/6, 1/6], -(5+5*r[3])/(-8-6*r[3] )], [[5/6, 1/3, 1/2, 1/2], 2/r[3]], [[5/6, 1/6, 1/2, 2/3], 2/r[3]], [[5/6, 5/6, 1/2, 1/2], 1/4*r[3]]], [[[1/3, 0, 2/3, 0], r[4]], [[1/3, 1/3, 0, 0], 3/2*r[4]]], [[[ 1/3, 1/6, 5/6, 1/6], r[5]], [[1/3, 2/3, 1/6, 1/2], -3/r[5]], [[1/3, 2/3, 1/6, 3/2], 9/7/r[5]], [[1/3, 2/3, 1/6, 5/3], r[5]], [[1/3, 2/3, 5/6, 2/3], 1/3*r[5]], [[1/3 , 2/3, 5/6, 5/3], 7/18*r[5]], [[1/6, 1/3, 2/3, 1/3], 9/4/r[5]], [[1/6, 1/6, 2/3, 1/3], 4/3*r[5]], [[1/6, 2/3, 1/3, 2/3], -2/3*r[5]], [[1/6, 5/6, 1/3, 1/2], -2/3*r[5 ]], [[1/6, 5/6, 1/3, 1/3], -3/r[5]], [[1/6, 5/6, 1/3, 3/2], r[5]], [[1/6, 5/6, 1/3, 4/3], 9/7/r[5]], [[1/6, 5/6, 2/3, 2/3], 2/9*r[5]], [[1/6, 5/6, 2/3, 5/3], 28/81* r[5]], [[1/6, 5/6, 2/3, 5/6], 3/8/r[5]], [[1/6, 5/6, 4/3, 1/2], 8/3*r[5]], [[1/6, 5/6, 4/3, 1/3], 9/2/r[5]], [[1/6, 5/6, 4/3, 4/3], 81/28/r[5]], [[1/6, 5/6, 5/3, 2/ 3], 7/9*r[5]], [[2/3, 1/3, 1/6, 4/3], 3/8/r[5]], [[2/3, 1/3, 5/6, 1/2], 4/3*r[5]], [[2/3, 1/3, 5/6, 3/2], 8/5*r[5]], [[2/3, 1/3, 5/6, 4/3], 9/4/r[5]], [[4/3, 1/6, 5 /6, 1/6], 2/3*r[5]], [[5/3, 5/6, 1/6, 5/6], 1/r[5]], [[5/6, 1/3, 2/3, 1/3], 3/2/r[5]], [[5/6, 1/6, 1/3, 1/3], 3/2/r[5]], [[5/6, 1/6, 1/3, 4/3], 1/2/r[5]], [[5/6, 1/ 6, 2/3, 1/2], 3/2/r[5]], [[5/6, 1/6, 2/3, 2/3], 4/3*r[5]], [[5/6, 1/6, 2/3, 3/2], 9/4/r[5]], [[5/6, 1/6, 2/3, 5/3], 8/5*r[5]], [[5/6, 1/6, 4/3, 1/3], 3/4/r[5]], [[5 /6, 1/6, 4/3, 4/3], 5/8/r[5]], [[5/6, 1/6, 5/3, 1/2], 3/r[5]], [[5/6, 1/6, 5/3, 2/3], 2*r[5]], [[5/6, 1/6, 5/3, 5/3], 9/5*r[5]], [[5/6, 5/6, 1/3, 2/3], 1/2/r[5]]], [[[1/4, 1/4, 3/4, 1/4], r[6]], [[1/4, 3/4, 1/4, 1/2], -r[6]], [[1/4, 3/4, 1/4, 3/2], 4/5*r[6]], [[1/4, 3/4, 3/4, 3/4], 1/2/r[6]], [[1/4, 3/4, 5/4, 1/2], 2*r[6]], [[ 1/4, 3/4, 5/4, 3/2], -(16+8*r[6])/(-5-5*r[6])], [[1/4, 5/4, 3/4, 1/4], 1/2/r[6]], [[3/4, 1/4, 3/4, 1/2], r[6]], [[3/4, 1/4, 3/4, 3/2], 8/3/r[6]], [[3/4, 1/4, 5/4, 1 /4], 1/r[6]], [[5/4, 5/4, 3/4, 1/4], 3/4/r[6]]], [[[1/5, 1/5, 3/5, 2/5], r[7]], [[1/5, 3/5, 2/5, 3/5], -r[7]/(3-r[7])], [[2/5, 1/5, 4/5, 1/5], 2/3*r[7]], [[2/5, 2/5 , 1/5, 4/5], -r[7]/(3-r[7])], [[2/5, 3/5, 4/5, 4/5], -1/2*(-3+r[7])/r[7]], [[3/5, 4/5, 1/5, 4/5], -(1-r[7])/(6-r[7])], [[4/5, 1/5, 3/5, 3/5], -r[7]/(-3+r[7])], [[4/ 5, 2/5, 3/5, 2/5], -r[7]/(-3+r[7])]], [[[1/7, 1/7, 3/7, 4/7], r[8]], [[1/7, 4/7, 2/7, 5/7], -r[8]/(5-r[8])], [[2/7, 1/7, 4/7, 3/7], 4-4/5*r[8]], [[3/7, 1/7, 5/7, 2/ 7], 3-3/5*r[8]], [[3/7, 3/7, 2/7, 5/7], -5/(5-r[8])], [[3/7, 4/7, 2/7, 4/7], -5/(5-r[8])], [[4/7, 3/7, 1/7, 5/7], -5/r[8]], [[4/7, 3/7, 5/7, 3/7], -5/(-5+r[8])], [[ 5/7, 2/7, 1/7, 2/7], -(-10+2*r[8])/r[8]], [[5/7, 2/7, 4/7, 4/7], -5/(-5+r[8])]]]: end: Hopefuls5C:=proc(r): [[[[[0, 0, 1/2, 0], r[1]], [[0, 0, 1/2, -1/2], 4-2*r[1]], [[0, -1/2, 1/2, -1/2], -3+3*r[1]], [[0, 1/2, 1/2, -1/2], r[1]], [[-1/2, 0, 0, 0], 6-3*r[1]], [[-1/2, -1/2, 0, 0], -4+4*r[1]], [[-1/2, -1/2, 0, -1/2], 18-12*r[1]], [[-1/2, 1/2, 0, 0], 2*r[1]], [[-1/2, 1/2, 0, -1/2], 6-3*r[1]]]], [[[[0, 0, 1/3, -2/3], r[1]], [[0, 0, 1/3, 1 /3], 3/2+1/4*r[1]], [[0, 0, 2/3, -1/3], 3/2-1/4*r[1]], [[0, 0, 2/3, 2/3], 9/4+1/8*r[1]], [[0, -2/3, 2/3, -2/3], 15/8-5/8*r[1]], [[0, -1/3, 1/3, -1/3], r[1]], [[0, 1 /3, 2/3, -2/3], 3/2-1/4*r[1]], [[0, 2/3, 1/3, -1/3], 3/2+1/4*r[1]], [[-2/3, 0, -1/3, 0], 5/3*r[1]], [[-2/3, 0, 2/3, 0], 5/4+5/48*r[1]], [[-2/3, -2/3, 0, 0], 21/8-7/ 8*r[1]], [[-2/3, -2/3, -1/3, -1/3], -35/6+35/6*r[1]], [[-2/3, -1/3, 0, -1/3], 4-2*r[1]], [[-2/3, -1/3, 0, 2/3], 5/2+1/4*r[1]], [[-2/3, 1/3, 0, 0], 3-1/2*r[1]], [[-2 /3, 1/3, -1/3, -1/3], 5/3*r[1]], [[-2/3, 2/3, 0, -1/3], 3-1/2*r[1]], [[-2/3, 2/3, 0, 2/3], -9/4-1/8*r[1]], [[-1/3, 0, 1/3, 0], 2-1/3*r[1]], [[-1/3, -2/3, 0, -2/3], -5+5*r[1]], [[-1/3, -2/3, 0, 1/3], 1+1/2*r[1]], [[-1/3, -1/3, 0, 0], 5/4*r[1]], [[-1/3, -1/3, 1/3, -2/3], 10/3-5/3*r[1]], [[-1/3, 1/3, 0, -2/3], 5/4*r[1]], [[-1/3, 1/3, 0, 1/3], 3+1/2*r[1]], [[-1/3, 2/3, 0, 0], 3+1/2*r[1]], [[-1/3, 2/3, 1/3, -2/3], 2-1/3*r[1]], [[1/3, 0, 2/3, 0], 1+1/6*r[1]], [[1/3, -2/3, 2/3, -1/3], 2/3+1/3*r [1]], [[1/3, 1/3, 2/3, -1/3], 1+1/6*r[1]]]], [[[[-3/4, -3/4, -1/4, -3/4], r[1]], [[-3/4, -3/4, -1/4, -1/4], 2-3/8*r[1]], [[-3/4, -3/4, -1/4, 1/4], 5/3+1/16*r[1]], [ [-3/4, -3/4, -1/4, 3/4], -(16+31*r[1])/(-32+6*r[1])], [[-3/4, -3/4, 3/4, -3/4], 10/9-1/72*r[1]], [[-3/4, -3/4, 3/4, -1/4], -(80-241*r[1])/(144+54*r[1])], [[-3/4, -3 /4, 3/4, 1/4], -(-32+34*r[1])/(-48+27*r[1])], [[-3/4, -3/4, 3/4, 3/4], -(80+75*r[1])/(-432+243*r[1])], [[-3/4, -1/2, -3/4, -1/4], 3/4+45/64*r[1]], [[-3/4, -1/2, -3/ 4, 3/4], -(176+69*r[1])/(-96+6*r[1])], [[-3/4, -1/2, 1/4, -1/4], -(112+105*r[1])/(-176-5*r[1])], [[-3/4, -1/2, 1/4, 3/4], -(-80+45*r[1])/(-16+17*r[1])], [[-3/4, -1/ 4, -3/4, 1/2], -(80-445*r[1])/(192-9*r[1])], [[-3/4, -1/4, -1/4, -1/4], 4/3+1/4*r[1]], [[-3/4, -1/4, -1/4, 3/4], -(-64-124*r[1])/(48+9*r[1])], [[-3/4, -1/4, 1/4, -1 /2], 3/2-3/32*r[1]], [[-3/4, -1/4, 1/4, 1/2], -(64-148*r[1])/(80-15*r[1])], [[-3/4, -1/4, 3/4, -1/4], -(48-107*r[1])/(168-63*r[1])], [[-3/4, -1/4, 3/4, 3/4], -(-544 -382*r[1])/(336+63*r[1])], [[-3/4, 1/2, -3/4, 3/4], -(80+75*r[1])/(144-81*r[1])], [[-3/4, 1/2, 1/4, -1/4], -(160-170*r[1])/(16+15*r[1])], [[-3/4, 1/2, 1/4, 3/4], -( 80+75*r[1])/(80-21*r[1])], [[-3/4, 1/4, -1/4, -3/4], 4/3+1/4*r[1]], [[-3/4, 1/4, -1/4, -1/4], -(-16-63*r[1])/(48+r[1])], [[-3/4, 1/4, -1/4, 1/4], -(80-117*r[1])/(32 -6*r[1])], [[-3/4, 1/4, 3/4, -3/4], -(32+62*r[1])/(-80-15*r[1])], [[-3/4, 1/4, 3/4, -1/4], -(-112-105*r[1])/(160+30*r[1])], [[-3/4, 1/4, 3/4, 1/4], -(112+9*r[1])/(-\ 80+5*r[1])], [[-3/4, 3/4, -1/4, -1/4], -(80-117*r[1])/(32-6*r[1])], [[-3/4, 3/4, -1/4, 3/4], -(80+43*r[1])/(64+12*r[1])], [[-3/4, 3/4, 1/4, -1/2], -(160-170*r[1])/( 16+15*r[1])], [[-3/4, 3/4, 1/4, 1/2], -(16+31*r[1])/(32-6*r[1])], [[-3/4, 3/4, 3/4, -1/4], -(-176-5*r[1])/(96+18*r[1])], [[-3/4, 3/4, 3/4, 3/4], -(-160+106*r[1])/(-\ 240+63*r[1])], [[-1/2, -3/4, -1/2, -1/4], -(224-462*r[1])/(272-r[1])], [[-1/2, -3/4, -1/2, 3/4], -(208-141*r[1])/(16-17*r[1])], [[-1/2, -3/4, 1/2, -1/4], -(256-96*r [1])/(-112+7*r[1])], [[-1/2, -3/4, 1/2, 3/4], -(480+162*r[1])/(-560+147*r[1])], [[-1/2, -1/4, -1/2, 1/4], -(-1120+630*r[1])/(112+9*r[1])], [[-1/2, -1/4, 1/2, -3/4], -(-224+126*r[1])/(48-3*r[1])], [[-1/2, -1/4, 1/2, 1/4], -(336+91*r[1])/(-320+20*r[1])], [[-1/2, 1/4, 1/2, -1/4], -(-80-75*r[1])/(112+9*r[1])], [[-1/2, 3/4, 1/2, -3/ 4], -(-80-75*r[1])/(112+9*r[1])], [[-1/4, -3/4, -1/4, -1/2], 7/12+35/64*r[1]], [[-1/4, -3/4, -1/4, 1/2], 5/3+1/16*r[1]], [[-1/4, -3/4, 1/4, -3/4], 8/5-3/10*r[1]], [ [-1/4, -3/4, 1/4, 1/4], -(128-200*r[1])/(80+15*r[1])], [[-1/4, -3/4, 3/4, -1/2], 47/42-5/224*r[1]], [[-1/4, -3/4, 3/4, 1/2], -(272-197*r[1])/(168-126*r[1])], [[-1/4 , -1/2, -1/4, 1/4], -(112-119*r[1])/(32-2*r[1])], [[-1/4, -1/2, 3/4, -3/4], -(336+91*r[1])/(-416-6*r[1])], [[-1/4, -1/2, 3/4, 1/4], -(-112+63*r[1])/(-48+51*r[1])], [[-1/4, -1/4, 1/4, -3/4], 1+3/16*r[1]], [[-1/4, -1/4, 1/4, -1/4], 3/2-3/32*r[1]], [[-1/4, -1/4, 1/4, 1/4], -(32+30*r[1])/(-48+3*r[1])], [[-1/4, -1/4, 1/4, 3/4], -(-\ 48+51*r[1])/(-32+18*r[1])], [[-1/4, 1/2, 3/4, -3/4], -(16-81*r[1])/(64+12*r[1])], [[-1/4, 1/2, 3/4, 1/4], -(-64+36*r[1])/(-16+17*r[1])], [[-1/4, 1/4, -1/4, 1/2], -( 32+30*r[1])/(-16+r[1])], [[-1/4, 1/4, 1/4, -3/4], 3/2-3/32*r[1]], [[-1/4, 1/4, 1/4, 1/4], -(16-81*r[1])/(32+6*r[1])], [[-1/4, 1/4, 3/4, -1/2], -(16-81*r[1])/(64+12* r[1])], [[-1/4, 1/4, 3/4, 1/2], -(16+31*r[1])/(-32+6*r[1])], [[-1/4, 3/4, 1/4, -3/4], -(32+30*r[1])/(-48+3*r[1])], [[-1/4, 3/4, 1/4, -1/4], -(16-81*r[1])/(32+6*r[1] )], [[-1/4, 3/4, 1/4, 3/4], -(-64+36*r[1])/(48-51*r[1])], [[1/2, -3/4, 1/2, -1/4], -(-160+50*r[1])/(80+3*r[1])], [[1/2, -3/4, 1/2, 3/4], -(-160+10*r[1])/(48+45*r[1] )], [[1/2, -1/4, 1/2, 1/4], -(16+15*r[1])/(-32+2*r[1])], [[1/4, -3/4, 3/4, -3/4], 1+3/80*r[1]], [[1/4, -3/4, 3/4, -1/4], -(96-150*r[1])/(80+15*r[1])], [[1/4, -3/4, 3/4, 1/4], -(-48+51*r[1])/(-80+45*r[1])], [[1/4, -3/4, 3/4, 3/4], -(80-21*r[1])/(-160+90*r[1])], [[1/4, -1/2, 1/4, -1/4], -(80-85*r[1])/(32-2*r[1])], [[1/4, -1/2, 1 /4, 3/4], -(80+75*r[1])/(-160+42*r[1])], [[1/4, -1/4, 1/4, 1/2], -(32+30*r[1])/(-48+3*r[1])], [[1/4, -1/4, 3/4, -1/4], -(-48+19*r[1])/(16+3*r[1])], [[1/4, -1/4, 3/4 , 3/4], -(80+43*r[1])/(-64-12*r[1])], [[1/4, 1/2, 1/4, 3/4], -(-48+51*r[1])/(64-36*r[1])], [[1/4, 1/4, 3/4, -3/4], -(-48+19*r[1])/(16+3*r[1])], [[1/4, 1/4, 3/4, -1/ 4], -(16-81*r[1])/(64+12*r[1])], [[1/4, 1/4, 3/4, 1/4], -(48-51*r[1])/(64-36*r[1])], [[1/4, 3/4, 3/4, -1/4], -(48-51*r[1])/(64-36*r[1])], [[1/4, 3/4, 3/4, 3/4], -(-\ 32+18*r[1])/(-48+51*r[1])], [[3/4, -3/4, 3/4, -1/2], -(-112+55*r[1])/(16+15*r[1])], [[3/4, -3/4, 3/4, 1/2], -(16+15*r[1])/(-144+81*r[1])], [[3/4, -1/2, 3/4, 1/4], - (32-18*r[1])/(16-17*r[1])], [[3/4, 1/4, 3/4, 1/2], -(48-51*r[1])/(64-36*r[1])]]], [[[[-4/5, -4/5, -2/5, -3/5], r[1]], [[-4/5, -4/5, -2/5, 2/5], 13/7+3/70*r[1]], [[-\ 4/5, -4/5, -1/5, -1/5], 13/7-9/35*r[1]], [[-4/5, -4/5, -1/5, 4/5], -(195+322*r[1])/(-305+32*r[1])], [[-4/5, -4/5, 3/5, -3/5], 13/11-1/55*r[1]], [[-4/5, -4/5, 3/5, 2 /5], -(975+1020*r[1])/(-2035+264*r[1])], [[-4/5, -4/5, 4/5, -1/5], -(-455+303*r[1])/(90-48*r[1])], [[-4/5, -4/5, 4/5, 4/5], -(845-348*r[1])/(80-192*r[1])], [[-4/5, -3/5, -1/5, -2/5], 2-24/65*r[1]], [[-4/5, -3/5, -1/5, 3/5], -(650-480*r[1])/(65-36*r[1])], [[-4/5, -3/5, 4/5, -2/5], -(-130-612*r[1])/(715+132*r[1])], [[-4/5, -3/5, 4/5, 3/5], -(-520+528*r[1])/(-715+396*r[1])], [[-4/5, -2/5, -3/5, -2/5], 55/42+22/91*r[1]], [[-4/5, -2/5, -3/5, 3/5], -(-715+176*r[1])/(130+24*r[1])], [[-4/5, -2/5, 2/5, -2/5], -(-2145-627*r[1])/(2210+72*r[1])], [[-4/5, -2/5, 2/5, 3/5], -(715+594*r[1])/(-1690+696*r[1])], [[-4/5, -1/5, -3/5, -3/5], 55/42+22/91*r[1]], [[-4/5, -1/ 5, -3/5, 2/5], -(325+312*r[1])/(-299+12*r[1])], [[-4/5, -1/5, -2/5, -1/5], 10/7+24/91*r[1]], [[-4/5, -1/5, -2/5, 4/5], -(650-678*r[1])/(13+36*r[1])], [[-4/5, -1/5, 2/5, -3/5], -(65-204*r[1])/(156+12*r[1])], [[-4/5, -1/5, 2/5, 2/5], -(585+82*r[1])/(-377+20*r[1])], [[-4/5, -1/5, 3/5, -1/5], -(65+138*r[1])/(-234+24*r[1])], [[-4/5 , -1/5, 3/5, 4/5], -(-1040-381*r[1])/(377+36*r[1])], [[-4/5, 1/5, -2/5, -3/5], 10/7+24/91*r[1]], [[-4/5, 1/5, -2/5, 2/5], -(585+836*r[1])/(-455+28*r[1])], [[-4/5, 1 /5, -1/5, -1/5], 11/5-36/325*r[1]], [[-4/5, 1/5, 3/5, -3/5], -(715-316*r[1])/(-260+36*r[1])], [[-4/5, 1/5, 3/5, 2/5], -(-845+348*r[1])/(65+54*r[1])], [[-4/5, 1/5, 4 /5, -1/5], -(260-464*r[1])/(195+92*r[1])], [[-4/5, 2/5, -1/5, -2/5], 11/5-36/325*r[1]], [[-4/5, 2/5, 4/5, -2/5], -(-715+456*r[1])/(260-144*r[1])], [[-4/5, 3/5, -3/5 , -2/5], -(325+312*r[1])/(-299+12*r[1])], [[-4/5, 3/5, -3/5, 3/5], -(65+264*r[1])/(-325+276*r[1])], [[-4/5, 3/5, 2/5, -2/5], -(65+54*r[1])/(-65-12*r[1])], [[-4/5, 3 /5, 2/5, 3/5], -(325+60*r[1])/(195-48*r[1])], [[-4/5, 4/5, -3/5, -3/5], -(-715+176*r[1])/(130+24*r[1])], [[-4/5, 4/5, -3/5, 2/5], -(65+264*r[1])/(-325+276*r[1])], [ [-4/5, 4/5, -2/5, -1/5], -(585+836*r[1])/(-455+28*r[1])], [[-4/5, 4/5, -2/5, 4/5], -(585+276*r[1])/(520+96*r[1])], [[-4/5, 4/5, 2/5, -3/5], -(65+54*r[1])/(-65-12*r[ 1])], [[-4/5, 4/5, 2/5, 2/5], -(195-293*r[1])/(-325+164*r[1])], [[-4/5, 4/5, 3/5, -1/5], -(130-102*r[1])/(195-132*r[1])], [[-3/5, -4/5, -1/5, -4/5], 12/13*r[1]], [[ -3/5, -4/5, -1/5, 1/5], 3/2+6/65*r[1]], [[-3/5, -4/5, 4/5, -4/5], 12/11-12/715*r[1]], [[-3/5, -4/5, 4/5, 1/5], -(-1105+132*r[1])/(715+44*r[1])], [[-3/5, -3/5, -2/5, -2/5], -(-1430+660*r[1])/(325+4*r[1])], [[-3/5, -3/5, -2/5, 3/5], -(2145+1012*r[1])/(-1820+168*r[1])], [[-3/5, -3/5, 1/5, -1/5], -(1430-462*r[1])/(-585+18*r[1])], [ [-3/5, -3/5, 1/5, 4/5], -(715-396*r[1])/(520-408*r[1])], [[-3/5, -3/5, 3/5, -2/5], 616*r[1]/(585+108*r[1])], [[-3/5, -3/5, 3/5, 3/5], -(-6435+44*r[1])/(2925+540*r[1 ])], [[-3/5, -2/5, -1/5, -1/5], 5/4+3/13*r[1]], [[-3/5, -2/5, -1/5, 4/5], -(325-752*r[1])/(143+60*r[1])], [[-3/5, -2/5, 1/5, -2/5], 10/7-4/91*r[1]], [[-3/5, -2/5, 1 /5, 3/5], -(-845+852*r[1])/(-468+216*r[1])], [[-3/5, -2/5, 4/5, -1/5], -(-520+212*r[1])/(39+108*r[1])], [[-3/5, -2/5, 4/5, 4/5], -(390-572*r[1])/(39+108*r[1])], [[-\ 3/5, -1/5, -2/5, -4/5], -(-1430+660*r[1])/(325+4*r[1])], [[-3/5, -1/5, -2/5, 1/5], -(-780+612*r[1])/(-65+16*r[1])], [[-3/5, -1/5, 3/5, -4/5], -(780-72*r[1])/(-585+4 *r[1])], [[-3/5, -1/5, 3/5, 1/5], -(-715+516*r[1])/(-325+220*r[1])], [[-3/5, 1/5, -1/5, -4/5], 5/4+3/13*r[1]], [[-3/5, 1/5, -1/5, 1/5], -(-195+608*r[1])/(-260+12*r[ 1])], [[-3/5, 1/5, 4/5, -4/5], -(260-274*r[1])/(65+36*r[1])], [[-3/5, 1/5, 4/5, 1/5], -(195+92*r[1])/(-260+24*r[1])], [[-3/5, 2/5, -2/5, -2/5], -(-780+612*r[1])/(-\ 65+16*r[1])], [[-3/5, 2/5, 1/5, -1/5], -(65-156*r[1])/(65+12*r[1])], [[-3/5, 2/5, 1/5, 4/5], -(325+60*r[1])/(130-32*r[1])], [[-3/5, 2/5, 3/5, -2/5], -(-260-216*r[1] )/(325+60*r[1])], [[-3/5, 3/5, -1/5, -1/5], -(-195+608*r[1])/(-260+12*r[1])], [[-3/5, 3/5, -1/5, 4/5], -(260+216*r[1])/(195+36*r[1])], [[-3/5, 3/5, 1/5, -2/5], -(65 -156*r[1])/(65+12*r[1])], [[-3/5, 3/5, 1/5, 3/5], -(585+136*r[1])/(260-36*r[1])], [[-3/5, 3/5, 4/5, -1/5], -(-325+80*r[1])/(-65+156*r[1])], [[-3/5, 4/5, -2/5, -4/5] , -(2145+1012*r[1])/(-1820+168*r[1])], [[-3/5, 4/5, 3/5, -4/5], -(-260-216*r[1])/(325+60*r[1])], [[-2/5, -4/5, 2/5, -1/5], -(715-792*r[1])/(260+48*r[1])], [[-2/5, -\ 4/5, 2/5, 4/5], -(2860+451*r[1])/(-3900+1520*r[1])], [[-2/5, -3/5, -1/5, -3/5], 15/14+18/91*r[1]], [[-2/5, -3/5, -1/5, 2/5], -(650-608*r[1])/(169-36*r[1])], [[-2/5, -3/5, 1/5, -4/5], 5/3-4/13*r[1]], [[-2/5, -3/5, 1/5, 1/5], -(-65-236*r[1])/(247+12*r[1])], [[-2/5, -3/5, 4/5, -3/5], 560*r[1]/(585+108*r[1])], [[-2/5, -3/5, 4/5, 2/ 5], -(-325+10*r[1])/(195+36*r[1])], [[-2/5, -2/5, -1/5, -4/5], 15/14+18/91*r[1]], [[-2/5, -2/5, -1/5, 1/5], -(65+264*r[1])/(-260+8*r[1])], [[-2/5, -2/5, 2/5, -3/5], -(130-270*r[1])/(195+8*r[1])], [[-2/5, -2/5, 2/5, 2/5], -(65+54*r[1])/(-130+32*r[1])], [[-2/5, -2/5, 4/5, -4/5], -(780-297*r[1])/(-390+40*r[1])], [[-2/5, -2/5, 4/5, 1/5], -(-715+246*r[1])/(-455+532*r[1])], [[-2/5, -1/5, 1/5, -1/5], -(-130-248*r[1])/(325+4*r[1])], [[-2/5, -1/5, 1/5, 4/5], -(-65+156*r[1])/(-65+16*r[1])], [[-2/5, 1/5, 2/5, -1/5], -(325+60*r[1])/(-260-6*r[1])], [[-2/5, 2/5, -1/5, -3/5], -(65+264*r[1])/(-260+8*r[1])], [[-2/5, 2/5, -1/5, 2/5], -(-780+192*r[1])/(65+12*r[1])], [[ -2/5, 2/5, 1/5, -4/5], -(-130-248*r[1])/(325+4*r[1])], [[-2/5, 2/5, 1/5, 1/5], -(-845-72*r[1])/(325+4*r[1])], [[-2/5, 2/5, 4/5, -3/5], -(-130-108*r[1])/(195+36*r[1] )], [[-2/5, 2/5, 4/5, 2/5], -(195-293*r[1])/(325-164*r[1])], [[-2/5, 3/5, -1/5, -4/5], -(650-608*r[1])/(169-36*r[1])], [[-2/5, 3/5, -1/5, 1/5], -(-780+192*r[1])/(65 +12*r[1])], [[-2/5, 3/5, 2/5, -3/5], -(325+60*r[1])/(-260-6*r[1])], [[-2/5, 3/5, 4/5, -4/5], -(-130-108*r[1])/(195+36*r[1])], [[-2/5, 3/5, 4/5, 1/5], -(65+124*r[1]) /(-325+150*r[1])], [[-2/5, 4/5, 1/5, -1/5], -(-845-72*r[1])/(325+4*r[1])], [[-2/5, 4/5, 1/5, 4/5], -(390-96*r[1])/(325+60*r[1])], [[-1/5, -4/5, 2/5, -4/5], 10/7-18/ 91*r[1]], [[-1/5, -4/5, 2/5, 1/5], -(-130-156*r[1])/(247+12*r[1])], [[-1/5, -4/5, 3/5, -2/5], -(260+174*r[1])/(-429-12*r[1])], [[-1/5, -4/5, 3/5, 3/5], -(130+31*r[1 ])/(-169+36*r[1])], [[-1/5, -3/5, 3/5, -3/5], -(130-42*r[1])/(-65+2*r[1])], [[-1/5, -3/5, 3/5, 2/5], -(-195+108*r[1])/(-260+204*r[1])], [[-1/5, -2/5, 1/5, -3/5], 1+ 12/65*r[1]], [[-1/5, -2/5, 1/5, 2/5], -(-195+188*r[1])/(-65+16*r[1])], [[-1/5, -1/5, 1/5, -4/5], 1+12/65*r[1]], [[-1/5, -1/5, 1/5, 1/5], -(-325+360*r[1])/(-130+12*r [1])], [[-1/5, -1/5, 2/5, -2/5], -(65-226*r[1])/(195+4*r[1])], [[-1/5, -1/5, 2/5, 3/5], -(260-204*r[1])/(65-36*r[1])], [[-1/5, 1/5, 2/5, -4/5], -(65-226*r[1])/(195+ 4*r[1])], [[-1/5, 1/5, 2/5, 1/5], -(65-156*r[1])/(65+12*r[1])], [[-1/5, 1/5, 3/5, -2/5], -(715-316*r[1])/(-260+36*r[1])], [[-1/5, 1/5, 3/5, 3/5], -(585+136*r[1])/(-\ 260+36*r[1])], [[-1/5, 2/5, 3/5, -3/5], -(715-316*r[1])/(-260+36*r[1])], [[-1/5, 2/5, 3/5, 2/5], -(325+60*r[1])/(-195+48*r[1])], [[-1/5, 3/5, 1/5, -3/5], -(-325+360 *r[1])/(-130+12*r[1])], [[-1/5, 4/5, 1/5, -4/5], -(-195+188*r[1])/(-65+16*r[1])], [[-1/5, 4/5, 2/5, -2/5], -(65-156*r[1])/(65+12*r[1])], [[-1/5, 4/5, 2/5, 3/5], -( 390-96*r[1])/(325+60*r[1])], [[1/5, -4/5, 3/5, -3/5], 1+4/65*r[1]], [[1/5, -4/5, 3/5, 2/5], -(-65+156*r[1])/(-195+48*r[1])], [[1/5, -4/5, 4/5, -1/5], -(-195+44*r[1] )/(130-4*r[1])], [[1/5, -4/5, 4/5, 4/5], -(-195+108*r[1])/(-260+204*r[1])], [[1/5, -3/5, 4/5, -2/5], -(455-504*r[1])/(195+36*r[1])], [[1/5, -3/5, 4/5, 3/5], -(-65+ 156*r[1])/(-585+324*r[1])], [[1/5, -2/5, 2/5, -2/5], -(65+264*r[1])/(-390+12*r[1])], [[1/5, -2/5, 2/5, 3/5], -(325+60*r[1])/(-390+96*r[1])], [[1/5, -1/5, 2/5, -3/5] , -(65+264*r[1])/(-390+12*r[1])], [[1/5, -1/5, 2/5, 2/5], -(-195+48*r[1])/(65+12*r[1])], [[1/5, -1/5, 3/5, -1/5], -(65+264*r[1])/(-390+12*r[1])], [[1/5, -1/5, 3/5, 4/5], -(260+216*r[1])/(-195-36*r[1])], [[1/5, 1/5, 3/5, -3/5], -(65+264*r[1])/(-390+12*r[1])], [[1/5, 1/5, 3/5, 2/5], -(-65+156*r[1])/(-130+32*r[1])], [[1/5, 1/5, 4 /5, -1/5], -(195-468*r[1])/(325+60*r[1])], [[1/5, 2/5, 4/5, -2/5], -(195-468*r[1])/(325+60*r[1])], [[1/5, 3/5, 2/5, -2/5], -(-195+48*r[1])/(65+12*r[1])], [[1/5, 3/5 , 2/5, 3/5], -(325+60*r[1])/(390-96*r[1])], [[1/5, 4/5, 2/5, -3/5], -(325+60*r[1])/(-390+96*r[1])], [[1/5, 4/5, 2/5, 2/5], -(325+60*r[1])/(390-96*r[1])], [[1/5, 4/5 , 3/5, -1/5], -(-65+156*r[1])/(-130+32*r[1])], [[1/5, 4/5, 3/5, 4/5], -(-195+188*r[1])/(-845+348*r[1])], [[2/5, -4/5, 4/5, -4/5], 1+3/130*r[1]], [[2/5, -4/5, 4/5, 1 /5], -(-130+102*r[1])/(-65+36*r[1])], [[2/5, -3/5, 3/5, -2/5], -(-260+120*r[1])/(65+12*r[1])], [[2/5, -3/5, 3/5, 3/5], -(-845-72*r[1])/(195+372*r[1])], [[2/5, -2/5, 4/5, -1/5], -(-390+26*r[1])/(325+4*r[1])], [[2/5, -2/5, 4/5, 4/5], -(585+276*r[1])/(-520-96*r[1])], [[2/5, -1/5, 3/5, -4/5], -(-260+120*r[1])/(65+12*r[1])], [[2/5, -1/5, 3/5, 1/5], -(-65+156*r[1])/(-195+48*r[1])], [[2/5, 1/5, 4/5, -4/5], -(-390+26*r[1])/(325+4*r[1])], [[2/5, 1/5, 4/5, 1/5], -(-65+156*r[1])/(-195+48*r[1])], [[2 /5, 2/5, 3/5, -2/5], -(-65+156*r[1])/(-195+48*r[1])], [[2/5, 3/5, 4/5, -1/5], -(-65+156*r[1])/(-195+48*r[1])], [[2/5, 3/5, 4/5, 4/5], -(-195+48*r[1])/(325+60*r[1])] , [[2/5, 4/5, 3/5, -4/5], -(-845-72*r[1])/(195+372*r[1])], [[3/5, -3/5, 4/5, -3/5], -(-130+32*r[1])/(65+12*r[1])], [[3/5, -3/5, 4/5, 2/5], -(260+6*r[1])/(-195-36*r[ 1])], [[3/5, -2/5, 4/5, -4/5], -(-130+32*r[1])/(65+12*r[1])], [[3/5, -2/5, 4/5, 1/5], -(260-64*r[1])/(65-156*r[1])], [[3/5, 2/5, 4/5, -3/5], -(260-64*r[1])/(65-156* r[1])], [[3/5, 2/5, 4/5, 2/5], -(325+60*r[1])/(-390+96*r[1])], [[3/5, 3/5, 4/5, -4/5], -(260+6*r[1])/(-195-36*r[1])], [[3/5, 3/5, 4/5, 1/5], -(325+60*r[1])/(-390+96 *r[1])]]], [[[[0, -1/2, 1/6, -1/2], r[1]], [[0, -1/2, 1/6, 1/2], 3/2+1/8*r[1]], [[0, -1/3, 1/6, -2/3], r[1]], [[0, -1/3, 1/6, 1/3], 4/3+2/9*r[1]], [[0, 1/2, 1/6, -1 /2], 4/3+2/9*r[1]], [[0, 2/3, 1/6, -2/3], 3/2+1/8*r[1]], [[-5/6, -2/3, 0, -1/3], 8/3-r[1]], [[-5/6, -1/2, 0, -1/2], 63/20-7/5*r[1]], [[-5/6, -1/2, 0, 1/2], 119/60+7 /45*r[1]], [[-5/6, 1/2, 0, -1/2], 12/5-2/5*r[1]], [[-5/6, 1/3, 0, -1/3], 12/5-2/5*r[1]], [[-2/3, -5/6, -1/2, -1/2], -6+6*r[1]], [[-2/3, -5/6, -1/2, 1/2], 3/2+3/8*r[ 1]], [[-2/3, -5/6, 1/2, -1/2], 3/2-1/4*r[1]], [[-2/3, -5/6, 1/2, 1/2], 3/2+1/16*r[1]], [[-2/3, -1/3, -1/2, 0], 3/2*r[1]], [[-2/3, -1/3, -1/2, 1/2], -(-72+6*r[1])/( 24+r[1])], [[-2/3, -1/3, 1/2, -1/2], -(24+6*r[1])/(-24-r[1])], [[-2/3, -1/3, 1/2, 1/2], 48/(24+r[1])], [[-2/3, 1/6, -1/2, -1/2], 3/2*r[1]], [[-2/3, 1/6, -1/2, 1/2], 9/2+3/8*r[1]], [[-2/3, 1/6, 1/2, -1/2], 3/2-1/8*r[1]], [[-2/3, 1/6, 1/2, 1/2], 3+1/8*r[1]], [[-2/3, 2/3, -1/2, 0], 9/2+3/8*r[1]], [[-2/3, 2/3, -1/2, -1/2], -(-72+6* r[1])/(24+r[1])], [[-2/3, 2/3, 1/2, -1/2], -(-36-3*r[1])/(24+r[1])], [[-2/3, 2/3, 1/2, 1/2], -72/(24+r[1])], [[-1/2, 0, 1/3, -1/3], 9/5-3/10*r[1]], [[-1/2, 0, 1/3, 2/3], 18/5+3/20*r[1]], [[-1/2, -5/6, -1/3, -2/3], -28/5+28/5*r[1]], [[-1/2, -5/6, -1/3, 1/3], 14/15+28/45*r[1]], [[-1/2, -5/6, 2/3, -2/3], 7/5-7/30*r[1]], [[-1/2, -\ 5/6, 2/3, 1/3], 56/45+7/135*r[1]], [[-1/2, -1/2, -1/3, 0], 4/3*r[1]], [[-1/2, -1/2, -1/3, 1/2], -(-60+5*r[1])/(24+r[1])], [[-1/2, -1/2, 1/3, -5/6], 27/10-6/5*r[1]], [[-1/2, -1/2, 1/3, -1/3], -(18+12*r[1])/(-24-r[1])], [[-1/2, -1/2, 1/3, 2/3], 54/(24+r[1])], [[-1/2, -1/2, 2/3, 0], 6/5+1/30*r[1]], [[-1/2, -1/2, 2/3, -1/2], -(-24-\ 4*r[1])/(24+r[1])], [[-1/2, -1/2, 2/3, 1/2], -(-192-2*r[1])/(120+5*r[1])], [[-1/2, -1/3, -1/3, 1/3], -(-66+11*r[1])/(24+r[1])], [[-1/2, -1/3, 2/3, -2/3], -(-44-11*r [1])/(48+2*r[1])], [[-1/2, -1/3, 2/3, 1/3], 110/(72+3*r[1])], [[-1/2, 1/2, -1/3, 0], 8/3+4/9*r[1]], [[-1/2, 1/2, -1/3, -1/2], -(-66+11*r[1])/(24+r[1])], [[-1/2, 1/2 , 1/3, -5/6], 9/5-3/10*r[1]], [[-1/2, 1/2, 1/3, -1/3], -(-36-6*r[1])/(24+r[1])], [[-1/2, 1/2, 1/3, 2/3], -108/(24+r[1])], [[-1/2, 1/2, 2/3, -1/2], -(60+5*r[1])/(-48 -2*r[1])], [[-1/2, 1/6, -1/3, -2/3], 4/3*r[1]], [[-1/2, 1/6, -1/3, 1/3], 8/3+4/9*r[1]], [[-1/2, 1/6, 2/3, -2/3], 4/3-1/9*r[1]], [[-1/2, 1/6, 2/3, 1/3], 16/9+2/27*r[ 1]], [[-1/2, 2/3, -1/3, -2/3], -(-60+5*r[1])/(24+r[1])], [[-1/2, 2/3, 2/3, -2/3], -(60+5*r[1])/(-48-2*r[1])], [[-1/3, 0, 1/2, -1/2], 8/5-4/15*r[1]], [[-1/3, 0, 1/2, 1/2], 32/15+4/45*r[1]], [[-1/3, -2/3, 1/2, -5/6], 32/15-4/5*r[1]], [[-1/3, -1/2, 1/2, -1/2], -(33+22*r[1])/(-48-2*r[1])], [[-1/3, -1/2, 1/2, 1/2], 165/(96+4*r[1])], [[-1/3, 1/2, 1/2, -1/2], -(-30-5*r[1])/(24+r[1])], [[-1/3, 1/3, 1/2, -5/6], 8/5-4/15*r[1]], [[-1/3, 1/3, 1/2, -1/3], -(-30-5*r[1])/(24+r[1])], [[1/2, -5/6, 2/3, -2/ 3], 4/5+1/5*r[1]], [[1/2, -5/6, 2/3, 1/3], 16/15+2/45*r[1]], [[1/2, -1/2, 2/3, 0], 1+1/12*r[1]], [[1/2, -1/2, 2/3, -1/2], -(-60+5*r[1])/(48+2*r[1])], [[1/2, -1/3, 2 /3, -2/3], -(-60+5*r[1])/(48+2*r[1])], [[1/2, -1/3, 2/3, 1/3], 30/(24+r[1])], [[1/2, 1/2, 2/3, 0], 4/3+1/18*r[1]], [[1/2, 1/2, 2/3, -1/2], 30/(24+r[1])], [[1/2, 1/6 , 2/3, -2/3], 1+1/12*r[1]], [[1/2, 1/6, 2/3, 1/3], 4/3+1/18*r[1]], [[1/3, -5/6, 1/2, -1/2], 3/5+2/5*r[1]], [[1/3, -5/6, 1/2, 1/2], 6/5+1/20*r[1]], [[1/3, -1/3, 1/2, 0], 1+1/6*r[1]], [[1/3, -1/3, 1/2, -1/2], -(-36+6*r[1])/(24+r[1])], [[1/3, -1/3, 1/2, 1/2], 36/(24+r[1])], [[1/3, 1/6, 1/2, -1/2], 1+1/6*r[1]], [[1/3, 1/6, 1/2, 1/2 ], 2+1/12*r[1]], [[1/3, 2/3, 1/2, 0], 2+1/12*r[1]], [[1/3, 2/3, 1/2, -1/2], 36/(24+r[1])], [[1/3, 2/3, 1/2, 1/2], -36/(24+r[1])]], [[[-5/6, -5/6, -1/2, -1/2], r[2]] , [[-5/6, -5/6, -1/2, 1/2], 2+1/32*r[2]], [[-5/6, -5/6, -1/6, -1/6], 16/9-7/36*r[2]], [[-5/6, -5/6, -1/6, 5/6], 23/9+7/576*r[2]], [[-5/6, -5/6, 1/2, -1/2], 16/13-1/ 52*r[2]], [[-5/6, -5/6, 1/2, 1/2], 21/13+5/832*r[2]], [[-5/6, -5/6, 5/6, -1/6], 10/9-7/1440*r[2]], [[-5/6, -5/6, 5/6, 5/6], 11/6+7/1920*r[2]], [[-5/6, -1/2, -1/6, -\ 1/2], 2-35/96*r[2]], [[-5/6, -1/2, -1/6, 1/2], 67/30+7/384*r[2]], [[-5/6, -1/2, 5/6, -1/2], 71/65-7/2496*r[2]], [[-5/6, -1/2, 5/6, 1/2], -(-2304+28*r[2])/(2496-585* r[2])], [[-5/6, -1/3, -1/2, -1/2], -(-3328+780*r[2])/(1344+5*r[2])], [[-5/6, -1/3, -1/2, 1/2], -(832+3133*r[2])/(-2368+235*r[2])], [[-5/6, -1/3, 1/2, -1/2], -(1664+ 26*r[2])/(-1344-5*r[2])], [[-5/6, -1/3, 1/2, 1/2], -(2496+1911*r[2])/(-4096+960*r[2])], [[-5/6, -1/6, -1/2, -2/3], -(-3328+780*r[2])/(1344+5*r[2])], [[-5/6, -1/6, -\ 1/2, -1/6], 3/2+35/128*r[2]], [[-5/6, -1/6, -1/2, 1/3], -(1472+231*r[2])/(-704+5*r[2])], [[-5/6, -1/6, -1/2, 5/6], -(5312+1379*r[2])/(-1088-105*r[2])], [[-5/6, -1/6 , 1/2, -2/3], -(-2240-1715*r[2])/(3648+105*r[2])], [[-5/6, -1/6, 1/2, -1/6], -(-1472+1113*r[2])/(-576+315*r[2])], [[-5/6, -1/6, 1/2, 1/3], -(-2176+574*r[2])/(576+ 105*r[2])], [[-5/6, -1/6, 1/2, 5/6], -(-6016+2050*r[2])/(960-225*r[2])], [[-5/6, 1/2, -1/6, -1/2], 13/6-35/384*r[2]], [[-5/6, 1/2, 5/6, -1/2], -(-704-1179*r[2])/( 1152+630*r[2])], [[-5/6, 1/6, -1/2, -1/2], 3/2+35/128*r[2]], [[-5/6, 1/6, -1/2, 1/2], -(512-1400*r[2])/(448-105*r[2])], [[-5/6, 1/6, -1/6, -1/6], 13/6-35/384*r[2]], [[-5/6, 1/6, 1/2, -1/2], 11/8-5/512*r[2]], [[-5/6, 1/6, 1/2, 1/2], -(-1472+1945*r[2])/(-1280+588*r[2])], [[-5/6, 1/6, 5/6, -1/6], -(4288-6125*r[2])/(1152+1890*r[2]) ], [[-5/6, 2/3, -1/2, -1/2], -(1472+231*r[2])/(-704+5*r[2])], [[-5/6, 2/3, -1/2, 1/2], -(-960+1057*r[2])/(832-515*r[2])], [[-5/6, 2/3, 1/2, -1/2], -(1600-1463*r[2]) /(-192+365*r[2])], [[-5/6, 2/3, 1/2, 1/2], -(960+735*r[2])/(1024-240*r[2])], [[-5/6, 5/6, -1/2, -2/3], -(832+3133*r[2])/(-2368+235*r[2])], [[-5/6, 5/6, -1/2, -1/6], -(512-1400*r[2])/(448-105*r[2])], [[-5/6, 5/6, -1/2, 1/3], -(-960+1057*r[2])/(832-515*r[2])], [[-5/6, 5/6, -1/2, 5/6], -(1920-2114*r[2])/(832-1155*r[2])], [[-5/6, 5 /6, 1/2, -2/3], -(1600-1463*r[2])/(-192+365*r[2])], [[-5/6, 5/6, 1/2, -1/6], -(-1600+567*r[2])/(1536-840*r[2])], [[-5/6, 5/6, 1/2, 1/3], -(448-1897*r[2])/(-1856+595 *r[2])], [[-5/6, 5/6, 1/2, 5/6], -(-832+1027*r[2])/(448+855*r[2])], [[-2/3, -1/2, -1/3, -1/2], -(-9152+2145*r[2])/(4032+15*r[2])], [[-2/3, -1/2, -1/3, 1/2], -(-9152 +65*r[2])/(4032+15*r[2])], [[-2/3, -1/2, 2/3, -1/2], -(15808-7865*r[2])/(-5632+1320*r[2])], [[-2/3, -1/2, 2/3, 1/2], -(-44928+6370*r[2])/(10560+8085*r[2])], [[-2/3, -1/6, -1/3, -5/6], -(-9152+2145*r[2])/(4032+15*r[2])], [[-2/3, -1/6, -1/3, 1/6], -(-9152+385*r[2])/(4032+15*r[2])], [[-2/3, -1/6, 2/3, -5/6], -(13376+385*r[2])/(-\ 12096-45*r[2])], [[-2/3, -1/6, 2/3, 1/6], -(-4224+1694*r[2])/(576+441*r[2])], [[-2/3, 1/2, -1/3, -1/2], -(-9152+385*r[2])/(4032+15*r[2])], [[-2/3, 1/2, 2/3, -1/2], -(896-2450*r[2])/(960+735*r[2])], [[-2/3, 5/6, -1/3, -5/6], -(-9152+65*r[2])/(4032+15*r[2])], [[-2/3, 5/6, 2/3, -5/6], -(896-2450*r[2])/(960+735*r[2])], [[-1/2, -5/ 6, -1/6, -5/6], 7/8*r[2]], [[-1/2, -5/6, -1/6, 1/6], 7/5+7/64*r[2]], [[-1/2, -5/6, 5/6, -5/6], 14/13-7/416*r[2]], [[-1/2, -5/6, 5/6, 1/6], -(2048+1568*r[2])/(-5824+ 1365*r[2])], [[-1/2, -2/3, 1/6, -1/6], -(1664+130*r[2])/(-1344-5*r[2])], [[-1/2, -2/3, 1/6, 5/6], 3328/(1344+5*r[2])], [[-1/2, -1/2, -1/6, -2/3], -(-2816+660*r[2])/ (1344+5*r[2])], [[-1/2, -1/2, -1/6, -1/6], 6/5+7/32*r[2]], [[-1/2, -1/2, -1/6, 1/3], -(64+945*r[2])/(-832+35*r[2])], [[-1/2, -1/2, -1/6, 5/6], -(384+2086*r[2])/(-\ 704-315*r[2])], [[-1/2, -1/2, 1/6, -5/6], 12/7-5/16*r[2]], [[-1/2, -1/2, 1/6, -1/3], -(-1600+567*r[2])/(576-7*r[2])], [[-1/2, -1/2, 1/6, 1/6], -(128+1250*r[2])/(-\ 1088-105*r[2])], [[-1/2, -1/2, 1/6, 2/3], -(-832+195*r[2])/(192+35*r[2])], [[-1/2, -1/2, 5/6, -2/3], -(3648-1815*r[2])/(-1408+330*r[2])], [[-1/2, -1/2, 5/6, -1/6], -(64+273*r[2])/(-2112+1155*r[2])], [[-1/2, -1/2, 5/6, 1/3], -(-3712+294*r[2])/(2112+385*r[2])], [[-1/2, -1/2, 5/6, 5/6], -(9792+11081*r[2])/(-7744-3465*r[2])], [[-1 /2, -1/3, -1/6, -5/6], -(-2816+660*r[2])/(1344+5*r[2])], [[-1/2, -1/3, -1/6, 1/6], -(-3520+2233*r[2])/(64+49*r[2])], [[-1/2, -1/3, 5/6, -5/6], -(1408+22*r[2])/(-\ 1344-5*r[2])], [[-1/2, -1/3, 5/6, 1/6], -(-4928+1155*r[2])/(1280+980*r[2])], [[-1/2, -1/6, 1/6, -1/6], 13/8-35/512*r[2]], [[-1/2, -1/6, 1/6, 5/6], -(640+490*r[2])/( -448+105*r[2])], [[-1/2, 1/2, -1/6, -2/3], -(-3520+2233*r[2])/(64+49*r[2])], [[-1/2, 1/2, -1/6, -1/6], 19/8+35/512*r[2]], [[-1/2, 1/2, -1/6, 1/3], -(-2944+1330*r[2] )/(64+49*r[2])], [[-1/2, 1/2, -1/6, 5/6], -(-3264+1085*r[2])/(-896+210*r[2])], [[-1/2, 1/2, 1/6, -5/6], 13/8-35/512*r[2]], [[-1/2, 1/2, 1/6, -1/3], -(192-1645*r[2]) /(1088+65*r[2])], [[-1/2, 1/2, 1/6, 1/6], -(-1088-2625*r[2])/(1152+210*r[2])], [[-1/2, 1/2, 1/6, 2/3], -(64+945*r[2])/(448-105*r[2])], [[-1/2, 1/2, 5/6, -2/3], -( 256-700*r[2])/(320+245*r[2])], [[-1/2, 1/2, 5/6, -1/6], -(512+392*r[2])/(832-1155*r[2])], [[-1/2, 1/2, 5/6, 1/3], -(-448+1897*r[2])/(-1856+595*r[2])], [[-1/2, 1/2, 5/6, 5/6], -(-1664+2054*r[2])/(448+855*r[2])], [[-1/2, 1/3, 1/6, -1/6], -(192-1645*r[2])/(1088+65*r[2])], [[-1/2, 1/3, 1/6, 5/6], -(960+735*r[2])/(512-120*r[2])], [ [-1/2, 1/6, -1/6, -5/6], 6/5+7/32*r[2]], [[-1/2, 1/6, -1/6, 1/6], 19/8+35/512*r[2]], [[-1/2, 1/6, 5/6, -5/6], 11/10-1/128*r[2]], [[-1/2, 1/6, 5/6, 1/6], 21/16+5/ 1024*r[2]], [[-1/2, 2/3, -1/6, -5/6], -(64+945*r[2])/(-832+35*r[2])], [[-1/2, 2/3, -1/6, 1/6], -(-2944+1330*r[2])/(64+49*r[2])], [[-1/2, 2/3, 5/6, -5/6], -(256-700* r[2])/(320+245*r[2])], [[-1/2, 2/3, 5/6, 1/6], -(-448+105*r[2])/(64+49*r[2])], [[-1/2, 5/6, 1/6, -1/6], -(-1088-2625*r[2])/(1152+210*r[2])], [[-1/2, 5/6, 1/6, 5/6], -(320+245*r[2])/(1792-420*r[2])], [[-1/3, -5/6, 1/3, -1/6], -(2496-21385*r[2])/(21888+630*r[2])], [[-1/3, -5/6, 1/3, 5/6], -(19136+7995*r[2])/(-23040+5400*r[2])], [ [-1/3, -1/2, 1/3, -1/2], -(1408+1078*r[2])/(-2368-21*r[2])], [[-1/3, -1/2, 1/3, 1/2], -(-9152+2849*r[2])/(1344+1029*r[2])], [[-1/3, 1/2, 1/3, -1/2], -(-1024-1680*r[ 2])/(2112+81*r[2])], [[-1/3, 1/6, 1/3, -1/6], -(-1024-1680*r[2])/(2112+81*r[2])], [[-1/6, -5/6, 1/2, -5/6], 4/3-7/48*r[2]], [[-1/6, -5/6, 1/2, -1/3], -(2368-1515*r[ 2])/(-192+45*r[2])], [[-1/6, -5/6, 1/2, 1/6], -(1920+1918*r[2])/(-3264-315*r[2])], [[-1/6, -5/6, 1/2, 2/3], -(-1472+217*r[2])/(576+105*r[2])], [[-1/6, -2/3, 1/2, -1 /2], -(-1408-110*r[2])/(1344+5*r[2])], [[-1/6, -2/3, 1/2, 1/2], -(-4928+1155*r[2])/(1024+784*r[2])], [[-1/6, -1/2, 1/6, -1/2], 1+35/192*r[2]], [[-1/6, -1/2, 1/6, 1/ 2], -(512-1400*r[2])/(1344-315*r[2])], [[-1/6, -1/6, 1/2, -1/2], 13/10-7/128*r[2]], [[-1/6, -1/6, 1/2, 1/2], -(256+196*r[2])/(-448+105*r[2])], [[-1/6, -1/6, 1/6, -5 /6], 1+35/192*r[2]], [[-1/6, -1/6, 1/6, 1/6], 19/12+35/768*r[2]], [[-1/6, 1/2, 1/6, -1/2], 19/12+35/768*r[2]], [[-1/6, 1/3, 1/2, -1/2], -(1152-910*r[2])/(64+49*r[2] )], [[-1/6, 1/3, 1/2, 1/2], -(-896+210*r[2])/(64+49*r[2])], [[-1/6, 1/6, 1/2, -5/6], 13/10-7/128*r[2]], [[-1/6, 1/6, 1/2, -1/3], -(1152-910*r[2])/(64+49*r[2])], [[-\ 1/6, 1/6, 1/2, 1/6], -(-1472+665*r[2])/(448-105*r[2])], [[-1/6, 1/6, 1/2, 2/3], -(64+945*r[2])/(-448+105*r[2])], [[-1/6, 5/6, 1/2, -1/2], -(-1472+665*r[2])/(448-105 *r[2])], [[-1/6, 5/6, 1/2, 1/2], -(320+245*r[2])/(1792-420*r[2])], [[-1/6, 5/6, 1/6, -5/6], -(512-1400*r[2])/(1344-315*r[2])], [[1/2, -5/6, 5/6, -5/6], 1+1/64*r[2]] , [[1/2, -5/6, 5/6, 1/6], -(1024+784*r[2])/(-3136+735*r[2])], [[1/2, -1/2, 5/6, -2/3], -(-1408+10*r[2])/(1344+5*r[2])], [[1/2, -1/2, 5/6, -1/6], -(1472-1113*r[2])/( 768-420*r[2])], [[1/2, -1/2, 5/6, 1/3], -(256+196*r[2])/(-1472+665*r[2])], [[1/2, -1/2, 5/6, 5/6], -(-1920+2114*r[2])/(832-1155*r[2])], [[1/2, -1/3, 5/6, -5/6], -(-\ 1408+10*r[2])/(1344+5*r[2])], [[1/2, -1/3, 5/6, 1/6], -(-448+105*r[2])/(128+98*r[2])], [[1/2, 1/2, 5/6, -2/3], -(-448+105*r[2])/(128+98*r[2])], [[1/2, 1/2, 5/6, -1/ 6], -(320+245*r[2])/(-896+210*r[2])], [[1/2, 1/2, 5/6, 1/3], -(-1792+420*r[2])/(320+245*r[2])], [[1/2, 1/2, 5/6, 5/6], -(-896+210*r[2])/(960+735*r[2])], [[1/2, 1/6, 5/6, -5/6], -(1472-1113*r[2])/(768-420*r[2])], [[1/2, 1/6, 5/6, 1/6], -(320+245*r[2])/(-896+210*r[2])], [[1/2, 2/3, 5/6, -5/6], -(256+196*r[2])/(-1472+665*r[2])], [ [1/2, 2/3, 5/6, 1/6], -(-1792+420*r[2])/(320+245*r[2])], [[1/3, -1/2, 2/3, -1/2], -(576-455*r[2])/(128-30*r[2])], [[1/3, -1/2, 2/3, 1/2], -(-1856+371*r[2])/(-576+ 1095*r[2])], [[1/3, -1/6, 2/3, -5/6], -(576-455*r[2])/(128-30*r[2])], [[1/3, -1/6, 2/3, 1/6], -(-1472+665*r[2])/(192+147*r[2])], [[1/3, 1/2, 2/3, -1/2], -(-1472+665 *r[2])/(192+147*r[2])], [[1/3, 5/6, 2/3, -5/6], -(-1856+371*r[2])/(-576+1095*r[2])], [[1/6, -5/6, 1/2, -1/2], 1+5/64*r[2]], [[1/6, -5/6, 1/2, 1/2], 21/16+5/1024*r[2 ]], [[1/6, -5/6, 5/6, -1/6], -(9984-4900*r[2])/(-4032+945*r[2])], [[1/6, -5/6, 5/6, 5/6], -(448+2135*r[2])/(5760-5670*r[2])], [[1/6, -1/2, 5/6, -1/2], -(-256-2500*r [2])/(3264+315*r[2])], [[1/6, -1/2, 5/6, 1/2], -(64+305*r[2])/(960-945*r[2])], [[1/6, -1/3, 1/2, -1/2], -(-1664+70*r[2])/(1344+5*r[2])], [[1/6, -1/3, 1/2, 1/2], -(-\ 1088+735*r[2])/(-704+485*r[2])], [[1/6, -1/6, 1/2, -2/3], -(-1664+70*r[2])/(1344+5*r[2])], [[1/6, -1/6, 1/2, -1/6], 19/16+35/1024*r[2]], [[1/6, -1/6, 1/2, 1/3], -( 832-1155*r[2])/(896-210*r[2])], [[1/6, -1/6, 1/2, 5/6], -(-3264+1085*r[2])/(896-210*r[2])], [[1/6, 1/2, 5/6, -1/2], -(-2944+1330*r[2])/(1344-315*r[2])], [[1/6, 1/6, 1/2, -1/2], 19/16+35/1024*r[2]], [[1/6, 1/6, 1/2, 1/2], -(320+245*r[2])/(-448+105*r[2])], [[1/6, 1/6, 5/6, -1/6], -(-2944+1330*r[2])/(1344-315*r[2])], [[1/6, 2/3, 1 /2, -1/2], -(832-1155*r[2])/(896-210*r[2])], [[1/6, 2/3, 1/2, 1/2], -(1792-420*r[2])/(320+245*r[2])], [[1/6, 5/6, 1/2, -2/3], -(-1088+735*r[2])/(-704+485*r[2])], [[ 1/6, 5/6, 1/2, -1/6], -(320+245*r[2])/(-448+105*r[2])], [[1/6, 5/6, 1/2, 1/3], -(1792-420*r[2])/(320+245*r[2])], [[1/6, 5/6, 1/2, 5/6], -(320+245*r[2])/(-7168+1680* r[2])]], [[[-5/6, -5/6, -1/3, -2/3], r[3]], [[-5/6, -5/6, -1/3, -1/6], 2-1/3*r[3]], [[-5/6, -5/6, -1/3, 1/3], 16/9+1/27*r[3]], [[-5/6, -5/6, -1/3, 5/6], 70/27+1/81* r[3]], [[-5/6, -5/6, 2/3, -2/3], 8/7-1/84*r[3]], [[-5/6, -5/6, 2/3, -1/6], 76/63-2/189*r[3]], [[-5/6, -5/6, 2/3, 1/3], 256/189+5/1134*r[3]], [[-5/6, -5/6, 2/3, 5/6] , 1208/567+8/1701*r[3]], [[-5/6, -2/3, -1/3, -2/3], -(-28080+9135*r[3])/(10752+35*r[3])], [[-5/6, -2/3, -1/3, -1/3], 15/7-25/56*r[3]], [[-5/6, -2/3, -1/3, 1/3], -(-\ 21330+315*r[3])/(10752+35*r[3])], [[-5/6, -2/3, -1/3, 2/3], 17/7+5/336*r[3]], [[-5/6, -2/3, 2/3, -2/3], -(313200+4095*r[3])/(-279552-910*r[3])], [[-5/6, -2/3, 2/3, -1/3], 108/91-5/728*r[3]], [[-5/6, -2/3, 2/3, 1/3], 196830/(139776+455*r[3])], [[-5/6, -2/3, 2/3, 2/3], 47/26+5/1248*r[3]], [[-5/6, -1/2, -2/3, -1/3], -(-4032+1050* r[3])/(1536+5*r[3])], [[-5/6, -1/2, -2/3, 2/3], -(-22176+105*r[3])/(7680+25*r[3])], [[-5/6, -1/2, 1/3, -1/3], -(2016+42*r[3])/(-1536-5*r[3])], [[-5/6, -1/2, 1/3, 2/ 3], 18144/(7680+25*r[3])], [[-5/6, -1/3, -2/3, -1/3], 26/27+91/162*r[3]], [[-5/6, -1/3, -2/3, 2/3], 533/162+91/3888*r[3]], [[-5/6, -1/3, 1/3, -1/3], 1027/729-91/ 4374*r[3]], [[-5/6, -1/3, 1/3, 2/3], 5824/2187+455/52488*r[3]], [[-5/6, -1/6, -2/3, -2/3], -(-4032+1050*r[3])/(1536+5*r[3])], [[-5/6, -1/6, -2/3, -1/2], 26/27+91/ 162*r[3]], [[-5/6, -1/6, -2/3, 1/2], 28/9+7/108*r[3]], [[-5/6, -1/6, -2/3, 1/3], -(-21888+840*r[3])/(7680+25*r[3])], [[-5/6, -1/6, -1/3, -1/3], 4/3+5/18*r[3]], [[-5 /6, -1/6, -1/3, -1/6], -(-3240+297*r[3])/(1536+5*r[3])], [[-5/6, -1/6, -1/3, 2/3], 176/45-1/54*r[3]], [[-5/6, -1/6, -1/3, 5/6], -(-8856-63*r[3])/(1536+5*r[3])], [[-\ 5/6, -1/6, 1/3, -2/3], -(1872+120*r[3])/(-1536-5*r[3])], [[-5/6, -1/6, 1/3, -1/2], 77/54-7/162*r[3]], [[-5/6, -1/6, 1/3, 1/2], 43/18+1/54*r[3]], [[-5/6, -1/6, 1/3, 1/3], -(-15624+120*r[3])/(7680+25*r[3])], [[-5/6, -1/6, 2/3, -1/3], 92/75+1/180*r[3]], [[-5/6, -1/6, 2/3, -1/6], -(-9936+36*r[3])/(7680+25*r[3])], [[-5/6, -1/6, 2/3 , 2/3], 578/225-7/1080*r[3]], [[-5/6, -1/6, 2/3, 5/6], -(32832+198*r[3])/(-7680-25*r[3])], [[-5/6, 1/2, -2/3, -1/3], -(-21888+840*r[3])/(7680+25*r[3])], [[-5/6, 1/2 , -2/3, 2/3], -(65088+60*r[3])/(7680+25*r[3])], [[-5/6, 1/2, 1/3, -1/3], -(13536+120*r[3])/(-7680-25*r[3])], [[-5/6, 1/2, 1/3, 2/3], -7776/(1536+5*r[3])], [[-5/6, 1 /3, -1/3, -2/3], -(-3240+297*r[3])/(1536+5*r[3])], [[-5/6, 1/3, -1/3, -1/3], 7/3-5/36*r[3]], [[-5/6, 1/3, -1/3, 1/3], -(-7452+27*r[3])/(1536+5*r[3])], [[-5/6, 1/3, 2/3, -2/3], -(-26568-189*r[3])/(21504+70*r[3])], [[-5/6, 1/3, 2/3, -1/3], 142/105-1/252*r[3]], [[-5/6, 1/3, 2/3, 1/3], 26244/(10752+35*r[3])], [[-5/6, 1/6, -1/3, -2 /3], 4/3+5/18*r[3]], [[-5/6, 1/6, -1/3, -1/6], 7/3-5/36*r[3]], [[-5/6, 1/6, -1/3, 1/3], 94/27+5/162*r[3]], [[-5/6, 1/6, 2/3, -2/3], 11/9-5/864*r[3]], [[-5/6, 1/6, 2 /3, -1/6], 149/108-5/648*r[3]], [[-5/6, 1/6, 2/3, 1/3], 160/81+25/3888*r[3]], [[-5/6, 2/3, -2/3, -1/3], 28/9+7/108*r[3]], [[-5/6, 2/3, -2/3, 2/3], -203/54-7/1296*r[ 3]], [[-5/6, 2/3, 1/3, -1/3], 161/81-7/972*r[3]], [[-5/6, 2/3, 1/3, 2/3], -448/243-35/5832*r[3]], [[-5/6, 5/6, -2/3, -2/3], -(-22176+105*r[3])/(7680+25*r[3])], [[-5 /6, 5/6, -2/3, -1/2], 533/162+91/3888*r[3]], [[-5/6, 5/6, -2/3, 1/2], -203/54-7/1296*r[3]], [[-5/6, 5/6, -2/3, 1/3], -(65088+60*r[3])/(7680+25*r[3])], [[-5/6, 5/6, -1/3, -1/3], 94/27+5/162*r[3]], [[-5/6, 5/6, -1/3, -1/6], -(-7452+27*r[3])/(1536+5*r[3])], [[-5/6, 5/6, -1/3, 2/3], -716/405+1/486*r[3]], [[-5/6, 5/6, -1/3, 5/6], - (1890+9*r[3])/(1536+5*r[3])], [[-5/6, 5/6, 1/3, -2/3], -(13536+120*r[3])/(-7680-25*r[3])], [[-5/6, 5/6, 1/3, -1/2], 161/81-7/972*r[3]], [[-5/6, 5/6, 1/3, 1/2], -35/ 27-1/162*r[3]], [[-5/6, 5/6, 1/3, 1/3], -(25776-30*r[3])/(7680+25*r[3])], [[-5/6, 5/6, 2/3, -1/3], 226/135+1/648*r[3]], [[-5/6, 5/6, 2/3, -1/6], -(-6264-9*r[3])/( 3072+10*r[3])], [[-5/6, 5/6, 2/3, 2/3], -19/405+7/3888*r[3]], [[-5/6, 5/6, 2/3, 5/6], -(432+9*r[3])/(3072+10*r[3])], [[-2/3, -5/6, -1/6, -5/6], 15/16*r[3]], [[-2/3, -5/6, -1/6, -1/6], -(1710+390*r[3])/(-1536-5*r[3])], [[-2/3, -5/6, -1/6, 1/6], 3/2+5/64*r[3]], [[-2/3, -5/6, -1/6, 5/6], -(-15075+15*r[3])/(6144+20*r[3])], [[-2/3, -5/6, 5/6, -5/6], 15/14-5/448*r[3]], [[-2/3, -5/6, 5/6, -1/6], -(46935+345*r[3])/(-43008-140*r[3])], [[-2/3, -5/6, 5/6, 1/6], 8/7+5/1344*r[3]], [[-2/3, -5/6, 5/6, 5 /6], -(38115+60*r[3])/(-21504-70*r[3])], [[-2/3, -2/3, -1/2, -1/3], -(-7392+1925*r[3])/(3072+10*r[3])], [[-2/3, -2/3, -1/2, 2/3], -(-7392+35*r[3])/(3072+10*r[3])], [[-2/3, -2/3, -1/6, -5/6], -(-3744+1218*r[3])/(1536+5*r[3])], [[-2/3, -2/3, -1/6, -1/3], -(-3024-1035*r[3])/(3072+10*r[3])], [[-2/3, -2/3, -1/6, 1/6], -(-2736+105*r [3])/(1536+5*r[3])], [[-2/3, -2/3, -1/6, 2/3], -(-7056+15*r[3])/(3072+10*r[3])], [[-2/3, -2/3, 1/2, -1/3], -(40992+665*r[3])/(-33792-110*r[3])], [[-2/3, -2/3, 1/2, 2/3], -(-65184-35*r[3])/(33792+110*r[3])], [[-2/3, -2/3, 1/6, -1/6], -(-2016-105*r[3])/(1536+5*r[3])], [[-2/3, -2/3, 1/6, 5/6], 4032/(1536+5*r[3])], [[-2/3, -2/3, 5 /6, -5/6], -(-20880-273*r[3])/(19968+65*r[3])], [[-2/3, -2/3, 5/6, -1/3], -(43344+255*r[3])/(-39936-130*r[3])], [[-2/3, -2/3, 5/6, 1/6], 23328/(19968+65*r[3])], [[-\ 2/3, -2/3, 5/6, 2/3], -(59472+105*r[3])/(-39936-130*r[3])], [[-2/3, -1/2, 1/6, -1/6], 247/162-455/7776*r[3]], [[-2/3, -1/2, 1/6, 5/6], 728/243+455/46656*r[3]], [[-2 /3, -1/3, -1/6, -1/3], 6/5+1/4*r[3]], [[-2/3, -1/3, -1/6, -1/6], -(-2880+264*r[3])/(1536+5*r[3])], [[-2/3, -1/3, -1/6, 2/3], 44/15-1/72*r[3]], [[-2/3, -1/3, -1/6, 5 /6], -(-5904-42*r[3])/(1536+5*r[3])], [[-2/3, -1/3, 1/6, -1/2], -(-12672-1560*r[3])/(10752+35*r[3])], [[-2/3, -1/3, 1/6, -1/3], 14/9-5/54*r[3]], [[-2/3, -1/3, 1/6, 1/2], -(-23904+150*r[3])/(10752+35*r[3])], [[-2/3, -1/3, 1/6, 2/3], 8/3+5/252*r[3]], [[-2/3, -1/3, 5/6, -1/3], 182/165+1/396*r[3]], [[-2/3, -1/3, 5/6, -1/6], -(-\ 19152+6*r[3])/(16896+55*r[3])], [[-2/3, -1/3, 5/6, 2/3], 848/495-7/2376*r[3]], [[-2/3, -1/3, 5/6, 5/6], -(42048+228*r[3])/(-16896-55*r[3])], [[-2/3, -1/6, -1/2, -5/ 6], -(-7392+1925*r[3])/(3072+10*r[3])], [[-2/3, -1/6, -1/2, 1/6], -(-3696+220*r[3])/(1536+5*r[3])], [[-2/3, -1/6, 1/2, -5/6], -(-1716-110*r[3])/(1536+5*r[3])], [[-2 /3, -1/6, 1/2, 1/6], -(-9834+55*r[3])/(6144+20*r[3])], [[-2/3, 1/2, 1/6, -1/6], 119/54-35/1296*r[3]], [[-2/3, 1/2, 1/6, 5/6], -224/81-35/3888*r[3]], [[-2/3, 1/3, -1 /2, -1/3], -(-3696+220*r[3])/(1536+5*r[3])], [[-2/3, 1/3, -1/6, -5/6], -(-2880+264*r[3])/(1536+5*r[3])], [[-2/3, 1/3, -1/6, -1/3], -(2808+180*r[3])/(-1536-5*r[3])], [[-2/3, 1/3, -1/6, 1/6], -(-4896+60*r[3])/(1536+5*r[3])], [[-2/3, 1/3, 1/2, -1/3], -(-2256-20*r[3])/(1536+5*r[3])], [[-2/3, 1/3, 1/6, -1/6], -(-2880-60*r[3])/(1536+ 5*r[3])], [[-2/3, 1/3, 1/6, 5/6], -10368/(1536+5*r[3])], [[-2/3, 1/3, 5/6, -5/6], -(-11808-84*r[3])/(10752+35*r[3])], [[-2/3, 1/3, 5/6, -1/3], -(-12600-60*r[3])/( 10752+35*r[3])], [[-2/3, 1/3, 5/6, 1/6], 15552/(10752+35*r[3])], [[-2/3, 1/6, -1/6, -5/6], 6/5+1/4*r[3]], [[-2/3, 1/6, -1/6, -1/6], -(2808+180*r[3])/(-1536-5*r[3])] , [[-2/3, 1/6, -1/6, 1/6], 5/2+5/96*r[3]], [[-2/3, 1/6, 5/6, -5/6], 11/10-1/192*r[3]], [[-2/3, 1/6, 5/6, -1/6], -(-7263-45*r[3])/(6144+20*r[3])], [[-2/3, 1/6, 5/6, 1/6], 4/3+5/1152*r[3]], [[-2/3, 2/3, -1/6, -1/3], 5/2+5/96*r[3]], [[-2/3, 2/3, -1/6, -1/6], -(-4896+60*r[3])/(1536+5*r[3])], [[-2/3, 2/3, -1/6, 2/3], -49/18+5/864*r [3]], [[-2/3, 2/3, -1/6, 5/6], -(2664+15*r[3])/(1536+5*r[3])], [[-2/3, 2/3, 1/6, -1/2], -(-2880-60*r[3])/(1536+5*r[3])], [[-2/3, 2/3, 1/6, -1/3], 119/54-35/1296*r[3 ]], [[-2/3, 2/3, 1/6, 1/2], -(7056-15*r[3])/(1536+5*r[3])], [[-2/3, 2/3, 1/6, 2/3], -37/18-5/432*r[3]], [[-2/3, 2/3, 5/6, -1/3], 113/90+1/864*r[3]], [[-2/3, 2/3, 5/ 6, -1/6], -(-2088-3*r[3])/(1536+5*r[3])], [[-2/3, 2/3, 5/6, 2/3], -19/270+7/2592*r[3]], [[-2/3, 2/3, 5/6, 5/6], -(288+6*r[3])/(1536+5*r[3])], [[-2/3, 5/6, -1/2, -5/ 6], -(-7392+35*r[3])/(3072+10*r[3])], [[-2/3, 5/6, 1/2, -5/6], -(-2256-20*r[3])/(1536+5*r[3])], [[-1/2, -5/6, 1/3, -1/6], -(-9408-385*r[3])/(7680+25*r[3])], [[-1/2, -5/6, 1/3, 5/6], -(-83328-35*r[3])/(38400+125*r[3])], [[-1/2, -2/3, -1/3, -1/3], 65/81+455/972*r[3]], [[-1/2, -2/3, -1/3, 2/3], 533/243+91/5832*r[3]], [[-1/2, -2/3, 2/3, -1/3], 1040/891-91/10692*r[3]], [[-1/2, -2/3, 2/3, 2/3], 8983/5346+455/128304*r[3]], [[-1/2, -1/3, 1/3, -2/3], -(11616+1430*r[3])/(-10752-35*r[3])], [[-1/2, -1 /3, 1/3, 1/3], -(-18744+55*r[3])/(10752+35*r[3])], [[-1/2, -1/6, -1/3, -5/6], 65/81+455/972*r[3]], [[-1/2, -1/6, -1/3, 1/6], 455/243+175/1458*r[3]], [[-1/2, -1/6, 2 /3, -5/6], 385/324-35/972*r[3]], [[-1/2, -1/6, 2/3, 1/6], 1345/972+25/2916*r[3]], [[-1/2, 1/3, -1/3, -1/3], 455/243+175/1458*r[3]], [[-1/2, 1/3, 2/3, -1/3], 322/243 -7/1458*r[3]], [[-1/2, 1/6, 1/3, -1/6], -(2400+50*r[3])/(-1536-5*r[3])], [[-1/2, 2/3, 1/3, -2/3], -(2400+50*r[3])/(-1536-5*r[3])], [[-1/2, 5/6, -1/3, -5/6], 533/243 +91/5832*r[3]], [[-1/2, 5/6, 2/3, -5/6], 322/243-7/1458*r[3]], [[-1/3, -5/6, 1/2, -1/6], 169/135-91/3240*r[3]], [[-1/3, -5/6, 1/2, 5/6], 793/405+91/19440*r[3]], [[-\ 1/3, -2/3, -1/6, -2/3], -(-3168+825*r[3])/(1536+5*r[3])], [[-1/3, -2/3, -1/6, -1/2], 20/27+35/81*r[3]], [[-1/3, -2/3, -1/6, 1/2], 16/9+1/27*r[3]], [[-1/3, -2/3, -1/ 6, 1/3], -(-2736+105*r[3])/(1536+5*r[3])], [[-1/3, -2/3, 1/6, -5/6], 12/7-5/14*r[3]], [[-1/3, -2/3, 1/6, -2/3], -(9072+3105*r[3])/(-10752-35*r[3])], [[-1/3, -2/3, 1 /6, 1/3], -(-16632-225*r[3])/(10752+35*r[3])], [[-1/3, -2/3, 1/6, 1/6], 32/21-5/126*r[3]], [[-1/3, -2/3, 5/6, -2/3], -(17568+285*r[3])/(-16896-55*r[3])], [[-1/3, -2 /3, 5/6, -1/2], 320/297-7/891*r[3]], [[-1/3, -2/3, 5/6, 1/2], 124/99+1/297*r[3]], [[-1/3, -2/3, 5/6, 1/3], -(-100368+15*r[3])/(84480+275*r[3])], [[-1/3, -1/2, -1/6, -5/6], -(-3168+825*r[3])/(1536+5*r[3])], [[-1/3, -1/2, -1/6, 1/6], -(-2772+165*r[3])/(1536+5*r[3])], [[-1/3, -1/2, 5/6, -5/6], -(-1584-33*r[3])/(1536+5*r[3])], [[-1 /3, -1/2, 5/6, 1/6], 1782/(1536+5*r[3])], [[-1/3, -1/3, -1/6, -5/6], 20/27+35/81*r[3]], [[-1/3, -1/3, -1/6, 1/6], 130/81+25/243*r[3]], [[-1/3, -1/3, 1/2, -2/3], 35/ 27-25/324*r[3]], [[-1/3, -1/3, 1/2, 1/3], 125/81+25/3402*r[3]], [[-1/3, -1/3, 1/6, -2/3], 1+5/24*r[3]], [[-1/3, -1/3, 1/6, -1/6], 14/9-5/54*r[3]], [[-1/3, -1/3, 1/6 , 1/3], 47/27+5/324*r[3]], [[-1/3, -1/3, 1/6, 5/6], 256/81+5/486*r[3]], [[-1/3, -1/3, 5/6, -5/6], 790/729-35/2187*r[3]], [[-1/3, -1/3, 5/6, 1/6], 2560/2187+25/6561* r[3]], [[-1/3, -1/6, 1/6, -5/6], 1+5/24*r[3]], [[-1/3, -1/6, 1/6, -1/6], -(-2106-135*r[3])/(1536+5*r[3])], [[-1/3, -1/6, 1/6, 1/6], 5/3+5/144*r[3]], [[-1/3, -1/6, 1 /6, 5/6], 6561/(1536+5*r[3])], [[-1/3, 1/2, -1/6, -5/6], -(-2736+105*r[3])/(1536+5*r[3])], [[-1/3, 1/2, -1/6, 1/6], -(-6120+75*r[3])/(1536+5*r[3])], [[-1/3, 1/2, 5/ 6, -5/6], -(-1692-15*r[3])/(1536+5*r[3])], [[-1/3, 1/2, 5/6, 1/6], 2430/(1536+5*r[3])], [[-1/3, 1/3, -1/6, -2/3], -(-2772+165*r[3])/(1536+5*r[3])], [[-1/3, 1/3, -1/ 6, -1/2], 130/81+25/243*r[3]], [[-1/3, 1/3, -1/6, 1/2], 188/27+5/81*r[3]], [[-1/3, 1/3, -1/6, 1/3], -(-6120+75*r[3])/(1536+5*r[3])], [[-1/3, 1/3, 1/6, -5/6], 14/9-5 /54*r[3]], [[-1/3, 1/3, 1/6, -2/3], -(-2106-135*r[3])/(1536+5*r[3])], [[-1/3, 1/3, 1/6, 1/3], -(-5076-45*r[3])/(1536+5*r[3])], [[-1/3, 1/3, 1/6, 1/6], 68/27-5/162*r [3]], [[-1/3, 1/3, 5/6, -2/3], -(-1692-15*r[3])/(1536+5*r[3])], [[-1/3, 1/3, 5/6, -1/2], 92/81-1/243*r[3]], [[-1/3, 1/3, 5/6, 1/2], 70/27+1/81*r[3]], [[-1/3, 1/3, 5 /6, 1/3], -(-12888+15*r[3])/(7680+25*r[3])], [[-1/3, 1/6, 1/2, -1/6], 119/81-35/1944*r[3]], [[-1/3, 2/3, -1/6, -5/6], 16/9+1/27*r[3]], [[-1/3, 2/3, -1/6, 1/6], 188/ 27+5/81*r[3]], [[-1/3, 2/3, 1/2, -2/3], 119/81-35/1944*r[3]], [[-1/3, 2/3, 1/6, -2/3], 5/3+5/144*r[3]], [[-1/3, 2/3, 1/6, -1/6], 68/27-5/162*r[3]], [[-1/3, 2/3, 1/6 , 5/6], -256/243-5/1458*r[3]], [[-1/3, 2/3, 5/6, -5/6], 92/81-1/243*r[3]], [[-1/3, 2/3, 5/6, 1/6], 512/243+5/729*r[3]], [[-1/3, 5/6, 1/6, -5/6], 47/27+5/324*r[3]], [[-1/3, 5/6, 1/6, -1/6], -(-5076-45*r[3])/(1536+5*r[3])], [[-1/3, 5/6, 1/6, 5/6], -729/(1536+5*r[3])], [[-1/6, -5/6, 1/3, -5/6], 3/2-1/4*r[3]], [[-1/6, -5/6, 1/3, -\ 2/3], -(-1368-312*r[3])/(1536+5*r[3])], [[-1/6, -5/6, 1/3, 1/3], -(2124+24*r[3])/(-1536-5*r[3])], [[-1/6, -5/6, 1/3, 1/6], 41/30-1/36*r[3]], [[-1/6, -5/6, 2/3, -1/2 ], -(-8064-330*r[3])/(7680+25*r[3])], [[-1/6, -5/6, 2/3, -1/3], 52/45-7/270*r[3]], [[-1/6, -5/6, 2/3, 1/2], -(-51552+60*r[3])/(38400+125*r[3])], [[-1/6, -5/6, 2/3, 2/3], 22/15+1/180*r[3]], [[-1/6, -2/3, 2/3, -2/3], -(-3168-165*r[3])/(3072+10*r[3])], [[-1/6, -2/3, 2/3, 1/3], 1980/(1536+5*r[3])], [[-1/6, -1/2, 2/3, -2/3], 95/81-\ 175/3888*r[3]], [[-1/6, -1/2, 2/3, 1/3], 320/243+25/5832*r[3]], [[-1/6, -1/3, 1/3, -2/3], -(-2160+198*r[3])/(1536+5*r[3])], [[-1/6, -1/3, 1/3, -1/3], 7/5-1/12*r[3]] , [[-1/6, -1/3, 1/3, 1/3], -(-2484+9*r[3])/(1536+5*r[3])], [[-1/6, -1/3, 1/3, 2/3], 32/15+1/144*r[3]], [[-1/6, -1/6, 1/3, -5/6], -(-2160+198*r[3])/(1536+5*r[3])], [ [-1/6, -1/6, 1/3, -1/3], -(1872+120*r[3])/(-1536-5*r[3])], [[-1/6, -1/6, 1/3, 1/6], -(-2448+30*r[3])/(1536+5*r[3])], [[-1/6, -1/6, 1/3, 2/3], 3888/(1536+5*r[3])], [ [-1/6, 1/2, 2/3, -2/3], 34/27-5/324*r[3]], [[-1/6, 1/2, 2/3, 1/3], 256/81+5/486*r[3]], [[-1/6, 1/3, 2/3, -2/3], -(-3600-75*r[3])/(3072+10*r[3])], [[-1/6, 1/3, 2/3, 1/3], 3240/(1536+5*r[3])], [[-1/6, 1/6, 1/3, -5/6], 7/5-1/12*r[3]], [[-1/6, 1/6, 1/3, -2/3], -(1872+120*r[3])/(-1536-5*r[3])], [[-1/6, 1/6, 1/3, 1/3], -(-3384-30*r[ 3])/(1536+5*r[3])], [[-1/6, 1/6, 1/3, 1/6], 17/9-5/216*r[3]], [[-1/6, 1/6, 2/3, -1/2], -(-3600-75*r[3])/(3072+10*r[3])], [[-1/6, 1/6, 2/3, -1/3], 34/27-5/324*r[3]], [[-1/6, 1/6, 2/3, 1/2], -(-7056+15*r[3])/(3072+10*r[3])], [[-1/6, 1/6, 2/3, 2/3], 37/9+5/216*r[3]], [[-1/6, 2/3, 1/3, -2/3], -(-2448+30*r[3])/(1536+5*r[3])], [[-1/6 , 2/3, 1/3, -1/3], 17/9-5/216*r[3]], [[-1/6, 2/3, 1/3, 2/3], -32/27-5/1296*r[3]], [[-1/6, 5/6, 1/3, -5/6], -(-2484+9*r[3])/(1536+5*r[3])], [[-1/6, 5/6, 1/3, -1/3], -(-3384-30*r[3])/(1536+5*r[3])], [[-1/6, 5/6, 1/3, 2/3], -648/(1536+5*r[3])], [[1/2, -2/3, 2/3, -1/3], 28/27+7/324*r[3]], [[1/2, -2/3, 2/3, 2/3], 203/162+7/3888*r[3 ]], [[1/2, -1/6, 2/3, -5/6], 28/27+7/324*r[3]], [[1/2, -1/6, 2/3, 1/6], 94/81+5/486*r[3]], [[1/2, 1/3, 2/3, -1/3], 94/81+5/486*r[3]], [[1/2, 5/6, 2/3, -5/6], 203/ 162+7/3888*r[3]], [[1/3, -5/6, 5/6, -5/6], 1+1/48*r[3]], [[1/3, -5/6, 5/6, -1/6], -(1593+18*r[3])/(-1536-5*r[3])], [[1/3, -5/6, 5/6, 1/6], 16/15+1/288*r[3]], [[1/3, -5/6, 5/6, 5/6], -(-4077-9*r[3])/(3072+10*r[3])], [[1/3, -2/3, 1/2, -1/3], -(-1824+70*r[3])/(1536+5*r[3])], [[1/3, -2/3, 1/2, 2/3], -(10848+10*r[3])/(-7680-25*r[3]) ], [[1/3, -2/3, 5/6, -5/6], -(-11376+168*r[3])/(10752+35*r[3])], [[1/3, -2/3, 5/6, -1/3], -(11088+150*r[3])/(-10752-35*r[3])], [[1/3, -2/3, 5/6, 1/6], 11664/(10752+ 35*r[3])], [[1/3, -2/3, 5/6, 2/3], -(-13104-30*r[3])/(10752+35*r[3])], [[1/3, -1/3, 5/6, -1/3], 47/45+1/108*r[3]], [[1/3, -1/3, 5/6, -1/6], -(-1656+6*r[3])/(1536+5* r[3])], [[1/3, -1/3, 5/6, 2/3], 179/135-1/648*r[3]], [[1/3, -1/3, 5/6, 5/6], -(-2520-12*r[3])/(1536+5*r[3])], [[1/3, -1/6, 1/2, -5/6], -(-1824+70*r[3])/(1536+5*r[3] )], [[1/3, -1/6, 1/2, 1/6], -(-2040+25*r[3])/(1536+5*r[3])], [[1/3, 1/3, 1/2, -1/3], -(-2040+25*r[3])/(1536+5*r[3])], [[1/3, 1/3, 5/6, -5/6], -(-1656+6*r[3])/(1536+ 5*r[3])], [[1/3, 1/3, 5/6, -1/3], -(-1692-15*r[3])/(1536+5*r[3])], [[1/3, 1/3, 5/6, 1/6], 1944/(1536+5*r[3])], [[1/3, 1/6, 5/6, -5/6], 47/45+1/108*r[3]], [[1/3, 1/6 , 5/6, -1/6], -(-1692-15*r[3])/(1536+5*r[3])], [[1/3, 1/6, 5/6, 1/6], 32/27+5/1296*r[3]], [[1/3, 2/3, 5/6, -1/3], 32/27+5/1296*r[3]], [[1/3, 2/3, 5/6, -1/6], 1944/( 1536+5*r[3])], [[1/3, 2/3, 5/6, 2/3], 32/81+5/3888*r[3]], [[1/3, 2/3, 5/6, 5/6], 648/(1536+5*r[3])], [[1/3, 5/6, 1/2, -5/6], -(10848+10*r[3])/(-7680-25*r[3])], [[1/ 6, -5/6, 2/3, -2/3], 1+5/96*r[3]], [[1/6, -5/6, 2/3, -1/6], 41/36-5/216*r[3]], [[1/6, -5/6, 2/3, 1/3], 32/27+5/1296*r[3]], [[1/6, -5/6, 2/3, 5/6], 499/324+5/1944*r[ 3]], [[1/6, -2/3, 2/3, -2/3], -(-24624+945*r[3])/(21504+70*r[3])], [[1/6, -2/3, 2/3, -1/3], 8/7-5/168*r[3]], [[1/6, -2/3, 2/3, 1/3], 13122/(10752+35*r[3])], [[1/6, -2/3, 2/3, 2/3], 59/42+5/2016*r[3]], [[1/6, -1/2, 1/3, -1/3], -(-2016+120*r[3])/(1536+5*r[3])], [[1/6, -1/2, 1/3, 2/3], 2592/(1536+5*r[3])], [[1/6, -1/3, 1/3, -1/3] , 91/81+35/486*r[3]], [[1/6, -1/3, 1/3, 2/3], 448/243+35/5832*r[3]], [[1/6, -1/6, 1/3, -2/3], -(-2016+120*r[3])/(1536+5*r[3])], [[1/6, -1/6, 1/3, -1/2], 91/81+35/ 486*r[3]], [[1/6, -1/6, 1/3, 1/2], 47/27+5/324*r[3]], [[1/6, -1/6, 1/3, 1/3], -(-2448+30*r[3])/(1536+5*r[3])], [[1/6, -1/6, 2/3, -1/3], 10/9+5/216*r[3]], [[1/6, -1/ 6, 2/3, -1/6], -(-3672+45*r[3])/(3072+10*r[3])], [[1/6, -1/6, 2/3, 2/3], 49/27-5/1296*r[3]], [[1/6, -1/6, 2/3, 5/6], -(-7992-45*r[3])/(3072+10*r[3])], [[1/6, 1/2, 1 /3, -1/3], -(-2448+30*r[3])/(1536+5*r[3])], [[1/6, 1/2, 1/3, 2/3], -3888/(1536+5*r[3])], [[1/6, 1/3, 2/3, -2/3], -(-3672+45*r[3])/(3072+10*r[3])], [[1/6, 1/3, 2/3, -1/3], 34/27-5/324*r[3]], [[1/6, 1/3, 2/3, 1/3], 2916/(1536+5*r[3])], [[1/6, 1/6, 2/3, -2/3], 10/9+5/216*r[3]], [[1/6, 1/6, 2/3, -1/6], 34/27-5/324*r[3]], [[1/6, 1/ 6, 2/3, 1/3], 128/81+5/972*r[3]], [[1/6, 2/3, 1/3, -1/3], 47/27+5/324*r[3]], [[1/6, 2/3, 1/3, 2/3], -64/81-5/1944*r[3]], [[1/6, 5/6, 1/3, -2/3], 2592/(1536+5*r[3])] , [[1/6, 5/6, 1/3, -1/2], 448/243+35/5832*r[3]], [[1/6, 5/6, 1/3, 1/2], -64/81-5/1944*r[3]], [[1/6, 5/6, 1/3, 1/3], -3888/(1536+5*r[3])], [[1/6, 5/6, 2/3, -1/3], 128/81+5/972*r[3]], [[1/6, 5/6, 2/3, -1/6], 2916/(1536+5*r[3])], [[1/6, 5/6, 2/3, 2/3], 64/243+5/5832*r[3]], [[1/6, 5/6, 2/3, 5/6], 486/(1536+5*r[3])], [[2/3, -2/3, 5/6, -2/3], -(-3168+15*r[3])/(3072+10*r[3])], [[2/3, -2/3, 5/6, -1/2], 82/81+7/972*r[3]], [[2/3, -2/3, 5/6, 1/2], 29/27+1/648*r[3]], [[2/3, -2/3, 5/6, 1/3], -(16272 +15*r[3])/(-15360-50*r[3])], [[2/3, -1/2, 5/6, -5/6], -(-3168+15*r[3])/(3072+10*r[3])], [[2/3, -1/2, 5/6, 1/6], 1620/(1536+5*r[3])], [[2/3, -1/3, 5/6, -5/6], 82/81+ 7/972*r[3]], [[2/3, -1/3, 5/6, 1/6], 256/243+5/1458*r[3]], [[2/3, 1/2, 5/6, -5/6], -(16272+15*r[3])/(-15360-50*r[3])], [[2/3, 1/2, 5/6, 1/6], 1944/(1536+5*r[3])], [ [2/3, 1/3, 5/6, -2/3], 1620/(1536+5*r[3])], [[2/3, 1/3, 5/6, -1/2], 256/243+5/1458*r[3]], [[2/3, 1/3, 5/6, 1/2], 128/81+5/972*r[3]], [[2/3, 1/3, 5/6, 1/3], 1944/( 1536+5*r[3])], [[2/3, 2/3, 5/6, -5/6], 29/27+1/648*r[3]], [[2/3, 2/3, 5/6, 1/6], 128/81+5/972*r[3]]], [[[-2/3, -1/2, 1/2, -1/2], r[4]], [[-1/2, -1/2, 1/3, 0], -(247 -80*r[4])/(-130+20*r[4])], [[-1/2, -1/2, 1/3, 1/2], 33/14-40/91*r[4]], [[-1/2, -1/2, 2/3, -2/3], 12/13*r[4]], [[-1/2, 1/2, 1/3, 0], -(169-40*r[4])/(-65+10*r[4])], [ [-1/3, -2/3, 1/2, 1/2], 40/21-80/273*r[4]], [[-1/3, -1/6, 1/2, 1/2], -819/(-520+80*r[4])], [[-1/3, 1/3, 1/2, 0], -(507-120*r[4])/(-260+40*r[4])], [[1/2, -1/2, 2/3, 1/3], 10/7-20/91*r[4]], [[1/2, 1/2, 2/3, -2/3], 10/7-20/91*r[4]], [[1/3, -1/2, 1/2, 1/2], 5/3-10/39*r[4]], [[1/3, 2/3, 1/2, -2/3], 5/3-10/39*r[4]]]], [[[[-6/7, -6/7 , -4/7, -5/7], r[1]], [[-6/7, -6/7, -4/7, 2/7], 19/11+15/176*r[1]], [[-6/7, -6/7, -1/7, -3/7], 19/11-5/22*r[1]], [[-6/7, -6/7, -1/7, 4/7], 2185/1089+5/363*r[1]], [[ -6/7, -6/7, 3/7, -5/7], 19/15-1/20*r[1]], [[-6/7, -6/7, 3/7, 2/7], 437/297+1/99*r[1]], [[-6/7, -6/7, 6/7, -3/7], 779/726-5/2178*r[1]], [[-6/7, -6/7, 6/7, 4/7], 11381/8712+5/2904*r[1]], [[-6/7, -5/7, -1/7, -4/7], 9/5-27/95*r[1]], [[-6/7, -5/7, -1/7, 3/7], 29/15+1/95*r[1]], [[-6/7, -5/7, 6/7, -4/7], 363/340-9/6460*r[1]], [[-\ 6/7, -5/7, 6/7, 3/7], 1582/1275+8/8075*r[1]], [[-6/7, -3/7, -4/7, -1/7], 16/11+48/209*r[1]], [[-6/7, -3/7, -4/7, 6/7], 131/33-1/209*r[1]], [[-6/7, -3/7, 3/7, -1/7], 136/99+4/627*r[1]], [[-6/7, -3/7, 3/7, 6/7], 1708/495-8/3135*r[1]], [[-6/7, 1/7, -4/7, -5/7], 16/11+48/209*r[1]], [[-6/7, 1/7, -4/7, 2/7], 147/44+45/836*r[1]], [[-6 /7, 1/7, -1/7, -3/7], 17/9-5/57*r[1]], [[-6/7, 1/7, -1/7, 4/7], 181/33+5/209*r[1]], [[-6/7, 1/7, 3/7, -5/7], 15/11-9/418*r[1]], [[-6/7, 1/7, 3/7, 2/7], 74/33+5/418* r[1]], [[-6/7, 1/7, 6/7, -3/7], 1222/1089-10/6897*r[1]], [[-6/7, 1/7, 6/7, 4/7], 1071/484+45/9196*r[1]], [[-6/7, 2/7, -1/7, -4/7], 17/9-5/57*r[1]], [[-6/7, 2/7, -1/ 7, 3/7], 140/27+5/342*r[1]], [[-6/7, 2/7, 6/7, -4/7], 241/216-1/1368*r[1]], [[-6/7, 2/7, 6/7, 3/7], 521/270+2/855*r[1]], [[-6/7, 4/7, -4/7, -1/7], 147/44+45/836*r[1 ]], [[-6/7, 4/7, -4/7, 6/7], -1535/528+5/3344*r[1]], [[-6/7, 4/7, 3/7, -1/7], 89/44+3/836*r[1]], [[-6/7, 4/7, 3/7, 6/7], -317/165+2/1045*r[1]], [[-5/7, -6/7, -3/7, -6/7], 18/19*r[1]], [[-5/7, -6/7, -3/7, 1/7], 3/2+9/76*r[1]], [[-5/7, -6/7, 4/7, -6/7], 6/5-9/190*r[1]], [[-5/7, -6/7, 4/7, 1/7], 13/10+3/380*r[1]], [[-5/7, -4/7, -\ 3/7, -1/7], 4/3+4/19*r[1]], [[-5/7, -4/7, -3/7, 6/7], 524/165-4/1045*r[1]], [[-5/7, -4/7, 4/7, -1/7], 180/143+12/2717*r[1]], [[-5/7, -4/7, 4/7, 6/7], 1928/715-24/ 13585*r[1]], [[-5/7, 1/7, -3/7, -6/7], 4/3+4/19*r[1]], [[-5/7, 1/7, -3/7, 1/7], 13/5+6/95*r[1]], [[-5/7, 1/7, 4/7, -6/7], 5/4-3/152*r[1]], [[-5/7, 1/7, 4/7, 1/7], 17/10+3/380*r[1]], [[-5/7, 3/7, -3/7, -1/7], 13/5+6/95*r[1]], [[-5/7, 3/7, -3/7, 6/7], -241/55+3/1045*r[1]], [[-5/7, 3/7, 4/7, -1/7], 89/55+3/1045*r[1]], [[-5/7, 3/ 7, 4/7, 6/7], -317/110+3/1045*r[1]], [[-4/7, -5/7, 1/7, -6/7], 8/5-24/95*r[1]], [[-4/7, -5/7, 1/7, 1/7], 84/55-12/1045*r[1]], [[-4/7, -1/7, 1/7, -3/7], 17/11-15/209 *r[1]], [[-4/7, -1/7, 1/7, 4/7], 181/66+5/418*r[1]], [[-4/7, 2/7, 1/7, -6/7], 17/11-15/209*r[1]], [[-4/7, 2/7, 1/7, 1/7], 215/88-15/1672*r[1]], [[-4/7, 6/7, 1/7, -3 /7], 215/88-15/1672*r[1]], [[-4/7, 6/7, 1/7, 4/7], -445/396-5/2508*r[1]], [[-3/7, -6/7, 2/7, -6/7], 16/11-40/209*r[1]], [[-3/7, -6/7, 2/7, 1/7], 508/363-20/2299*r[1 ]], [[-3/7, -1/7, 2/7, -4/7], 17/12-5/76*r[1]], [[-3/7, -1/7, 2/7, 3/7], 56/27+1/171*r[1]], [[-3/7, 1/7, 2/7, -6/7], 17/12-5/76*r[1]], [[-3/7, 1/7, 2/7, 1/7], 43/22 -3/418*r[1]], [[-3/7, 6/7, 2/7, -4/7], 43/22-3/418*r[1]], [[-3/7, 6/7, 2/7, 3/7], -155/99-1/627*r[1]], [[-1/7, -4/7, 1/7, -5/7], 1+3/19*r[1]], [[-1/7, -4/7, 1/7, 2/ 7], 49/33+5/209*r[1]], [[-1/7, -3/7, 1/7, -6/7], 1+3/19*r[1]], [[-1/7, -3/7, 1/7, 1/7], 13/9+2/57*r[1]], [[-1/7, 3/7, 1/7, -5/7], 13/9+2/57*r[1]], [[-1/7, 3/7, 1/7, 2/7], 115/33+5/209*r[1]], [[-1/7, 4/7, 1/7, -6/7], 49/33+5/209*r[1]], [[-1/7, 4/7, 1/7, 1/7], 115/33+5/209*r[1]], [[1/7, -6/7, 3/7, -5/7], 1+3/38*r[1]], [[1/7, -6/7 , 3/7, 2/7], 41/33+5/418*r[1]], [[1/7, -6/7, 6/7, -3/7], 127/121-15/2299*r[1]], [[1/7, -6/7, 6/7, 4/7], 841/726+5/4598*r[1]], [[1/7, -5/7, 6/7, -4/7], 21/20-3/380*r [1]], [[1/7, -5/7, 6/7, 3/7], 254/225+1/1425*r[1]], [[1/7, -3/7, 3/7, -1/7], 13/11+6/209*r[1]], [[1/7, -3/7, 3/7, 6/7], 241/110-3/2090*r[1]], [[1/7, 1/7, 3/7, -5/7] , 13/11+6/209*r[1]], [[1/7, 1/7, 3/7, 2/7], 115/66+5/418*r[1]], [[1/7, 1/7, 6/7, -3/7], 215/198-5/1254*r[1]], [[1/7, 1/7, 6/7, 4/7], 445/264+5/1672*r[1]], [[1/7, 2/ 7, 6/7, -4/7], 215/198-5/1254*r[1]], [[1/7, 2/7, 6/7, 3/7], 155/99+1/627*r[1]], [[1/7, 4/7, 3/7, -1/7], 115/66+5/418*r[1]], [[1/7, 4/7, 3/7, 6/7], -109/198+1/1254*r [1]], [[2/7, -6/7, 4/7, -6/7], 1+15/304*r[1]], [[2/7, -6/7, 4/7, 1/7], 41/36+5/456*r[1]], [[2/7, -4/7, 4/7, -1/7], 49/44+15/836*r[1]], [[2/7, -4/7, 4/7, 6/7], 307/ 176-3/3344*r[1]], [[2/7, 1/7, 4/7, -6/7], 49/44+15/836*r[1]], [[2/7, 1/7, 4/7, 1/7], 46/33+2/209*r[1]], [[2/7, 3/7, 4/7, -1/7], 46/33+2/209*r[1]], [[2/7, 3/7, 4/7, 6/7], -109/132+1/836*r[1]]], [[[-6/7, -6/7, -4/7, -3/7], r[2]], [[-6/7, -6/7, -4/7, 4/7], 19/9+1/42*r[2]], [[-6/7, -6/7, -1/7, -1/7], 19/11-12/77*r[2]], [[-6/7, -6/ 7, -1/7, 6/7], 1805/693+16/1617*r[2]], [[-6/7, -6/7, 3/7, -3/7], 19/15-2/105*r[2]], [[-6/7, -6/7, 3/7, 4/7], 551/315+4/735*r[2]], [[-6/7, -6/7, 6/7, -1/7], 1957/ 1782-8/2079*r[2]], [[-6/7, -6/7, 6/7, 6/7], 4199/2268+4/1323*r[2]], [[-6/7, -5/7, -2/7, -5/7], -(-96824+46536*r[2])/(19285+60*r[2])], [[-6/7, -5/7, -2/7, 2/7], -(-\ 38171+1554*r[2])/(19285+60*r[2])], [[-6/7, -5/7, -1/7, -2/7], 31/25+528/3325*r[2]], [[-6/7, -5/7, -1/7, 5/7], 2157/875-1584/116375*r[2]], [[-6/7, -5/7, 5/7, -5/7], -(166649+3864*r[2])/(-154280-480*r[2])], [[-6/7, -5/7, 5/7, 2/7], -(-206283+792*r[2])/(154280+480*r[2])], [[-6/7, -5/7, 6/7, -2/7], 4593/4250+792/282625*r[2]], [[-6 /7, -5/7, 6/7, 5/7], 4588/2975-1056/395675*r[2]], [[-6/7, -4/7, -1/7, -3/7], 187/162+748/3591*r[2]], [[-6/7, -4/7, -1/7, 4/7], 442/189-136/8379*r[2]], [[-6/7, -4/7, 6/7, -3/7], 697/648+17/7182*r[2]], [[-6/7, -4/7, 6/7, 4/7], 935/672-17/7448*r[2]], [[-6/7, -3/7, -5/7, -2/7], -(-14896+31584*r[2])/(-18753+72*r[2])], [[-6/7, -3/7, -5/7, 5/7], -(59584+672*r[2])/(-18753+72*r[2])], [[-6/7, -3/7, -1/7, -4/7], 2-48/133*r[2]], [[-6/7, -3/7, -1/7, 3/7], 46/21+16/931*r[2]], [[-6/7, -3/7, 2/7, -2/7], -(-305368+12432*r[2])/(206283-792*r[2])], [[-6/7, -3/7, 2/7, 5/7], -(185136+576*r[2])/(-68761+264*r[2])], [[-6/7, -3/7, 6/7, -4/7], 97/90-4/1995*r[2]], [[-6/7, -3/7 , 6/7, 3/7], 2048/1575+128/69825*r[2]], [[-6/7, -2/7, -3/7, -4/7], -(-9310+2100*r[2])/(3857+12*r[2])], [[-6/7, -2/7, -3/7, 3/7], -(-60515+420*r[2])/(23142+72*r[2])] , [[-6/7, -2/7, 4/7, -4/7], -(9310+105*r[2])/(-7714-24*r[2])], [[-6/7, -2/7, 4/7, 3/7], 13965/(7714+24*r[2])], [[-6/7, -1/7, -5/7, -4/7], -(-14896+31584*r[2])/(-\ 18753+72*r[2])], [[-6/7, -1/7, -5/7, 3/7], -(16758+1512*r[2])/(-6251+24*r[2])], [[-6/7, -1/7, -4/7, -1/7], 14/9+16/57*r[2]], [[-6/7, -1/7, -4/7, 6/7], 749/108-2/171 *r[2]], [[-6/7, -1/7, -3/7, -5/7], -(-9310+2100*r[2])/(3857+12*r[2])], [[-6/7, -1/7, -3/7, 2/7], -(-90307+1848*r[2])/(34713+108*r[2])], [[-6/7, -1/7, -2/7, -2/7], - (-10241+2310*r[2])/(3857+12*r[2])], [[-6/7, -1/7, -2/7, 5/7], -(-16758-336*r[2])/(3857+12*r[2])], [[-6/7, -1/7, 2/7, -4/7], -(-10241+1134*r[2])/(6251-24*r[2])], [[-\ 6/7, -1/7, 2/7, 3/7], -(124754+3024*r[2])/(-56259+216*r[2])], [[-6/7, -1/7, 3/7, -1/7], 196/135+8/855*r[2]], [[-6/7, -1/7, 3/7, 6/7], 3941/675-32/4275*r[2]], [[-6/7 , -1/7, 4/7, -5/7], -(-50274-1008*r[2])/(42427+132*r[2])], [[-6/7, -1/7, 5/7, -2/7], -(-28861+336*r[2])/(23142+72*r[2])], [[-6/7, -1/7, 5/7, 5/7], -(129409+1680*r[2 ])/(-46284-144*r[2])], [[-6/7, 1/7, -4/7, -3/7], 14/9+16/57*r[2]], [[-6/7, 1/7, -4/7, 4/7], 37/6+4/133*r[2]], [[-6/7, 1/7, -1/7, -1/7], 15/7-72/931*r[2]], [[-6/7, 1 /7, 3/7, -3/7], 13/9-4/399*r[2]], [[-6/7, 1/7, 3/7, 4/7], 29/7+12/931*r[2]], [[-6/7, 1/7, 6/7, -1/7], 272/231-32/10241*r[2]], [[-6/7, 2/7, -2/7, -5/7], -(-10241+ 2310*r[2])/(3857+12*r[2])], [[-6/7, 2/7, -2/7, 2/7], -(-30723+462*r[2])/(7714+24*r[2])], [[-6/7, 2/7, -1/7, -2/7], 121/63+176/2793*r[2]], [[-6/7, 2/7, 5/7, -5/7], - (-40964-462*r[2])/(34713+108*r[2])], [[-6/7, 2/7, 5/7, 2/7], -(-68761+264*r[2])/(34713+108*r[2])], [[-6/7, 2/7, 6/7, -2/7], 2431/2100+44/23275*r[2]], [[-6/7, 3/7, -\ 1/7, -3/7], 121/63+176/2793*r[2]], [[-6/7, 3/7, 6/7, -3/7], 652/567+32/25137*r[2]], [[-6/7, 4/7, -5/7, -2/7], -(16758+1512*r[2])/(-6251+24*r[2])], [[-6/7, 4/7, -5/7 , 5/7], -58653/(12502-48*r[2])], [[-6/7, 4/7, -1/7, -4/7], 15/7-72/931*r[2]], [[-6/7, 4/7, 2/7, -2/7], -(-25137+378*r[2])/(12502-48*r[2])], [[-6/7, 4/7, 2/7, 5/7], -(34713+108*r[2])/(12502-48*r[2])], [[-6/7, 4/7, 6/7, -4/7], 257/224-3/3724*r[2]], [[-6/7, 5/7, -3/7, -4/7], -(-90307+1848*r[2])/(34713+108*r[2])], [[-6/7, 5/7, -3/ 7, 3/7], -(303506+336*r[2])/(34713+108*r[2])], [[-6/7, 5/7, 4/7, -4/7], -(-34447-168*r[2])/(23142+72*r[2])], [[-6/7, 5/7, 4/7, 3/7], -11172/(3857+12*r[2])], [[-6/7, 6/7, -5/7, -4/7], -(59584+672*r[2])/(-18753+72*r[2])], [[-6/7, 6/7, -5/7, 3/7], -58653/(12502-48*r[2])], [[-6/7, 6/7, -4/7, -1/7], 37/6+4/133*r[2]], [[-6/7, 6/7, -4 /7, 6/7], -467/360+1/1995*r[2]], [[-6/7, 6/7, -3/7, -5/7], -(-60515+420*r[2])/(23142+72*r[2])], [[-6/7, 6/7, -3/7, 2/7], -(303506+336*r[2])/(34713+108*r[2])], [[-6/ 7, 6/7, -2/7, -2/7], -(-30723+462*r[2])/(7714+24*r[2])], [[-6/7, 6/7, -2/7, 5/7], -(21413+168*r[2])/(15428+48*r[2])], [[-6/7, 6/7, 2/7, -4/7], -(-25137+378*r[2])/( 12502-48*r[2])], [[-6/7, 6/7, 2/7, 3/7], -(21413+168*r[2])/(12502-48*r[2])], [[-6/7, 6/7, 3/7, -1/7], 163/54+4/1197*r[2]], [[-6/7, 6/7, 3/7, 6/7], -293/675+32/29925 *r[2]], [[-6/7, 6/7, 4/7, -5/7], -(-34447-168*r[2])/(23142+72*r[2])], [[-6/7, 6/7, 4/7, 2/7], -(434777-168*r[2])/(185136+576*r[2])], [[-6/7, 6/7, 5/7, -2/7], 6517/( 3857+12*r[2])], [[-6/7, 6/7, 5/7, 5/7], -(-4655+168*r[2])/(30856+96*r[2])], [[-5/7, -6/7, -3/7, -4/7], 49/20-66/95*r[2]], [[-5/7, -6/7, -3/7, 3/7], 97/50-132/3325*r [2]], [[-5/7, -6/7, -2/7, -1/7], -(798+3348*r[2])/(-3857-12*r[2])], [[-5/7, -6/7, -2/7, 6/7], -(-49476+324*r[2])/(19285+60*r[2])], [[-5/7, -6/7, 4/7, -4/7], 113/100 +66/3325*r[2]], [[-5/7, -6/7, 4/7, 3/7], 517/350-132/23275*r[2]], [[-5/7, -6/7, 5/7, -1/7], -(-174363-3888*r[2])/(154280+480*r[2])], [[-5/7, -6/7, 5/7, 6/7], -(-\ 321993+432*r[2])/(154280+480*r[2])], [[-5/7, -5/7, -2/7, -2/7], -(24871-170544*r[2])/(154280+480*r[2])], [[-5/7, -5/7, -2/7, 5/7], -(-187663+1632*r[2])/(77140+240*r [2])], [[-5/7, -5/7, -1/7, -6/7], -(-823004+395556*r[2])/(173565+540*r[2])], [[-5/7, -5/7, -1/7, 1/7], -(-110789+9996*r[2])/(57855+180*r[2])], [[-5/7, -5/7, 5/7, -2 /7], -(436373+6528*r[2])/(-385700-1200*r[2])], [[-5/7, -5/7, 5/7, 5/7], -(-171836+204*r[2])/(96425+300*r[2])], [[-5/7, -5/7, 6/7, 1/7], -(-106267+408*r[2])/(92568+ 288*r[2])], [[-5/7, -4/7, 1/7, -1/7], -(-52136+4704*r[2])/(31255-120*r[2])], [[-5/7, -4/7, 1/7, 6/7], -(92568+288*r[2])/(-31255+120*r[2])], [[-5/7, -3/7, -4/7, -3/7 ], -(12103+5208*r[2])/(-12502+48*r[2])], [[-5/7, -3/7, -4/7, 4/7], -(64239+504*r[2])/(-25004+96*r[2])], [[-5/7, -3/7, -2/7, -4/7], -(-8645+1950*r[2])/(3857+12*r[2]) ], [[-5/7, -3/7, -2/7, 3/7], -(-8645+60*r[2])/(3857+12*r[2])], [[-5/7, -3/7, 3/7, -3/7], -(-90307+1848*r[2])/(68761-264*r[2])], [[-5/7, -3/7, 3/7, 4/7], -139650/(-\ 68761+264*r[2])], [[-5/7, -3/7, 5/7, -4/7], -(56525+480*r[2])/(-50141-156*r[2])], [[-5/7, -3/7, 5/7, 3/7], -(75145+60*r[2])/(-50141-156*r[2])], [[-5/7, -2/7, -4/7, -4/7], -(12103+5208*r[2])/(-12502+48*r[2])], [[-5/7, -2/7, -4/7, 3/7], -(230888+4368*r[2])/(-93765+360*r[2])], [[-5/7, -2/7, -3/7, -1/7], 154/75-88/475*r[2]], [[-5/ 7, -2/7, -3/7, 6/7], 1036/225+8/1425*r[2]], [[-5/7, -2/7, -1/7, -2/7], -(-9310+2100*r[2])/(3857+12*r[2])], [[-5/7, -2/7, -1/7, 5/7], -(25137+504*r[2])/(-7714-24*r[2 ])], [[-5/7, -2/7, 1/7, -3/7], -(-47481+8064*r[2])/(25004-96*r[2])], [[-5/7, -2/7, 1/7, 4/7], -(60515+1344*r[2])/(-25004+96*r[2])], [[-5/7, -2/7, 3/7, -4/7], -( 206682-6048*r[2])/(-156275+600*r[2])], [[-5/7, -2/7, 3/7, 3/7], -(887243+1848*r[2])/(-468825+1800*r[2])], [[-5/7, -2/7, 4/7, -1/7], 364/275-24/5225*r[2]], [[-5/7, -\ 2/7, 4/7, 6/7], 3122/825+16/5225*r[2]], [[-5/7, -2/7, 6/7, -2/7], -(-55860+252*r[2])/(50141+156*r[2])], [[-5/7, -2/7, 6/7, 5/7], -(-183407-1848*r[2])/(100282+312*r[ 2])], [[-5/7, -1/7, -2/7, -6/7], -(-8645+1950*r[2])/(3857+12*r[2])], [[-5/7, -1/7, -2/7, 1/7], -(-8645+312*r[2])/(3857+12*r[2])], [[-5/7, -1/7, 5/7, -6/7], -(-46683 -936*r[2])/(42427+132*r[2])], [[-5/7, -1/7, 5/7, 1/7], -(-58786+156*r[2])/(42427+132*r[2])], [[-5/7, 1/7, -3/7, -4/7], 154/75-88/475*r[2]], [[-5/7, 1/7, -3/7, 3/7], 913/225-352/9975*r[2]], [[-5/7, 1/7, -2/7, -1/7], -(-5852-1452*r[2])/(3857+12*r[2])], [[-5/7, 1/7, 4/7, -4/7], 253/200+33/3325*r[2]], [[-5/7, 1/7, 4/7, 3/7], 517/ 210-44/4655*r[2]], [[-5/7, 1/7, 5/7, -1/7], -(-24871-396*r[2])/(19285+60*r[2])], [[-5/7, 2/7, -2/7, -2/7], -(-5852-1452*r[2])/(3857+12*r[2])], [[-5/7, 2/7, -1/7, -6 /7], -(-9310+2100*r[2])/(3857+12*r[2])], [[-5/7, 2/7, -1/7, 1/7], -(-23275+840*r[2])/(7714+24*r[2])], [[-5/7, 2/7, 5/7, -2/7], -(19817+192*r[2])/(-15428-48*r[2])], [[-5/7, 2/7, 6/7, -6/7], -(37240+420*r[2])/(-34713-108*r[2])], [[-5/7, 2/7, 6/7, 1/7], -(-31255+120*r[2])/(23142+72*r[2])], [[-5/7, 3/7, 1/7, -1/7], -(-13965+504*r[ 2])/(6251-24*r[2])], [[-5/7, 3/7, 1/7, 6/7], -(23142+72*r[2])/(6251-24*r[2])], [[-5/7, 4/7, -4/7, -3/7], -(230888+4368*r[2])/(-93765+360*r[2])], [[-5/7, 4/7, -4/7, 4/7], -(-283024+336*r[2])/(-31255+120*r[2])], [[-5/7, 4/7, -2/7, -4/7], -(-8645+312*r[2])/(3857+12*r[2])], [[-5/7, 4/7, 3/7, -3/7], -(-154546+1344*r[2])/(93765-360* r[2])], [[-5/7, 4/7, 3/7, 4/7], -27930/(6251-24*r[2])], [[-5/7, 4/7, 5/7, -4/7], -(4921+24*r[2])/(-3857-12*r[2])], [[-5/7, 5/7, -4/7, -4/7], -(64239+504*r[2])/(-\ 25004+96*r[2])], [[-5/7, 5/7, -4/7, 3/7], -(-283024+336*r[2])/(-31255+120*r[2])], [[-5/7, 5/7, -3/7, -1/7], 913/225-352/9975*r[2]], [[-5/7, 5/7, -3/7, 6/7], -373/ 225-8/9975*r[2]], [[-5/7, 5/7, -1/7, -2/7], -(-23275+840*r[2])/(7714+24*r[2])], [[-5/7, 5/7, -1/7, 5/7], -(7448+84*r[2])/(3857+12*r[2])], [[-5/7, 5/7, 1/7, -3/7], - (-13965+504*r[2])/(6251-24*r[2])], [[-5/7, 5/7, 1/7, 4/7], -(14896+168*r[2])/(6251-24*r[2])], [[-5/7, 5/7, 3/7, -4/7], -(-154546+1344*r[2])/(93765-360*r[2])], [[-5/ 7, 5/7, 3/7, 3/7], -(347263+168*r[2])/(93765-360*r[2])], [[-5/7, 5/7, 4/7, -1/7], 152/75-8/3325*r[2]], [[-5/7, 5/7, 4/7, 6/7], -221/300-4/3325*r[2]], [[-5/7, 5/7, 6 /7, -2/7], 19551/(15428+48*r[2])], [[-5/7, 5/7, 6/7, 5/7], -(-4655+168*r[2])/(23142+72*r[2])], [[-5/7, 6/7, -2/7, -6/7], -(-8645+60*r[2])/(3857+12*r[2])], [[-5/7, 6 /7, 5/7, -6/7], -(4921+24*r[2])/(-3857-12*r[2])], [[-4/7, -6/7, -2/7, -5/7], 833/360-187/285*r[2]], [[-4/7, -6/7, -2/7, 2/7], 85/48-17/266*r[2]], [[-4/7, -6/7, 5/7, -5/7], 1921/1800+187/9975*r[2]], [[-4/7, -6/7, 5/7, 2/7], 799/630-68/13965*r[2]], [[-4/7, -5/7, -3/7, -2/7], -(-4256+9024*r[2])/(-6251+24*r[2])], [[-4/7, -5/7, -3/7 , 5/7], -(42560+480*r[2])/(-18753+72*r[2])], [[-4/7, -5/7, 4/7, -2/7], -(-101080+2640*r[2])/(81263-312*r[2])], [[-4/7, -5/7, 4/7, 5/7], -(151088+192*r[2])/(-81263+ 312*r[2])], [[-4/7, -4/7, -3/7, -3/7], -(22477+9672*r[2])/(-25004+96*r[2])], [[-4/7, -4/7, -3/7, 4/7], -(27531+216*r[2])/(-12502+48*r[2])], [[-4/7, -4/7, 2/7, -2/7] , -(69825-2520*r[2])/(-50008+192*r[2])], [[-4/7, -4/7, 2/7, 5/7], -13965/(-6251+24*r[2])], [[-4/7, -4/7, 4/7, -3/7], -(60781-984*r[2])/(-50008+192*r[2])], [[-4/7, -\ 4/7, 4/7, 4/7], -(170905-120*r[2])/(-100016+384*r[2])], [[-4/7, -3/7, -2/7, -1/7], 28/15-16/95*r[2]], [[-4/7, -3/7, -2/7, 6/7], 259/75+2/475*r[2]], [[-4/7, -3/7, -1 /7, -5/7], -(-24206+5460*r[2])/(11571+36*r[2])], [[-4/7, -3/7, -1/7, 2/7], -(-90307+1848*r[2])/(46284+144*r[2])], [[-4/7, -3/7, 1/7, -6/7], 7/4-6/19*r[2]], [[-4/7, -3/7, 1/7, 1/7], 119/72-1/57*r[2]], [[-4/7, -3/7, 2/7, -3/7], -(238336-11424*r[2])/(-168777+648*r[2])], [[-4/7, -3/7, 2/7, 4/7], -(116375+210*r[2])/(-56259+216*r[2] )], [[-4/7, -3/7, 5/7, -1/7], 539/450-4/1425*r[2]], [[-4/7, -3/7, 5/7, 6/7], 3647/1350+8/4275*r[2]], [[-4/7, -3/7, 6/7, -5/7], -(-158270-1344*r[2])/(150423+468*r[2] )], [[-4/7, -2/7, -3/7, -5/7], -(22477+9672*r[2])/(-25004+96*r[2])], [[-4/7, -2/7, -3/7, 2/7], -(38038+1248*r[2])/(-18753+72*r[2])], [[-4/7, -2/7, -1/7, -6/7], -(-\ 24206+5460*r[2])/(11571+36*r[2])], [[-4/7, -2/7, -1/7, 1/7], -(-60515+2184*r[2])/(30856+96*r[2])], [[-4/7, -2/7, 4/7, -5/7], -(191919-5616*r[2])/(-156275+600*r[2])] , [[-4/7, -2/7, 4/7, 2/7], -(382109+624*r[2])/(-250040+960*r[2])], [[-4/7, -2/7, 6/7, -6/7], -(-24206-273*r[2])/(23142+72*r[2])], [[-4/7, -2/7, 6/7, 1/7], 36309/( 30856+96*r[2])], [[-4/7, -1/7, -3/7, -6/7], -(-4256+9024*r[2])/(-6251+24*r[2])], [[-4/7, -1/7, -3/7, 1/7], -(9576+2376*r[2])/(-6251+24*r[2])], [[-4/7, -1/7, 1/7, -1 /7], 5/3-8/133*r[2]], [[-4/7, -1/7, 1/7, 6/7], 116/21+16/931*r[2]], [[-4/7, -1/7, 4/7, -6/7], -(8778-972*r[2])/(-6251+24*r[2])], [[-4/7, -1/7, 4/7, 1/7], -(9044+144 *r[2])/(-6251+24*r[2])], [[-4/7, 1/7, -2/7, -5/7], 28/15-16/95*r[2]], [[-4/7, 1/7, -2/7, 2/7], 3-6/133*r[2]], [[-4/7, 1/7, 5/7, -5/7], 23/20+6/665*r[2]], [[-4/7, 1/ 7, 5/7, 2/7], 47/28-6/931*r[2]], [[-4/7, 2/7, -3/7, -2/7], -(9576+2376*r[2])/(-6251+24*r[2])], [[-4/7, 2/7, 4/7, -2/7], -(17955-270*r[2])/(-12502+48*r[2])], [[-4/7, 3/7, -3/7, -3/7], -(38038+1248*r[2])/(-18753+72*r[2])], [[-4/7, 3/7, 2/7, -2/7], -(-11172+168*r[2])/(6251-24*r[2])], [[-4/7, 3/7, 2/7, 5/7], -37240/(6251-24*r[2])], [[-4/7, 3/7, 4/7, -3/7], -(44156-384*r[2])/(-31255+120*r[2])], [[-4/7, 4/7, -2/7, -1/7], 3-6/133*r[2]], [[-4/7, 4/7, -2/7, 6/7], -67/30-1/665*r[2]], [[-4/7, 4/7, -1 /7, -5/7], -(-60515+2184*r[2])/(30856+96*r[2])], [[-4/7, 4/7, -1/7, 2/7], -(-131271+504*r[2])/(15428+48*r[2])], [[-4/7, 4/7, 1/7, -6/7], 5/3-8/133*r[2]], [[-4/7, 4/ 7, 1/7, 1/7], 47/12-2/133*r[2]], [[-4/7, 4/7, 2/7, -3/7], -(-11172+168*r[2])/(6251-24*r[2])], [[-4/7, 4/7, 2/7, 4/7], -(62377+42*r[2])/(12502-48*r[2])], [[-4/7, 4/7 , 5/7, -1/7], 38/25-6/3325*r[2]], [[-4/7, 4/7, 5/7, 6/7], -221/225-16/9975*r[2]], [[-4/7, 4/7, 6/7, -5/7], -(-34447-168*r[2])/(30856+96*r[2])], [[-4/7, 4/7, 6/7, 2/ 7], -(-434777+168*r[2])/(185136+576*r[2])], [[-4/7, 5/7, -3/7, -5/7], -(27531+216*r[2])/(-12502+48*r[2])], [[-4/7, 5/7, -1/7, -6/7], -(-90307+1848*r[2])/(46284+144* r[2])], [[-4/7, 5/7, -1/7, 1/7], -(-131271+504*r[2])/(15428+48*r[2])], [[-4/7, 5/7, 4/7, -5/7], -(44156-384*r[2])/(-31255+120*r[2])], [[-4/7, 5/7, 6/7, -6/7], -(-\ 34447-168*r[2])/(30856+96*r[2])], [[-4/7, 5/7, 6/7, 1/7], 8379/(3857+12*r[2])], [[-4/7, 6/7, -3/7, -6/7], -(42560+480*r[2])/(-18753+72*r[2])], [[-4/7, 6/7, 1/7, -1/ 7], 47/12-2/133*r[2]], [[-4/7, 6/7, 1/7, 6/7], -58/105-8/4655*r[2]], [[-4/7, 6/7, 4/7, -6/7], -(17955-270*r[2])/(-12502+48*r[2])], [[-3/7, -6/7, -1/7, -6/7], 16/19* r[2]], [[-3/7, -6/7, -1/7, 1/7], 4/3+16/133*r[2]], [[-3/7, -6/7, 3/7, -1/7], -(77140-4800*r[2])/(-56259+216*r[2])], [[-3/7, -6/7, 3/7, 6/7], -(117572+192*r[2])/(-\ 56259+216*r[2])], [[-3/7, -6/7, 6/7, -6/7], 16/15-32/1995*r[2]], [[-3/7, -6/7, 6/7, 1/7], 116/105+16/4655*r[2]], [[-3/7, -5/7, 1/7, -1/7], -(4655+420*r[2])/(-3857-\ 12*r[2])], [[-3/7, -5/7, 1/7, 6/7], 9310/(3857+12*r[2])], [[-3/7, -5/7, 3/7, -2/7], -(-88578+2592*r[2])/(68761-264*r[2])], [[-3/7, -5/7, 3/7, 5/7], -(130473-72*r[2] )/(-68761+264*r[2])], [[-3/7, -4/7, -2/7, -4/7], -(157339+67704*r[2])/(-187530+720*r[2])], [[-3/7, -4/7, -2/7, 3/7], -(57722+1092*r[2])/(-31255+120*r[2])], [[-3/7, -4/7, -1/7, -1/7], 7/6+4/19*r[2]], [[-3/7, -4/7, -1/7, 6/7], 749/270-4/855*r[2]], [[-3/7, -4/7, 1/7, -2/7], -(-17689-2184*r[2])/(15428+48*r[2])], [[-3/7, -4/7, 1/7, 5/7], -(-414295+840*r[2])/(185136+576*r[2])], [[-3/7, -4/7, 2/7, -6/7], 77/81+88/513*r[2]], [[-3/7, -4/7, 2/7, 1/7], 196/135+8/855*r[2]], [[-3/7, -4/7, 5/7, -4/7], -(-425467+6888*r[2])/(375060-1440*r[2])], [[-3/7, -4/7, 5/7, 3/7], -(-771799+336*r[2])/(562590-2160*r[2])], [[-3/7, -4/7, 6/7, -1/7], 763/702+4/2223*r[2]], [[-3/7, -4/7, 6/7, 6/7], 3388/1755-16/11115*r[2]], [[-3/7, -3/7, -2/7, -5/7], -(157339+67704*r[2])/(-187530+720*r[2])], [[-3/7, -3/7, -2/7, 2/7], -(133133+4368*r[2])/(-\ 75012+288*r[2])], [[-3/7, -3/7, 3/7, -4/7], -(221312-10608*r[2])/(-168777+648*r[2])], [[-3/7, -3/7, 3/7, 3/7], -(281827+312*r[2])/(-168777+648*r[2])], [[-3/7, -3/7, 5/7, 2/7], -181545/(-137522+528*r[2])], [[-3/7, -2/7, 3/7, -5/7], -(-20349+3456*r[2])/(12502-48*r[2])], [[-3/7, -2/7, 3/7, 2/7], -(19817+192*r[2])/(-12502+48*r[2])] , [[-3/7, -1/7, 2/7, -2/7], 121/90+88/1995*r[2]], [[-3/7, -1/7, 2/7, 5/7], 1034/315-176/13965*r[2]], [[-3/7, 1/7, -1/7, -6/7], 7/6+4/19*r[2]], [[-3/7, 1/7, -1/7, 1/ 7], 11/5+48/665*r[2]], [[-3/7, 1/7, 3/7, -1/7], -(-9975+360*r[2])/(6251-24*r[2])], [[-3/7, 1/7, 6/7, -6/7], 13/12-1/133*r[2]], [[-3/7, 1/7, 6/7, 1/7], 87/70+18/4655 *r[2]], [[-3/7, 2/7, 1/7, -1/7], -(20482+672*r[2])/(-11571-36*r[2])], [[-3/7, 2/7, 1/7, 6/7], -27930/(3857+12*r[2])], [[-3/7, 2/7, 3/7, -2/7], -(-9576+144*r[2])/( 6251-24*r[2])], [[-3/7, 3/7, -2/7, -4/7], -(133133+4368*r[2])/(-75012+288*r[2])], [[-3/7, 3/7, -2/7, 3/7], -(53998+168*r[2])/(-6251+24*r[2])], [[-3/7, 3/7, -1/7, -1 /7], 11/5+48/665*r[2]], [[-3/7, 3/7, -1/7, 6/7], -152/45+8/1995*r[2]], [[-3/7, 3/7, 1/7, -2/7], -(20482+672*r[2])/(-11571-36*r[2])], [[-3/7, 3/7, 1/7, 5/7], -(70756 -84*r[2])/(11571+36*r[2])], [[-3/7, 3/7, 2/7, -6/7], 121/90+88/1995*r[2]], [[-3/7, 3/7, 2/7, 1/7], 116/45+16/1995*r[2]], [[-3/7, 3/7, 5/7, -4/7], -(77273-672*r[2])/ (-62510+240*r[2])], [[-3/7, 3/7, 5/7, 3/7], -(347263+168*r[2])/(-93765+360*r[2])], [[-3/7, 3/7, 6/7, -1/7], 163/135+8/5985*r[2]], [[-3/7, 3/7, 6/7, 6/7], -293/270+ 16/5985*r[2]], [[-3/7, 4/7, -2/7, -5/7], -(57722+1092*r[2])/(-31255+120*r[2])], [[-3/7, 4/7, -2/7, 2/7], -(53998+168*r[2])/(-6251+24*r[2])], [[-3/7, 4/7, 3/7, -4/7] , -(-9576+144*r[2])/(6251-24*r[2])], [[-3/7, 4/7, 5/7, -5/7], -(77273-672*r[2])/(-62510+240*r[2])], [[-3/7, 4/7, 5/7, 2/7], -41895/(-12502+48*r[2])], [[-3/7, 5/7, 3 /7, -5/7], -(-9975+360*r[2])/(6251-24*r[2])], [[-3/7, 6/7, 2/7, -2/7], 116/45+16/1995*r[2]], [[-3/7, 6/7, 2/7, 5/7], -47/105+8/4655*r[2]], [[-2/7, -6/7, 2/7, -1/7], -(-8911-636*r[2])/(7714+24*r[2])], [[-2/7, -6/7, 2/7, 6/7], -(31787+12*r[2])/(-15428-48*r[2])], [[-2/7, -5/7, -1/7, -4/7], -(3724-7896*r[2])/(6251-24*r[2])], [[-2/7 , -5/7, -1/7, 3/7], -(9310+840*r[2])/(-6251+24*r[2])], [[-2/7, -5/7, 1/7, -5/7], -(10241-70224*r[2])/(77140+240*r[2])], [[-2/7, -5/7, 1/7, 2/7], -(21413+1344*r[2])/ (-15428-48*r[2])], [[-2/7, -5/7, 3/7, -6/7], 217/225+176/1425*r[2]], [[-2/7, -5/7, 3/7, 1/7], 497/375+16/2375*r[2]], [[-2/7, -5/7, 4/7, -3/7], -(413364-12096*r[2])/ (-343805+1320*r[2])], [[-2/7, -5/7, 4/7, 4/7], -(524153-42*r[2])/(-343805+1320*r[2])], [[-2/7, -5/7, 6/7, -4/7], -(-88445+2310*r[2])/(81263-312*r[2])], [[-2/7, -5/7 , 6/7, 3/7], -(94962+336*r[2])/(-81263+312*r[2])], [[-2/7, -4/7, 2/7, -3/7], -(32851+4056*r[2])/(-30856-96*r[2])], [[-2/7, -4/7, 2/7, 4/7], -(-444353+312*r[2])/( 246848+768*r[2])], [[-2/7, -4/7, 4/7, -4/7], -(-60515+2184*r[2])/(50008-192*r[2])], [[-2/7, -4/7, 4/7, 3/7], -36309/(-25004+96*r[2])], [[-2/7, -3/7, -1/7, -6/7], -( 3724-7896*r[2])/(6251-24*r[2])], [[-2/7, -3/7, -1/7, 1/7], -(7448+1848*r[2])/(-6251+24*r[2])], [[-2/7, -3/7, 6/7, -6/7], -(76342-3108*r[2])/(-68761+264*r[2])], [[-2 /7, -3/7, 6/7, 1/7], -(77140+240*r[2])/(-68761+264*r[2])], [[-2/7, -2/7, 1/7, -1/7], -(-20482-5082*r[2])/(19285+60*r[2])], [[-2/7, -2/7, 1/7, 6/7], -(-68761+264*r[2 ])/(19285+60*r[2])], [[-2/7, -2/7, 2/7, -5/7], -(-7315+1650*r[2])/(3857+12*r[2])], [[-2/7, -2/7, 2/7, 2/7], -(-13167+198*r[2])/(7714+24*r[2])], [[-2/7, -1/7, 2/7, -\ 6/7], -(-7315+1650*r[2])/(3857+12*r[2])], [[-2/7, -1/7, 2/7, 1/7], -(-6650+240*r[2])/(3857+12*r[2])], [[-2/7, -1/7, 3/7, -3/7], 11/9+16/399*r[2]], [[-2/7, -1/7, 3/7 , 4/7], 47/21-8/931*r[2]], [[-2/7, 1/7, 2/7, -1/7], -(-5852-192*r[2])/(3857+12*r[2])], [[-2/7, 2/7, -1/7, -4/7], -(7448+1848*r[2])/(-6251+24*r[2])], [[-2/7, 2/7, -1 /7, 3/7], -(51205+1680*r[2])/(-12502+48*r[2])], [[-2/7, 2/7, 1/7, -5/7], -(-20482-5082*r[2])/(19285+60*r[2])], [[-2/7, 2/7, 1/7, 2/7], -(-10241-336*r[2])/(3857+12*r [2])], [[-2/7, 2/7, 3/7, -6/7], 11/9+16/399*r[2]], [[-2/7, 2/7, 3/7, 1/7], 29/15+4/665*r[2]], [[-2/7, 2/7, 4/7, -3/7], -(8379-126*r[2])/(-6251+24*r[2])], [[-2/7, 2/ 7, 4/7, 4/7], -(62377+42*r[2])/(-12502+48*r[2])], [[-2/7, 2/7, 6/7, -4/7], -(-13965+210*r[2])/(12502-48*r[2])], [[-2/7, 2/7, 6/7, 3/7], -(21413+168*r[2])/(-12502+48 *r[2])], [[-2/7, 3/7, 2/7, -3/7], -(-5852-192*r[2])/(3857+12*r[2])], [[-2/7, 3/7, 4/7, -4/7], -(8379-126*r[2])/(-6251+24*r[2])], [[-2/7, 3/7, 4/7, 3/7], -27930/(-\ 6251+24*r[2])], [[-2/7, 4/7, -1/7, -6/7], -(9310+840*r[2])/(-6251+24*r[2])], [[-2/7, 4/7, -1/7, 1/7], -(51205+1680*r[2])/(-12502+48*r[2])], [[-2/7, 4/7, 6/7, -6/7], -(-13965+210*r[2])/(12502-48*r[2])], [[-2/7, 4/7, 6/7, 1/7], -(19285+60*r[2])/(-12502+48*r[2])], [[-2/7, 5/7, 1/7, -1/7], -(-10241-336*r[2])/(3857+12*r[2])], [[-2/7 , 5/7, 1/7, 6/7], -(6251-24*r[2])/(7714+24*r[2])], [[-2/7, 5/7, 2/7, -5/7], -(-6650+240*r[2])/(3857+12*r[2])], [[-2/7, 6/7, 2/7, -6/7], -(-13167+198*r[2])/(7714+24* r[2])], [[-2/7, 6/7, 3/7, -3/7], 29/15+4/665*r[2]], [[-2/7, 6/7, 3/7, 4/7], -47/105+8/4655*r[2]], [[-1/7, -6/7, 2/7, -5/7], -(1862+7812*r[2])/(-11571-36*r[2])], [[-\ 1/7, -6/7, 2/7, 2/7], -(-14896-756*r[2])/(11571+36*r[2])], [[-1/7, -6/7, 3/7, -2/7], -(-62377-4452*r[2])/(57855+180*r[2])], [[-1/7, -6/7, 3/7, 5/7], -(-576289+336*r [2])/(347130+1080*r[2])], [[-1/7, -6/7, 4/7, -6/7], 14/11-24/209*r[2]], [[-1/7, -6/7, 4/7, 1/7], 245/198-4/627*r[2]], [[-1/7, -6/7, 5/7, -3/7], -(-134995+8400*r[2]) /(112518-432*r[2])], [[-1/7, -6/7, 5/7, 4/7], -(49343+336*r[2])/(-37506+144*r[2])], [[-1/7, -5/7, 3/7, -3/7], -(12103+1092*r[2])/(-11571-36*r[2])], [[-1/7, -5/7, 3/ 7, 4/7], 12103/(7714+24*r[2])], [[-1/7, -4/7, 1/7, -3/7], 1+24/133*r[2]], [[-1/7, -4/7, 1/7, 4/7], 37/21+8/931*r[2]], [[-1/7, -4/7, 5/7, -5/7], -(39102-3528*r[2])/( -31255+120*r[2])], [[-1/7, -4/7, 5/7, 2/7], -(7714+24*r[2])/(-6251+24*r[2])], [[-1/7, -3/7, 1/7, -4/7], 22/15-88/665*r[2]], [[-1/7, -3/7, 1/7, 3/7], 913/525-352/ 23275*r[2]], [[-1/7, -2/7, 1/7, -5/7], 22/15-88/665*r[2]], [[-1/7, -2/7, 1/7, 2/7], 12/7-24/931*r[2]], [[-1/7, -2/7, 2/7, -2/7], -(3724+924*r[2])/(-3857-12*r[2])], [[-1/7, -2/7, 2/7, 5/7], -(-18753+72*r[2])/(7714+24*r[2])], [[-1/7, -1/7, 1/7, -6/7], 1+24/133*r[2]], [[-1/7, -1/7, 1/7, 1/7], 11/7+48/931*r[2]], [[-1/7, -1/7, 4/7, -4/7], 5/4-6/133*r[2]], [[-1/7, -1/7, 4/7, 3/7], 58/35+24/4655*r[2]], [[-1/7, 1/7, 2/7, -5/7], -(3724+924*r[2])/(-3857-12*r[2])], [[-1/7, 1/7, 2/7, 2/7], -(-30723-\ 1008*r[2])/(15428+48*r[2])], [[-1/7, 1/7, 3/7, -2/7], -(10241+336*r[2])/(-7714-24*r[2])], [[-1/7, 1/7, 3/7, 5/7], -(-70756+84*r[2])/(11571+36*r[2])], [[-1/7, 1/7, 4 /7, -6/7], 5/4-6/133*r[2]], [[-1/7, 1/7, 4/7, 1/7], 47/30-4/665*r[2]], [[-1/7, 1/7, 5/7, -3/7], -(-23275+840*r[2])/(18753-72*r[2])], [[-1/7, 1/7, 5/7, 4/7], -(14896 +168*r[2])/(-6251+24*r[2])], [[-1/7, 2/7, 3/7, -3/7], -(10241+336*r[2])/(-7714-24*r[2])], [[-1/7, 2/7, 3/7, 4/7], 41895/(7714+24*r[2])], [[-1/7, 3/7, 1/7, -3/7], 11 /7+48/931*r[2]], [[-1/7, 3/7, 5/7, -5/7], -(-23275+840*r[2])/(18753-72*r[2])], [[-1/7, 3/7, 5/7, 2/7], -(38570+120*r[2])/(-18753+72*r[2])], [[-1/7, 4/7, 1/7, -4/7], 12/7-24/931*r[2]], [[-1/7, 5/7, 1/7, -5/7], 913/525-352/23275*r[2]], [[-1/7, 5/7, 2/7, -2/7], -(-30723-1008*r[2])/(15428+48*r[2])], [[-1/7, 5/7, 2/7, 5/7], -(6251-\ 24*r[2])/(7714+24*r[2])], [[-1/7, 6/7, 1/7, -6/7], 37/21+8/931*r[2]], [[-1/7, 6/7, 4/7, -4/7], 47/30-4/665*r[2]], [[-1/7, 6/7, 4/7, 3/7], -58/105-8/4655*r[2]], [[1/ 7, -6/7, 3/7, -3/7], 1+12/133*r[2]], [[1/7, -6/7, 3/7, 4/7], 29/21+4/931*r[2]], [[1/7, -6/7, 6/7, -1/7], 35/33-8/1463*r[2]], [[1/7, -6/7, 6/7, 6/7], 326/231+16/ 10241*r[2]], [[1/7, -5/7, 5/7, -5/7], -(-71687+6468*r[2])/(57855+180*r[2])], [[1/7, -5/7, 5/7, 2/7], -(-68761+264*r[2])/(57855+180*r[2])], [[1/7, -5/7, 6/7, -2/7], 781/750+88/16625*r[2]], [[1/7, -5/7, 6/7, 5/7], 3344/2625-176/116375*r[2]], [[1/7, -4/7, 6/7, -3/7], 28/27+8/1197*r[2]], [[1/7, -4/7, 6/7, 4/7], 76/63-4/2793*r[2]], [[1/7, -3/7, 2/7, -2/7], -(5586+1386*r[2])/(-6251+24*r[2])], [[1/7, -3/7, 2/7, 5/7], -(11571+36*r[2])/(-6251+24*r[2])], [[1/7, -3/7, 6/7, -4/7], 17/16-3/266*r[2]], [[1/7, -3/7, 6/7, 3/7], 163/140+6/4655*r[2]], [[1/7, -2/7, 4/7, -4/7], -(-4655+168*r[2])/(3857+12*r[2])], [[1/7, -2/7, 4/7, 3/7], 5586/(3857+12*r[2])], [[1/7, -1/7, 2/7, -4/7], -(5586+1386*r[2])/(-6251+24*r[2])], [[1/7, -1/7, 2/7, 3/7], -(10241+336*r[2])/(-6251+24*r[2])], [[1/7, -1/7, 3/7, -1/7], 11/9+16/399*r[2]], [[1/7, -1/7, 3/7, 6/7], 152/45-8/1995*r[2]], [[1/7, -1/7, 4/7, -5/7], -(-4655+168*r[2])/(3857+12*r[2])], [[1/7, -1/7, 4/7, 2/7], -(-43757+168*r[2])/(30856+96*r[2])], [[1/7, -1/7 , 5/7, -2/7], -(-4655+168*r[2])/(3857+12*r[2])], [[1/7, -1/7, 5/7, 5/7], -(-7448-84*r[2])/(3857+12*r[2])], [[1/7, 1/7, 3/7, -3/7], 11/9+16/399*r[2]], [[1/7, 1/7, 3/ 7, 4/7], 58/21+8/931*r[2]], [[1/7, 1/7, 6/7, -1/7], 47/42-4/931*r[2]], [[1/7, 2/7, 5/7, -5/7], -(-4655+168*r[2])/(3857+12*r[2])], [[1/7, 2/7, 5/7, 2/7], -(-6251+24* r[2])/(3857+12*r[2])], [[1/7, 2/7, 6/7, -2/7], 116/105+16/4655*r[2]], [[1/7, 3/7, 6/7, -3/7], 116/105+16/4655*r[2]], [[1/7, 4/7, 2/7, -2/7], -(10241+336*r[2])/(-\ 6251+24*r[2])], [[1/7, 4/7, 2/7, 5/7], -(7714+24*r[2])/(6251-24*r[2])], [[1/7, 4/7, 6/7, -4/7], 47/42-4/931*r[2]], [[1/7, 5/7, 4/7, -4/7], -(-43757+168*r[2])/(30856 +96*r[2])], [[1/7, 5/7, 4/7, 3/7], -13965/(7714+24*r[2])], [[1/7, 6/7, 2/7, -4/7], -(11571+36*r[2])/(-6251+24*r[2])], [[1/7, 6/7, 2/7, 3/7], -(7714+24*r[2])/(6251-\ 24*r[2])], [[1/7, 6/7, 3/7, -1/7], 58/21+8/931*r[2]], [[1/7, 6/7, 3/7, 6/7], 58/525+8/23275*r[2]], [[1/7, 6/7, 4/7, -5/7], 5586/(3857+12*r[2])], [[1/7, 6/7, 4/7, 2/ 7], -13965/(7714+24*r[2])], [[1/7, 6/7, 5/7, -2/7], -(-6251+24*r[2])/(3857+12*r[2])], [[1/7, 6/7, 5/7, 5/7], -(-6251+24*r[2])/(15428+48*r[2])], [[2/7, -6/7, 4/7, -4 /7], 55/48-11/266*r[2]], [[2/7, -6/7, 4/7, 3/7], 517/420-22/4655*r[2]], [[2/7, -6/7, 5/7, -1/7], -(-11704-594*r[2])/(11571+36*r[2])], [[2/7, -6/7, 5/7, 6/7], 51205/ (34713+108*r[2])], [[2/7, -5/7, 5/7, -2/7], -(-15295-960*r[2])/(15428+48*r[2])], [[2/7, -5/7, 5/7, 5/7], 41895/(30856+96*r[2])], [[2/7, -5/7, 6/7, -6/7], -(-38171+ 1554*r[2])/(34713+108*r[2])], [[2/7, -5/7, 6/7, 1/7], -(-12502+48*r[2])/(11571+36*r[2])], [[2/7, -3/7, 3/7, -3/7], -(20482+672*r[2])/(-18753+72*r[2])], [[2/7, -3/7, 3/7, 4/7], -9310/(-6251+24*r[2])], [[2/7, -3/7, 5/7, -4/7], -(-12901+264*r[2])/(11571+36*r[2])], [[2/7, -3/7, 5/7, 3/7], -(-43358-48*r[2])/(34713+108*r[2])], [[2/7, -2/7, 3/7, -4/7], -(20482+672*r[2])/(-18753+72*r[2])], [[2/7, -2/7, 3/7, 3/7], -(26999+84*r[2])/(-18753+72*r[2])], [[2/7, -2/7, 4/7, -1/7], 6/5-12/665*r[2]], [[2/7, -2/7, 4/7, 6/7], 67/30+1/665*r[2]], [[2/7, -2/7, 6/7, -2/7], -(-8379+126*r[2])/(7714+24*r[2])], [[2/7, -2/7, 6/7, 5/7], -(-21413-168*r[2])/(15428+48*r[2])], [[2/7, -1/7, 5/7, -6/7], -(-12901+264*r[2])/(11571+36*r[2])], [[2/7, -1/7, 5/7, 1/7], -(-18753+72*r[2])/(15428+48*r[2])], [[2/7, 1/7, 4/7, -4/7], 6/5-12/665*r[2]], [[2/7, 1/7, 4/7, 3/7], 188/105-32/4655*r[2]], [[2/7, 1/7, 5/7, -1/7], -(-4389-144*r[2])/(3857+12*r[2])], [[2/7, 2/7, 5/7, -2/7], -(-4389-144*r[2])/(3857+12*r[2])], [[2/7, 2/7, 6/7, -6/7], -(-8379+126*r[2])/(7714+24*r[2])], [[2/7, 2/7, 6/7, 1/7], -(-18753+72*r[2])/(15428+48*r[2])], [[2/7, 4/7, 3/7, -3/7], -(26999+84*r[2])/(-18753+72*r [2])], [[2/7, 4/7, 3/7, 4/7], -13965/(6251-24*r[2])], [[2/7, 4/7, 5/7, -4/7], -(-18753+72*r[2])/(15428+48*r[2])], [[2/7, 5/7, 3/7, -4/7], -9310/(-6251+24*r[2])], [[ 2/7, 5/7, 3/7, 3/7], -13965/(6251-24*r[2])], [[2/7, 5/7, 4/7, -1/7], 188/105-32/4655*r[2]], [[2/7, 5/7, 4/7, 6/7], 47/420-2/4655*r[2]], [[2/7, 5/7, 6/7, -2/7], -(-\ 18753+72*r[2])/(15428+48*r[2])], [[2/7, 5/7, 6/7, 5/7], -(-6251+24*r[2])/(11571+36*r[2])], [[2/7, 6/7, 5/7, -6/7], -(-43358-48*r[2])/(34713+108*r[2])], [[3/7, -6/7, 5/7, -5/7], 97/90-44/1995*r[2]], [[3/7, -6/7, 5/7, 2/7], 47/42-4/931*r[2]], [[3/7, -5/7, 4/7, -2/7], -(5985+540*r[2])/(-6251+24*r[2])], [[3/7, -5/7, 4/7, 5/7], -\ 8379/(-6251+24*r[2])], [[3/7, -4/7, 4/7, -3/7], -(32984+624*r[2])/(-31255+120*r[2])], [[3/7, -4/7, 4/7, 4/7], -(-40432+48*r[2])/(31255-120*r[2])], [[3/7, -3/7, 5/7, -1/7], 83/75-32/3325*r[2]], [[3/7, -3/7, 5/7, 6/7], 373/225+8/9975*r[2]], [[3/7, -3/7, 6/7, -5/7], -(-12103+84*r[2])/(11571+36*r[2])], [[3/7, -3/7, 6/7, 2/7], -(-\ 151753-168*r[2])/(138852+432*r[2])], [[3/7, -2/7, 4/7, -5/7], -(32984+624*r[2])/(-31255+120*r[2])], [[3/7, -2/7, 4/7, 2/7], -(7714+24*r[2])/(-6251+24*r[2])], [[3/7, -2/7, 6/7, -6/7], -(-12103+84*r[2])/(11571+36*r[2])], [[3/7, -2/7, 6/7, 1/7], 8379/(7714+24*r[2])], [[3/7, -1/7, 4/7, -6/7], -(5985+540*r[2])/(-6251+24*r[2])], [[3/ 7, -1/7, 4/7, 1/7], -(7315+240*r[2])/(-6251+24*r[2])], [[3/7, 1/7, 5/7, -5/7], 83/75-32/3325*r[2]], [[3/7, 1/7, 5/7, 2/7], 47/35-24/4655*r[2]], [[3/7, 2/7, 4/7, -2/ 7], -(7315+240*r[2])/(-6251+24*r[2])], [[3/7, 3/7, 4/7, -3/7], -(7714+24*r[2])/(-6251+24*r[2])], [[3/7, 4/7, 5/7, -1/7], 47/35-24/4655*r[2]], [[3/7, 4/7, 5/7, 6/7], 47/315-8/13965*r[2]], [[3/7, 4/7, 6/7, -5/7], 8379/(7714+24*r[2])], [[3/7, 4/7, 6/7, 2/7], 13965/(7714+24*r[2])], [[3/7, 5/7, 4/7, -5/7], -(-40432+48*r[2])/(31255-\ 120*r[2])], [[3/7, 5/7, 6/7, -6/7], -(-151753-168*r[2])/(138852+432*r[2])], [[3/7, 5/7, 6/7, 1/7], 13965/(7714+24*r[2])], [[3/7, 6/7, 4/7, -6/7], -8379/(-6251+24*r[ 2])], [[4/7, -6/7, 6/7, -6/7], 1+3/266*r[2]], [[4/7, -6/7, 6/7, 1/7], 29/28+3/931*r[2]], [[4/7, -4/7, 5/7, -4/7], -(64239+504*r[2])/(-62510+240*r[2])], [[4/7, -4/7, 5/7, 3/7], -(35378-42*r[2])/(-31255+120*r[2])], [[4/7, -4/7, 6/7, -1/7], 37/36+2/399*r[2]], [[4/7, -4/7, 6/7, 6/7], 467/360-1/1995*r[2]], [[4/7, -3/7, 5/7, -5/7], - (64239+504*r[2])/(-62510+240*r[2])], [[4/7, -3/7, 5/7, 2/7], -13965/(-12502+48*r[2])], [[4/7, 1/7, 6/7, -6/7], 37/36+2/399*r[2]], [[4/7, 1/7, 6/7, 1/7], 116/105+16/ 4655*r[2]], [[4/7, 3/7, 5/7, -4/7], -13965/(-12502+48*r[2])], [[4/7, 3/7, 5/7, 3/7], -13965/(-6251+24*r[2])], [[4/7, 3/7, 6/7, -1/7], 116/105+16/4655*r[2]], [[4/7, 3/7, 6/7, 6/7], 29/105+4/4655*r[2]], [[4/7, 4/7, 5/7, -5/7], -(35378-42*r[2])/(-31255+120*r[2])], [[4/7, 4/7, 5/7, 2/7], -13965/(-6251+24*r[2])], [[5/7, -5/7, 6/7, -4/7], -(18620+210*r[2])/(-18753+72*r[2])], [[5/7, -5/7, 6/7, 3/7], -6517/(-6251+24*r[2])], [[5/7, -3/7, 6/7, -6/7], -(18620+210*r[2])/(-18753+72*r[2])], [[5/7, -3/ 7, 6/7, 1/7], -(19285+60*r[2])/(-18753+72*r[2])], [[5/7, 2/7, 6/7, -4/7], -(19285+60*r[2])/(-18753+72*r[2])], [[5/7, 2/7, 6/7, 3/7], -(7714+24*r[2])/(-6251+24*r[2]) ], [[5/7, 4/7, 6/7, -6/7], -6517/(-6251+24*r[2])], [[5/7, 4/7, 6/7, 1/7], -(7714+24*r[2])/(-6251+24*r[2])]], [[[-6/7, -5/7, -3/7, -5/7], r[3]], [[-6/7, 2/7, -3/7, 2 /7], 4+4/81*r[3]], [[-6/7, 2/7, 4/7, 2/7], 37/16+5/432*r[3]], [[-6/7, 5/7, -3/7, -1/7], 4+4/81*r[3]], [[-5/7, -5/7, -2/7, -6/7], 17/18*r[3]], [[-1/7, -3/7, 2/7, 2/7 ], 3/2+1/54*r[3]], [[-1/7, 5/7, 2/7, -6/7], 3/2+1/54*r[3]], [[2/7, -3/7, 5/7, -1/7], 12/11+4/297*r[3]], [[2/7, 2/7, 5/7, -6/7], 12/11+4/297*r[3]]], [[[-6/7, -5/7, -\ 2/7, -1/7], r[4]], [[-6/7, -5/7, -2/7, 6/7], 3-1/20*r[4]], [[-6/7, -5/7, 5/7, -1/7], 9/8+3/80*r[4]], [[-6/7, -5/7, 5/7, 6/7], 19/8-1/48*r[4]], [[-6/7, -4/7, -2/7, -\ 2/7], -17/32+85/64*r[4]], [[-6/7, -4/7, -2/7, 5/7], 1513/528-85/1056*r[4]], [[-6/7, -4/7, 5/7, -2/7], 493/440+17/528*r[4]], [[-6/7, -4/7, 5/7, 5/7], 10523/5280-17/ 704*r[4]], [[-6/7, 2/7, -2/7, -1/7], 5/3+5/12*r[4]], [[-6/7, 2/7, -2/7, 6/7], -21/2+1/8*r[4]], [[-6/7, 2/7, 5/7, -1/7], 4/3+1/36*r[4]], [[-6/7, 2/7, 5/7, 6/7], -59/ 9+5/54*r[4]], [[-6/7, 3/7, -2/7, -2/7], 5/3+5/12*r[4]], [[-6/7, 3/7, -2/7, 5/7], -310/33+5/33*r[4]], [[-6/7, 3/7, 5/7, -2/7], 175/132+5/264*r[4]], [[-6/7, 3/7, 5/7, 5/7], -355/88+15/176*r[4]], [[-5/7, -6/7, -2/7, -4/7], 13/2-13/4*r[4]], [[-5/7, -6/7, -2/7, 3/7], 2-1/10*r[4]], [[-5/7, -6/7, 5/7, -4/7], 17/16+1/32*r[4]], [[-5/7, -6/7, 5/7, 3/7], 11/8-1/80*r[4]], [[-5/7, -1/7, -2/7, -2/7], 13/4-39/40*r[4]], [[-5/7, -1/7, -2/7, 5/7], 91/22+13/220*r[4]], [[-5/7, -1/7, 5/7, -2/7], 299/242-39/ 2420*r[4]], [[-5/7, -1/7, 5/7, 5/7], 325/121+13/605*r[4]], [[-5/7, 1/7, -2/7, -4/7], 13/4-39/40*r[4]], [[-5/7, 1/7, -2/7, 3/7], 4-1/10*r[4]], [[-5/7, 1/7, 5/7, -4/7 ], 7/6+1/60*r[4]], [[-5/7, 1/7, 5/7, 3/7], 19/9-1/45*r[4]], [[-5/7, 6/7, -2/7, -2/7], 4-1/10*r[4]], [[-5/7, 6/7, -2/7, 5/7], -29/22-1/220*r[4]], [[-5/7, 6/7, 5/7, -\ 2/7], 37/22-1/220*r[4]], [[-5/7, 6/7, 5/7, 5/7], 2/11-1/220*r[4]], [[-4/7, -6/7, -1/7, -5/7], 221/36-221/72*r[4]], [[-4/7, -6/7, -1/7, 2/7], 391/198-85/396*r[4]], [ [-4/7, -6/7, 6/7, -5/7], 289/288+17/576*r[4]], [[-4/7, -6/7, 6/7, 2/7], 22151/19008-425/38016*r[4]], [[-4/7, -2/7, -1/7, -2/7], 65/22-39/44*r[4]], [[-4/7, -2/7, -1/ 7, 5/7], 273/88+39/880*r[4]], [[-4/7, -2/7, 6/7, -2/7], 195/176-13/1760*r[4]], [[-4/7, -2/7, 6/7, 5/7], 39/22+13/1320*r[4]], [[-4/7, 1/7, -1/7, -5/7], 65/22-39/44*r [4]], [[-4/7, 1/7, -1/7, 2/7], 135/44-15/88*r[4]], [[-4/7, 1/7, 6/7, -5/7], 35/33+1/66*r[4]], [[-4/7, 1/7, 6/7, 2/7], 1105/792-25/1584*r[4]], [[-4/7, 5/7, -1/7, -2/ 7], 135/44-15/88*r[4]], [[-4/7, 5/7, -1/7, 5/7], -79/44-1/88*r[4]], [[-4/7, 5/7, 6/7, -2/7], 111/88-3/880*r[4]], [[-4/7, 5/7, 6/7, 5/7], 8/33-1/165*r[4]], [[-2/7, -\ 4/7, 2/7, -6/7], -13/32+65/64*r[4]], [[-2/7, -4/7, 2/7, 1/7], 221/176+39/352*r[4]], [[-2/7, -2/7, 1/7, -4/7], 5/2-3/4*r[4]], [[-2/7, -2/7, 1/7, 3/7], 2-1/20*r[4]], [[-2/7, -2/7, 2/7, -1/7], 1+1/4*r[4]], [[-2/7, -2/7, 2/7, 6/7], 7/2-1/24*r[4]], [[-2/7, -1/7, 1/7, -5/7], 5/2-3/4*r[4]], [[-2/7, -1/7, 1/7, 2/7], 45/22-5/44*r[4]], [[-2/7, 3/7, 2/7, -6/7], 1+1/4*r[4]], [[-2/7, 3/7, 2/7, 1/7], 26/11+1/11*r[4]], [[-2/7, 5/7, 1/7, -4/7], 45/22-5/44*r[4]], [[-2/7, 5/7, 1/7, 3/7], -53/11+1/22*r[4]] , [[-2/7, 5/7, 2/7, -1/7], 26/11+1/11*r[4]], [[-2/7, 5/7, 2/7, 6/7], -31/44+1/88*r[4]], [[-2/7, 6/7, 1/7, -5/7], 2-1/20*r[4]], [[-2/7, 6/7, 1/7, 2/7], -53/11+1/22*r [4]], [[-1/7, -5/7, 3/7, -6/7], 13/18*r[4]], [[-1/7, -5/7, 3/7, 1/7], 13/11+13/165*r[4]], [[-1/7, -2/7, 3/7, -2/7], 10/11+5/22*r[4]], [[-1/7, -2/7, 3/7, 5/7], 155/ 66-5/132*r[4]], [[-1/7, 2/7, 3/7, -6/7], 10/11+5/22*r[4]], [[-1/7, 2/7, 3/7, 1/7], 39/22+3/44*r[4]], [[-1/7, 5/7, 3/7, -2/7], 39/22+3/44*r[4]], [[-1/7, 5/7, 3/7, 5/ 7], -20/33+1/66*r[4]], [[1/7, -5/7, 5/7, -1/7], 1+1/15*r[4]], [[1/7, -5/7, 5/7, 6/7], 5/3-1/90*r[4]], [[1/7, -4/7, 5/7, -2/7], 85/88+15/176*r[4]], [[1/7, -4/7, 5/7, 5/7], 265/176-5/352*r[4]], [[1/7, 2/7, 5/7, -1/7], 13/11+1/22*r[4]], [[1/7, 2/7, 5/7, 6/7], -31/11+1/22*r[4]], [[1/7, 3/7, 5/7, -2/7], 13/11+1/22*r[4]], [[1/7, 3/7, 5/7, 5/7], -20/11+1/22*r[4]], [[2/7, -6/7, 5/7, -4/7], 23/18-5/36*r[4]], [[2/7, -6/7, 5/7, 3/7], 32/27-1/108*r[4]], [[2/7, -1/7, 5/7, -2/7], 27/22-3/44*r[4]], [[2/7 , -1/7, 5/7, 5/7], 79/44+1/88*r[4]], [[2/7, 1/7, 5/7, -4/7], 27/22-3/44*r[4]], [[2/7, 1/7, 5/7, 3/7], 53/33-1/66*r[4]], [[2/7, 6/7, 5/7, -2/7], 53/33-1/66*r[4]], [[ 2/7, 6/7, 5/7, 5/7], 119/264-1/528*r[4]], [[3/7, -6/7, 6/7, -5/7], 10/9-1/18*r[4]], [[3/7, -6/7, 6/7, 2/7], 320/297-5/594*r[4]], [[3/7, -2/7, 6/7, -2/7], 12/11-3/ 110*r[4]], [[3/7, -2/7, 6/7, 5/7], 29/22+1/220*r[4]], [[3/7, 1/7, 6/7, -5/7], 12/11-3/110*r[4]], [[3/7, 1/7, 6/7, 2/7], 53/44-1/88*r[4]], [[3/7, 5/7, 6/7, -2/7], 53 /44-1/88*r[4]], [[3/7, 5/7, 6/7, 5/7], 119/198-1/396*r[4]]], [[[-6/7, -4/7, -1/7, -1/7], r[5]], [[-6/7, -4/7, -1/7, 6/7], 17/5-4/45*r[5]], [[-6/7, -4/7, 6/7, -1/7], 17/16+1/36*r[5]], [[-6/7, -4/7, 6/7, 6/7], 357/160-11/360*r[5]], [[-6/7, -3/7, -1/7, -2/7], -2/3+24/17*r[5]], [[-6/7, -3/7, -1/7, 5/7], 82/25-72/425*r[5]], [[-6/7, -3/7, 6/7, -2/7], 79/75+12/425*r[5]], [[-6/7, -3/7, 6/7, 5/7], 404/225-16/425*r[5]], [[-6/7, 3/7, -1/7, -1/7], 9/5+36/85*r[5]], [[-6/7, 3/7, -1/7, 6/7], -23/5+8/85* r[5]], [[-6/7, 3/7, 6/7, -1/7], 6/5+16/765*r[5]], [[-6/7, 3/7, 6/7, 6/7], -17/10+44/765*r[5]], [[-6/7, 4/7, -1/7, -2/7], 9/5+36/85*r[5]], [[-6/7, 4/7, -1/7, 5/7], -\ 99/25+54/425*r[5]], [[-6/7, 4/7, 6/7, -2/7], 477/400+27/1700*r[5]], [[-6/7, 4/7, 6/7, 5/7], -21/40+9/170*r[5]], [[-4/7, -6/7, -2/7, -3/7], 17/2-9/2*r[5]], [[-4/7, -\ 6/7, -2/7, 4/7], 17/8-1/8*r[5]], [[-4/7, -6/7, 5/7, -3/7], 187/180+1/20*r[5]], [[-4/7, -6/7, 5/7, 4/7], 221/150-1/50*r[5]], [[-4/7, -1/7, -2/7, -1/7], 4-24/17*r[5]] , [[-4/7, -1/7, -2/7, 6/7], 29/5+6/85*r[5]], [[-4/7, -1/7, 5/7, -1/7], 32/25-12/425*r[5]], [[-4/7, -1/7, 5/7, 6/7], 322/75+16/425*r[5]], [[-4/7, 1/7, -2/7, -3/7], 4 -24/17*r[5]], [[-4/7, 1/7, -2/7, 4/7], 11/2-3/17*r[5]], [[-4/7, 1/7, 5/7, -3/7], 7/6+1/34*r[5]], [[-4/7, 1/7, 5/7, 4/7], 29/10-9/170*r[5]], [[-4/7, 6/7, -2/7, -1/7] , 11/2-3/17*r[5]], [[-4/7, 6/7, -2/7, 6/7], -89/100-3/850*r[5]], [[-4/7, 6/7, 5/7, -1/7], 61/30-1/85*r[5]], [[-4/7, 6/7, 5/7, 6/7], 19/225-8/1275*r[5]], [[-3/7, -6/ 7, -1/7, -4/7], 8-72/17*r[5]], [[-3/7, -6/7, -1/7, 3/7], 32/15-24/85*r[5]], [[-3/7, -6/7, 6/7, -4/7], 44/45+4/85*r[5]], [[-3/7, -6/7, 6/7, 3/7], 272/225-8/425*r[5]] , [[-3/7, -2/7, -1/7, -1/7], 18/5-108/85*r[5]], [[-3/7, -2/7, -1/7, 6/7], 58/15+4/85*r[5]], [[-3/7, -2/7, 6/7, -1/7], 62/55-12/935*r[5]], [[-3/7, -2/7, 6/7, 6/7], 412/165+16/935*r[5]], [[-3/7, 1/7, -1/7, -4/7], 18/5-108/85*r[5]], [[-3/7, 1/7, -1/7, 3/7], 19/5-24/85*r[5]], [[-3/7, 1/7, 6/7, -4/7], 21/20+9/340*r[5]], [[-3/7, 1/ 7, 6/7, 3/7], 8/5-3/85*r[5]], [[-3/7, 5/7, -1/7, -1/7], 19/5-24/85*r[5]], [[-3/7, 5/7, -1/7, 6/7], -103/90-2/255*r[5]], [[-3/7, 5/7, 6/7, -1/7], 61/45-2/255*r[5]], [[-3/7, 5/7, 6/7, 6/7], 19/180-2/255*r[5]], [[-2/7, -3/7, 3/7, -6/7], -1/2+18/17*r[5]], [[-2/7, -3/7, 3/7, 1/7], 13/10+6/85*r[5]], [[-2/7, -1/7, 3/7, -1/7], 1+4/17* r[5]], [[-2/7, -1/7, 3/7, 6/7], 23/5-8/85*r[5]], [[-2/7, 4/7, 3/7, -6/7], 1+4/17*r[5]], [[-2/7, 4/7, 3/7, 1/7], 14/5+6/85*r[5]], [[-2/7, 6/7, 3/7, -1/7], 14/5+6/85* r[5]], [[-2/7, 6/7, 3/7, 6/7], -19/125+24/2125*r[5]], [[-1/7, -4/7, 4/7, -6/7], 12/17*r[5]], [[-1/7, -4/7, 4/7, 1/7], 6/5+4/85*r[5]], [[-1/7, -2/7, 1/7, -3/7], 3-18 /17*r[5]], [[-1/7, -2/7, 1/7, 4/7], 11/5-6/85*r[5]], [[-1/7, -1/7, 1/7, -4/7], 3-18/17*r[5]], [[-1/7, -1/7, 1/7, 3/7], 57/25-72/425*r[5]], [[-1/7, -1/7, 4/7, -2/7], 9/10+18/85*r[5]], [[-1/7, -1/7, 4/7, 5/7], 66/25-36/425*r[5]], [[-1/7, 3/7, 4/7, -6/7], 9/10+18/85*r[5]], [[-1/7, 3/7, 4/7, 1/7], 28/15+4/85*r[5]], [[-1/7, 5/7, 1/7 , -3/7], 57/25-72/425*r[5]], [[-1/7, 5/7, 1/7, 4/7], -47/25+12/425*r[5]], [[-1/7, 6/7, 1/7, -4/7], 11/5-6/85*r[5]], [[-1/7, 6/7, 1/7, 3/7], -47/25+12/425*r[5]], [[-\ 1/7, 6/7, 4/7, -2/7], 28/15+4/85*r[5]], [[-1/7, 6/7, 4/7, 5/7], 3/50+6/425*r[5]], [[1/7, -4/7, 6/7, -1/7], 1+2/51*r[5]], [[1/7, -4/7, 6/7, 6/7], 8/5-4/255*r[5]], [[ 1/7, -3/7, 6/7, -2/7], 39/40+9/170*r[5]], [[1/7, -3/7, 6/7, 5/7], 141/100-9/425*r[5]], [[1/7, 3/7, 6/7, -1/7], 28/25+12/425*r[5]], [[1/7, 3/7, 6/7, 6/7], -19/50+12/ 425*r[5]], [[1/7, 4/7, 6/7, -2/7], 28/25+12/425*r[5]], [[1/7, 4/7, 6/7, 5/7], 3/25+12/425*r[5]], [[3/7, -6/7, 5/7, -3/7], 4/3-3/17*r[5]], [[3/7, -6/7, 5/7, 4/7], 6/ 5-1/85*r[5]], [[3/7, -1/7, 5/7, -1/7], 19/15-8/85*r[5]], [[3/7, -1/7, 5/7, 6/7], 103/45+4/255*r[5]], [[3/7, 1/7, 5/7, -3/7], 19/15-8/85*r[5]], [[3/7, 1/7, 5/7, 4/7] , 47/25-12/425*r[5]], [[3/7, 6/7, 5/7, -1/7], 47/25-12/425*r[5]], [[3/7, 6/7, 5/7, 6/7], 197/375-4/2125*r[5]], [[4/7, -6/7, 6/7, -4/7], 9/8-9/136*r[5]], [[4/7, -6/7 , 6/7, 3/7], 27/25-9/850*r[5]], [[4/7, -2/7, 6/7, -1/7], 11/10-3/85*r[5]], [[4/7, -2/7, 6/7, 6/7], 89/60+1/170*r[5]], [[4/7, 1/7, 6/7, -4/7], 11/10-3/85*r[5]], [[4/ 7, 1/7, 6/7, 3/7], 94/75-8/425*r[5]], [[4/7, 5/7, 6/7, -1/7], 94/75-8/425*r[5]], [[4/7, 5/7, 6/7, 6/7], 197/300-1/425*r[5]]], [[[-6/7, -3/7, -5/7, -3/7], r[6]], [[-\ 6/7, -3/7, -5/7, 4/7], 8/3+1/15*r[6]], [[-6/7, -3/7, 2/7, -3/7], 16/11-2/33*r[6]], [[-6/7, -3/7, 2/7, 4/7], 73/33+5/264*r[6]], [[-6/7, -2/7, -5/7, -4/7], r[6]], [[-\ 6/7, -2/7, -5/7, 3/7], 5/2+1/8*r[6]], [[-6/7, -2/7, 2/7, -4/7], 3/2-3/32*r[6]], [[-6/7, -2/7, 2/7, 3/7], 37/18+1/36*r[6]], [[-6/7, 4/7, -5/7, -3/7], 5/2+1/8*r[6]], [[-6/7, 4/7, -5/7, 4/7], -10-1/20*r[6]], [[-6/7, 4/7, 2/7, -3/7], 11/6-1/48*r[6]], [[-6/7, 4/7, 2/7, 4/7], -89/16-5/128*r[6]], [[-6/7, 5/7, -5/7, -4/7], 8/3+1/15*r[ 6]], [[-6/7, 5/7, -5/7, 3/7], -10-1/20*r[6]], [[-6/7, 5/7, 2/7, -4/7], 11/6-1/48*r[6]], [[-6/7, 5/7, 2/7, 3/7], -128/27-1/27*r[6]], [[-5/7, -4/7, 1/7, -2/7], 8/5-3/ 25*r[6]], [[-5/7, -4/7, 1/7, 5/7], 12/5+1/50*r[6]], [[-5/7, -3/7, 1/7, -3/7], 5/3-1/6*r[6]], [[-5/7, -3/7, 1/7, 4/7], 20/9+1/36*r[6]], [[-5/7, 3/7, 1/7, -2/7], 2-1/ 20*r[6]], [[-5/7, 3/7, 1/7, 5/7], -7-1/20*r[6]], [[-5/7, 4/7, 1/7, -3/7], 2-1/20*r[6]], [[-5/7, 4/7, 1/7, 4/7], -6-1/20*r[6]], [[-4/7, -5/7, -3/7, -3/7], 13/15*r[6] ], [[-4/7, -5/7, -3/7, 4/7], 2+1/20*r[6]], [[-4/7, -5/7, 4/7, -3/7], 16/13-2/65*r[6]], [[-4/7, -5/7, 4/7, 4/7], 21/13+1/104*r[6]], [[-4/7, -2/7, -3/7, -6/7], 13/15* r[6]], [[-4/7, -2/7, -3/7, 1/7], 13/8+13/64*r[6]], [[-4/7, -2/7, 4/7, -6/7], 13/10-13/160*r[6]], [[-4/7, -2/7, 4/7, 1/7], 169/120+13/960*r[6]], [[-4/7, 2/7, -3/7, -\ 3/7], 13/8+13/64*r[6]], [[-4/7, 2/7, -3/7, 4/7], 39/4+3/32*r[6]], [[-4/7, 2/7, 4/7, -3/7], 11/8-1/64*r[6]], [[-4/7, 2/7, 4/7, 4/7], 89/16+5/128*r[6]], [[-4/7, 5/7, -3/7, -6/7], 2+1/20*r[6]], [[-4/7, 5/7, -3/7, 1/7], 39/4+3/32*r[6]], [[-4/7, 5/7, 4/7, -6/7], 11/8-1/64*r[6]], [[-4/7, 5/7, 4/7, 1/7], 25/6+1/48*r[6]], [[-3/7, -6/7 , 3/7, -2/7], 4/3-1/15*r[6]], [[-3/7, -6/7, 3/7, 5/7], 16/9+1/90*r[6]], [[-3/7, -5/7, -2/7, -4/7], 13/16*r[6]], [[-3/7, -5/7, -2/7, 3/7], 5/3+1/12*r[6]], [[-3/7, -5 /7, 5/7, -4/7], 15/13-3/104*r[6]], [[-3/7, -5/7, 5/7, 3/7], 155/117+1/117*r[6]], [[-3/7, -3/7, -2/7, -6/7], 13/16*r[6]], [[-3/7, -3/7, -2/7, 1/7], 13/9+13/72*r[6]], [[-3/7, -3/7, 3/7, -5/7], 13/9-13/90*r[6]], [[-3/7, -3/7, 3/7, 2/7], 247/162+13/1296*r[6]], [[-3/7, -3/7, 5/7, -6/7], 13/11-13/264*r[6]], [[-3/7, -3/7, 5/7, 1/7], 247/198+13/1584*r[6]], [[-3/7, 1/7, 3/7, -2/7], 3/2-3/80*r[6]], [[-3/7, 1/7, 3/7, 5/7], 7+1/20*r[6]], [[-3/7, 2/7, -2/7, -4/7], 13/9+13/72*r[6]], [[-3/7, 2/7, -2/7, 3/7], 14/3+1/12*r[6]], [[-3/7, 2/7, 5/7, -4/7], 11/9-1/72*r[6]], [[-3/7, 2/7, 5/7, 3/7], 64/27+1/54*r[6]], [[-3/7, 4/7, -2/7, -6/7], 5/3+1/12*r[6]], [[-3/7, 4/7, -2 /7, 1/7], 14/3+1/12*r[6]], [[-3/7, 4/7, 3/7, -5/7], 3/2-3/80*r[6]], [[-3/7, 4/7, 3/7, 2/7], 31/6+1/48*r[6]], [[-3/7, 4/7, 5/7, -6/7], 11/9-1/72*r[6]], [[-3/7, 4/7, 5/7, 1/7], 25/12+1/96*r[6]], [[-2/7, -6/7, 4/7, -3/7], 5/4-1/16*r[6]], [[-2/7, -6/7, 4/7, 4/7], 35/24+1/96*r[6]], [[-2/7, -4/7, 4/7, -5/7], 13/10-39/400*r[6]], [[-2 /7, -4/7, 4/7, 2/7], 65/48+13/1920*r[6]], [[-2/7, 1/7, 4/7, -3/7], 4/3-1/30*r[6]], [[-2/7, 1/7, 4/7, 4/7], 3+1/40*r[6]], [[-2/7, 3/7, 4/7, -5/7], 4/3-1/30*r[6]], [[ -2/7, 3/7, 4/7, 2/7], 31/12+1/96*r[6]], [[1/7, -3/7, 2/7, -3/7], 1+1/8*r[6]], [[1/7, -3/7, 2/7, 4/7], 13/8+1/64*r[6]], [[1/7, -2/7, 2/7, -4/7], 1+1/8*r[6]], [[1/7, -2/7, 2/7, 3/7], 14/9+1/36*r[6]], [[1/7, 4/7, 2/7, -3/7], 14/9+1/36*r[6]], [[1/7, 4/7, 2/7, 4/7], -19/6-1/48*r[6]], [[1/7, 5/7, 2/7, -4/7], 13/8+1/64*r[6]], [[1/7, 5/7, 2/7, 3/7], -19/6-1/48*r[6]], [[3/7, -5/7, 4/7, -3/7], 1+1/20*r[6]], [[3/7, -5/7, 4/7, 4/7], 5/4+1/160*r[6]], [[3/7, -2/7, 4/7, -6/7], 1+1/20*r[6]], [[3/7, -2/7 , 4/7, 1/7], 7/6+1/48*r[6]], [[3/7, 2/7, 4/7, -3/7], 7/6+1/48*r[6]], [[3/7, 2/7, 4/7, 4/7], 19/6+1/48*r[6]], [[3/7, 5/7, 4/7, -6/7], 5/4+1/160*r[6]], [[3/7, 5/7, 4/ 7, 1/7], 19/6+1/48*r[6]], [[4/7, -5/7, 5/7, -4/7], 1+1/40*r[6]], [[4/7, -5/7, 5/7, 3/7], 10/9+1/180*r[6]], [[4/7, -3/7, 5/7, -6/7], 1+1/40*r[6]], [[4/7, -3/7, 5/7, 1/7], 13/12+1/96*r[6]], [[4/7, 2/7, 5/7, -4/7], 13/12+1/96*r[6]], [[4/7, 2/7, 5/7, 3/7], 19/12+1/96*r[6]], [[4/7, 4/7, 5/7, -6/7], 10/9+1/180*r[6]], [[4/7, 4/7, 5/7 , 1/7], 19/12+1/96*r[6]]], [[[-6/7, -1/7, 4/7, 2/7], r[7]], [[-5/7, -5/7, 6/7, -6/7], 986/225-2057/1050*r[7]], [[-4/7, -3/7, 6/7, 2/7], 28/39+11/39*r[7]], [[-3/7, -\ 3/7, 5/7, -5/7], -(8918-7007*r[7])/(-385+1815*r[7])]], [[[-5/7, -3/7, -4/7, -2/7], r[8]], [[-5/7, -3/7, -4/7, 5/7], 3+2/65*r[8]], [[-5/7, -3/7, 3/7, -2/7], 15/11-4/ 143*r[8]], [[-5/7, -3/7, 3/7, 5/7], 27/11+8/715*r[8]], [[-5/7, -1/7, -4/7, -4/7], r[8]], [[-5/7, -1/7, -4/7, 3/7], 13/5+4/25*r[8]], [[-5/7, -1/7, 3/7, -4/7], 13/9-4 /45*r[8]], [[-5/7, -1/7, 3/7, 3/7], 91/45+8/225*r[8]], [[-5/7, 4/7, -4/7, -2/7], 13/5+4/25*r[8]], [[-5/7, 4/7, -4/7, 5/7], -21/5-4/325*r[8]], [[-5/7, 4/7, 3/7, -2/7 ], 9/5-4/325*r[8]], [[-5/7, 4/7, 3/7, 5/7], -11/5-4/325*r[8]], [[-5/7, 6/7, -4/7, -4/7], 3+2/65*r[8]], [[-5/7, 6/7, -4/7, 3/7], -21/5-4/325*r[8]], [[-5/7, 6/7, 3/7, -4/7], 9/5-4/325*r[8]], [[-5/7, 6/7, 3/7, 3/7], -6/5-4/325*r[8]], [[-4/7, -4/7, -3/7, -2/7], 12/13*r[8]], [[-4/7, -4/7, -3/7, 5/7], 5/2+1/39*r[8]], [[-4/7, -4/7, 2/ 7, -1/7], 3/2-1/13*r[8]], [[-4/7, -4/7, 2/7, 6/7], 11/4+1/78*r[8]], [[-4/7, -4/7, 4/7, -2/7], 5/4-1/52*r[8]], [[-4/7, -4/7, 4/7, 5/7], 2+1/130*r[8]], [[-4/7, -2/7, 2/7, -3/7], 13/8-1/6*r[8]], [[-4/7, -2/7, 2/7, 4/7], 143/64+3/80*r[8]], [[-4/7, -1/7, -3/7, -5/7], 12/13*r[8]], [[-4/7, -1/7, -3/7, 2/7], 2+8/39*r[8]], [[-4/7, -1/7 , 4/7, -5/7], 4/3-16/195*r[8]], [[-4/7, -1/7, 4/7, 2/7], 19/12+1/39*r[8]], [[-4/7, 3/7, -3/7, -2/7], 2+8/39*r[8]], [[-4/7, 3/7, -3/7, 5/7], -25/3-4/117*r[8]], [[-4/ 7, 3/7, 2/7, -1/7], 2-8/195*r[8]], [[-4/7, 3/7, 2/7, 6/7], -19/6-2/117*r[8]], [[-4/7, 3/7, 4/7, -2/7], 3/2-2/195*r[8]], [[-4/7, 3/7, 4/7, 5/7], -22/5-8/325*r[8]], [ [-4/7, 5/7, 2/7, -3/7], 2-8/195*r[8]], [[-4/7, 5/7, 2/7, 4/7], -15/8-3/130*r[8]], [[-4/7, 6/7, -3/7, -5/7], 5/2+1/39*r[8]], [[-4/7, 6/7, -3/7, 2/7], -25/3-4/117*r[8 ]], [[-4/7, 6/7, 4/7, -5/7], 3/2-2/195*r[8]], [[-4/7, 6/7, 4/7, 2/7], -35/16-1/52*r[8]], [[-3/7, -5/7, 3/7, -1/7], 15/11-8/143*r[8]], [[-3/7, -5/7, 3/7, 6/7], 25/11 +4/429*r[8]], [[-3/7, -2/7, 3/7, -4/7], 3/2-2/13*r[8]], [[-3/7, -2/7, 3/7, 3/7], 7/4+1/39*r[8]], [[-3/7, 2/7, 3/7, -1/7], 5/3-4/117*r[8]], [[-3/7, 2/7, 3/7, 6/7], -\ 19/3-4/117*r[8]], [[-3/7, 5/7, 3/7, -4/7], 5/3-4/117*r[8]], [[-3/7, 5/7, 3/7, 3/7], -10/3-4/117*r[8]], [[-2/7, -4/7, -1/7, -4/7], 4/5*r[8]], [[-2/7, -4/7, -1/7, 3/7 ], 13/8+1/10*r[8]], [[-2/7, -4/7, 6/7, -4/7], 13/12-1/60*r[8]], [[-2/7, -4/7, 6/7, 3/7], 143/120+1/150*r[8]], [[-2/7, -3/7, -1/7, -5/7], 4/5*r[8]], [[-2/7, -3/7, -1 /7, 2/7], 3/2+2/13*r[8]], [[-2/7, -3/7, 6/7, -5/7], 12/11-16/715*r[8]], [[-2/7, -3/7, 6/7, 2/7], 51/44+1/143*r[8]], [[-2/7, 3/7, -1/7, -4/7], 3/2+2/13*r[8]], [[-2/7 , 3/7, -1/7, 3/7], 15/2+2/13*r[8]], [[-2/7, 3/7, 6/7, -4/7], 9/8-1/130*r[8]], [[-2/7, 3/7, 6/7, 3/7], 12/5+8/325*r[8]], [[-2/7, 4/7, -1/7, -5/7], 13/8+1/10*r[8]], [ [-2/7, 4/7, -1/7, 2/7], 15/2+2/13*r[8]], [[-2/7, 4/7, 6/7, -5/7], 9/8-1/130*r[8]], [[-2/7, 4/7, 6/7, 2/7], 35/16+1/52*r[8]], [[-1/7, -5/7, 5/7, -3/7], 13/11-8/165*r [8]], [[-1/7, -5/7, 5/7, 4/7], 299/220+3/275*r[8]], [[-1/7, -4/7, 5/7, -4/7], 6/5-4/65*r[8]], [[-1/7, -4/7, 5/7, 3/7], 13/10+2/195*r[8]], [[-1/7, 2/7, 5/7, -3/7], 5 /4-1/39*r[8]], [[-1/7, 2/7, 5/7, 4/7], 15/4+3/65*r[8]], [[-1/7, 3/7, 5/7, -4/7], 5/4-1/39*r[8]], [[-1/7, 3/7, 5/7, 3/7], 10/3+4/117*r[8]], [[2/7, -3/7, 3/7, -2/7], 1+4/39*r[8]], [[2/7, -3/7, 3/7, 5/7], 5/3+4/585*r[8]], [[2/7, -1/7, 3/7, -4/7], 1+4/39*r[8]], [[2/7, -1/7, 3/7, 3/7], 3/2+2/65*r[8]], [[2/7, 4/7, 3/7, -2/7], 3/2+2/ 65*r[8]], [[2/7, 4/7, 3/7, 5/7], -3/4-1/195*r[8]], [[2/7, 6/7, 3/7, -4/7], 5/3+4/585*r[8]], [[2/7, 6/7, 3/7, 3/7], -3/4-1/195*r[8]], [[3/7, -4/7, 4/7, -2/7], 1+4/65 *r[8]], [[3/7, -4/7, 4/7, 5/7], 7/5+4/975*r[8]], [[3/7, -1/7, 4/7, -5/7], 1+4/65*r[8]], [[3/7, -1/7, 4/7, 2/7], 5/4+1/39*r[8]], [[3/7, 3/7, 4/7, -2/7], 5/4+1/39*r[8 ]], [[3/7, 3/7, 4/7, 5/7], -3/2-2/195*r[8]], [[3/7, 6/7, 4/7, -5/7], 7/5+4/975*r[8]], [[3/7, 6/7, 4/7, 2/7], -3/2-2/195*r[8]], [[5/7, -4/7, 6/7, -4/7], 1+2/195*r[8] ], [[5/7, -4/7, 6/7, 3/7], 21/20+1/325*r[8]], [[5/7, -3/7, 6/7, -5/7], 1+2/195*r[8]], [[5/7, -3/7, 6/7, 2/7], 25/24+1/234*r[8]], [[5/7, 3/7, 6/7, -4/7], 25/24+1/234 *r[8]], [[5/7, 3/7, 6/7, 3/7], 3/2+2/195*r[8]], [[5/7, 4/7, 6/7, -5/7], 21/20+1/325*r[8]], [[5/7, 4/7, 6/7, 2/7], 3/2+2/195*r[8]]]]]: end: #WadimHW(): A data-base of conjectured 3F2 identities (many of them probably equivalent via some transformation # WadimHW:=proc(): [[[[0, 0, 1/2, 0], 2*ln(2)], [[0, 0, 1/2, -1/2], 4-4*ln(2)], [[0, -1/2, 1/2, -1/2], -3+6*ln(2)], [[0, 1/2, 1/2, -1/2], 2*ln(2)], [[-1/2, 0, 0, 0], 6-6*ln(2)], [[-1/ 2, -1/2, 0, 0], -4+8*ln(2)], [[-1/2, -1/2, 0, -1/2], 18-24*ln(2)], [[-1/2, 1/2, 0, 0], 4*ln(2)], [[-1/2, 1/2, 0, -1/2], 6-6*ln(2)]], [[[0, 0, 1/3, -2/3], -6+4/3*Pi* 3^(1/2)], [[0, 0, 1/3, 1/3], 1/3*Pi*3^(1/2)], [[0, 0, 2/3, -1/3], 3-1/3*Pi*3^(1/2)], [[0, 0, 2/3, 2/3], 3/2+1/6*Pi*3^(1/2)], [[0, -2/3, 2/3, -2/3], 45/8-5/6*Pi*3^(1 /2)], [[0, -1/3, 1/3, -1/3], -6+4/3*Pi*3^(1/2)], [[0, 1/3, 2/3, -2/3], 3-1/3*Pi*3^(1/2)], [[0, 2/3, 1/3, -1/3], 1/3*Pi*3^(1/2)], [[-2/3, 0, -1/3, 0], -10+20/9*Pi*3^ (1/2)], [[-2/3, 0, 2/3, 0], 5/8+5/36*Pi*3^(1/2)], [[-2/3, -2/3, 0, 0], 63/8-7/6*Pi*3^(1/2)], [[-2/3, -2/3, -1/3, -1/3], -245/6+70/9*Pi*3^(1/2)], [[-2/3, -1/3, 0, -1 /3], 16-8/3*Pi*3^(1/2)], [[-2/3, -1/3, 0, 2/3], 1+1/3*Pi*3^(1/2)], [[-2/3, 1/3, 0, 0], 6-2/3*Pi*3^(1/2)], [[-2/3, 1/3, -1/3, -1/3], -10+20/9*Pi*3^(1/2)], [[-2/3, 2/ 3, 0, -1/3], 6-2/3*Pi*3^(1/2)], [[-2/3, 2/3, 0, 2/3], -3/2-1/6*Pi*3^(1/2)], [[-1/3, 0, 1/3, 0], 4-4/9*Pi*3^(1/2)], [[-1/3, -2/3, 0, -2/3], -35+20/3*Pi*3^(1/2)], [[-\ 1/3, -2/3, 0, 1/3], -2+2/3*Pi*3^(1/2)], [[-1/3, -1/3, 0, 0], -15/2+5/3*Pi*3^(1/2)], [[-1/3, -1/3, 1/3, -2/3], 40/3-20/9*Pi*3^(1/2)], [[-1/3, 1/3, 0, -2/3], -15/2+5/ 3*Pi*3^(1/2)], [[-1/3, 1/3, 0, 1/3], 2/3*Pi*3^(1/2)], [[-1/3, 2/3, 0, 0], 2/3*Pi*3^(1/2)], [[-1/3, 2/3, 1/3, -2/3], 4-4/9*Pi*3^(1/2)], [[1/3, 0, 2/3, 0], 2/9*Pi*3^( 1/2)], [[1/3, -2/3, 2/3, -1/3], -4/3+4/9*Pi*3^(1/2)], [[1/3, 1/3, 2/3, -1/3], 2/9*Pi*3^(1/2)]], [[[-3/4, -3/4, -1/4, -3/4], -(48+64*2^(1/2))/(-51-36*2^(1/2))], [[-3 /4, -3/4, -1/4, -1/4], -(4+12*2^(1/2))/(-7-5*2^(1/2))], [[-3/4, -3/4, -1/4, 1/4], -(8+16*2^(1/2))/(-9-6*2^(1/2))], [[-3/4, -3/4, -1/4, 3/4], -(12+4*2^(1/2))/(-3-3*2 ^(1/2))], [[-3/4, -3/4, 3/4, -3/4], -(8-56*2^(1/2))/(27+27*2^(1/2))], [[-3/4, -3/4, 3/4, -1/4], 76/27-32/27*2^(1/2)], [[-3/4, -3/4, 3/4, 1/4], 8/9*2^(1/2)], [[-3/4, -3/4, 3/4, 3/4], -20/(27-27*2^(1/2))], [[-3/4, -1/2, -3/4, -1/4], -(-24-24*2^(1/2))/(17+12*2^(1/2))], [[-3/4, -1/2, -3/4, 3/4], -(6+2^(1/2))/(-1-2^(1/2))], [[-3/4, -1/2, 1/4, -1/4], -(-3-6*2^(1/2))/(4+3*2^(1/2))], [[-3/4, -1/2, 1/4, 3/4], 15/8*2^(1/2)], [[-3/4, -1/4, -3/4, 1/2], -(40+80*2^(1/2))/(-27-18*2^(1/2))], [[-3/4, -1/4 , -1/4, -1/4], -(16-32*2^(1/2))/(9+6*2^(1/2))], [[-3/4, -1/4, -1/4, 3/4], -(16+48*2^(1/2))/(-9-9*2^(1/2))], [[-3/4, -1/4, 1/4, -1/2], 8*2^(1/2)/(4+3*2^(1/2))], [[-3 /4, -1/4, 1/4, 1/2], -(-72-8*2^(1/2))/(15+15*2^(1/2))], [[-3/4, -1/4, 3/4, -1/4], -1/126*(-128+16*2^(1/2))*2^(1/2)], [[-3/4, -1/4, 3/4, 3/4], -(112+192*2^(1/2))/(-\ 63-63*2^(1/2))], [[-3/4, 1/2, -3/4, 3/4], -20/(-9+9*2^(1/2))], [[-3/4, 1/2, 1/4, -1/4], 10*2^(1/2)/(3+3*2^(1/2))], [[-3/4, 1/2, 1/4, 3/4], -5/2*2^(1/2)], [[-3/4, 1/ 4, -1/4, -3/4], -(16-32*2^(1/2))/(9+6*2^(1/2))], [[-3/4, 1/4, -1/4, -1/4], 12/(3+2*2^(1/2))], [[-3/4, 1/4, -1/4, 1/4], -(8+8*2^(1/2))/(-3-2*2^(1/2))], [[-3/4, 1/4, 3/4, -3/4], -(-8-24*2^(1/2))/(15+15*2^(1/2))], [[-3/4, 1/4, 3/4, -1/4], -(4+8*2^(1/2))/(-5-5*2^(1/2))], [[-3/4, 1/4, 3/4, 1/4], -(12+6*2^(1/2))/(-5-5*2^(1/2))], [[-\ 3/4, 3/4, -1/4, -1/4], -(8+8*2^(1/2))/(-3-2*2^(1/2))], [[-3/4, 3/4, -1/4, 3/4], -(4+6*2^(1/2))/(3+3*2^(1/2))], [[-3/4, 3/4, 1/4, -1/2], 10*2^(1/2)/(3+3*2^(1/2))], [ [-3/4, 3/4, 1/4, 1/2], -(12+4*2^(1/2))/(3+3*2^(1/2))], [[-3/4, 3/4, 3/4, -1/4], 8/9+4/9*2^(1/2)], [[-3/4, 3/4, 3/4, 3/4], -(-2+3*2^(1/2))/(9+9*2^(1/2))], [[-1/2, -3 /4, -1/2, -1/4], 21/(7+5*2^(1/2))], [[-1/2, -3/4, -1/2, 3/4], -(3+9*2^(1/2))/(-4-2*2^(1/2))], [[-1/2, -3/4, 1/2, -1/4], -(9-21*2^(1/2))/(7+7*2^(1/2))], [[-1/2, -3/4 , 1/2, 3/4], 1/14*(15+3*2^(1/2))*2^(1/2)], [[-1/2, -1/4, -1/2, 1/4], 35*2^(1/2)/(12+8*2^(1/2))], [[-1/2, -1/4, 1/2, -3/4], 7*2^(1/2)/(4+3*2^(1/2))], [[-1/2, -1/4, 1 /2, 1/4], -(-7-14*2^(1/2))/(10+5*2^(1/2))], [[-1/2, 1/4, 1/2, -1/4], 5*2^(1/2)/(2+2*2^(1/2))], [[-1/2, 3/4, 1/2, -3/4], 5*2^(1/2)/(2+2*2^(1/2))], [[-1/4, -3/4, -1/4 , -1/2], -(56+56*2^(1/2))/(-51-36*2^(1/2))], [[-1/4, -3/4, -1/4, 1/2], -(8+16*2^(1/2))/(-9-6*2^(1/2))], [[-1/4, -3/4, 1/4, -3/4], -(16+48*2^(1/2))/(-35-25*2^(1/2))] , [[-1/4, -3/4, 1/4, 1/4], -(16-48*2^(1/2))/(15+15*2^(1/2))], [[-1/4, -3/4, 3/4, -1/2], -(24-56*2^(1/2))/(21+21*2^(1/2))], [[-1/4, -3/4, 3/4, 1/2], -8/63+64/63*2^(1 /2)], [[-1/4, -1/2, -1/4, 1/4], 7*2^(1/2)/(3+2*2^(1/2))], [[-1/4, -1/2, 3/4, -3/4], -(7+14*2^(1/2))/(-12-9*2^(1/2))], [[-1/4, -1/2, 3/4, 1/4], 7/8*2^(1/2)], [[-1/4, -1/4, 1/4, -3/4], -(4-8*2^(1/2))/(3+2*2^(1/2))], [[-1/4, -1/4, 1/4, -1/4], 8*2^(1/2)/(4+3*2^(1/2))], [[-1/4, -1/4, 1/4, 1/4], -(-4-4*2^(1/2))/(3+2*2^(1/2))], [[-1/4 , -1/4, 1/4, 3/4], 2*2^(1/2)], [[-1/4, 1/2, 3/4, -3/4], 2*2^(1/2)/(1+2^(1/2))], [[-1/4, 1/2, 3/4, 1/4], 3/2*2^(1/2)], [[-1/4, 1/4, -1/4, 1/2], 12/(1+2^(1/2))], [[-1 /4, 1/4, 1/4, -3/4], 8*2^(1/2)/(4+3*2^(1/2))], [[-1/4, 1/4, 1/4, 1/4], 4*2^(1/2)/(1+2^(1/2))], [[-1/4, 1/4, 3/4, -1/2], 2*2^(1/2)/(1+2^(1/2))], [[-1/4, 1/4, 3/4, 1/ 2], -(12+4*2^(1/2))/(-3-3*2^(1/2))], [[-1/4, 3/4, 1/4, -3/4], -(-4-4*2^(1/2))/(3+2*2^(1/2))], [[-1/4, 3/4, 1/4, -1/4], 4*2^(1/2)/(1+2^(1/2))], [[-1/4, 3/4, 1/4, 3/4 ], -1/2*2^(1/2)], [[1/2, -3/4, 1/2, -1/4], -(-15+5*2^(1/2))/(3+3*2^(1/2))], [[1/2, -3/4, 1/2, 3/4], 5/9+5/9*2^(1/2)], [[1/2, -1/4, 1/2, 1/4], 3*2^(1/2)/(2+2^(1/2))] , [[1/4, -3/4, 3/4, -3/4], -(-8-16*2^(1/2))/(15+10*2^(1/2))], [[1/4, -3/4, 3/4, -1/4], -(4-12*2^(1/2))/(5+5*2^(1/2))], [[1/4, -3/4, 3/4, 1/4], 4/5*2^(1/2)], [[1/4, -3/4, 3/4, 3/4], 4/5+2/5*2^(1/2)], [[1/4, -1/2, 1/4, -1/4], 5*2^(1/2)/(3+2*2^(1/2))], [[1/4, -1/2, 1/4, 3/4], 5/4*2^(1/2)], [[1/4, -1/4, 1/4, 1/2], -(-4-4*2^(1/2))/ (3+2*2^(1/2))], [[1/4, -1/4, 3/4, -1/4], 8/(3+3*2^(1/2))], [[1/4, -1/4, 3/4, 3/4], -(-4-6*2^(1/2))/(3+3*2^(1/2))], [[1/4, 1/2, 1/4, 3/4], -2^(1/2)], [[1/4, 1/4, 3/4 , -3/4], 8/(3+3*2^(1/2))], [[1/4, 1/4, 3/4, -1/4], 2*2^(1/2)/(1+2^(1/2))], [[1/4, 1/4, 3/4, 1/4], 2^(1/2)], [[1/4, 3/4, 3/4, -1/4], 2^(1/2)], [[1/4, 3/4, 3/4, 3/4], 1/4*2^(1/2)], [[3/4, -3/4, 3/4, -1/2], -4/3+5/3*2^(1/2)], [[3/4, -3/4, 3/4, 1/2], 4/9+4/9*2^(1/2)], [[3/4, -1/2, 3/4, 1/4], 3/4*2^(1/2)], [[3/4, 1/4, 3/4, 1/2], 2^( 1/2)]], [[[-4/5, -4/5, -2/5, -3/5], -(130-195*5^(1/2))/(108+48*5^(1/2))], [[-4/5, -4/5, -2/5, 2/5], 65/(16+8*5^(1/2))], [[-4/5, -4/5, -1/5, -1/5], -(13-65*5^(1/2))/ (44+20*5^(1/2))], [[-4/5, -4/5, -1/5, 4/5], -26/7+39/14*5^(1/2)], [[-4/5, -4/5, 3/5, -3/5], -(-65-260*5^(1/2))/(264+132*5^(1/2))], [[-4/5, -4/5, 3/5, 2/5], -13/11+ 13/11*5^(1/2)], [[-4/5, -4/5, 4/5, -1/5], -(117-143*5^(1/2))/(56+56*5^(1/2))], [[-4/5, -4/5, 4/5, 4/5], 13/16*5^(1/2)], [[-4/5, -3/5, -1/5, -2/5], -(22+2*5^(1/2))/( -9-4*5^(1/2))], [[-4/5, -3/5, -1/5, 3/5], -(-1-5*5^(1/2))/(3+5^(1/2))], [[-4/5, -3/5, 4/5, -2/5], -(12-23*5^(1/2))/(11+11*5^(1/2))], [[-4/5, -3/5, 4/5, 3/5], 1/11+7 /11*5^(1/2)], [[-4/5, -2/5, -3/5, -2/5], -(55-55*5^(1/2))/(21+9*5^(1/2))], [[-4/5, -2/5, -3/5, 3/5], 55/(6+6*5^(1/2))], [[-4/5, -2/5, 2/5, -2/5], 55*5^(1/2)/(40+24* 5^(1/2))], [[-4/5, -2/5, 2/5, 3/5], -11/(4-4*5^(1/2))], [[-4/5, -1/5, -3/5, -3/5], -(55-55*5^(1/2))/(21+9*5^(1/2))], [[-4/5, -1/5, -3/5, 2/5], -(5-15*5^(1/2))/(6+2* 5^(1/2))], [[-4/5, -1/5, -2/5, -1/5], -(20-20*5^(1/2))/(7+3*5^(1/2))], [[-4/5, -1/5, -2/5, 4/5], -(40+5*5^(1/2))/(-6-2*5^(1/2))], [[-4/5, -1/5, 2/5, -3/5], -(-5-15* 5^(1/2))/(14+7*5^(1/2))], [[-4/5, -1/5, 2/5, 2/5], -(-80-5*5^(1/2))/(14+14*5^(1/2))], [[-4/5, -1/5, 3/5, -1/5], -(5+10*5^(1/2))/(-12-4*5^(1/2))], [[-4/5, -1/5, 3/5, 4/5], -(5-45*5^(1/2))/(8+8*5^(1/2))], [[-4/5, 1/5, -2/5, -3/5], -(20-20*5^(1/2))/(7+3*5^(1/2))], [[-4/5, 1/5, -2/5, 2/5], 10*5^(1/2)/(3+5^(1/2))], [[-4/5, 1/5, -1/5 , -1/5], -(7-7*5^(1/2))/(2+5^(1/2))], [[-4/5, 1/5, 3/5, -3/5], -(5+5*5^(1/2))/(-6-3*5^(1/2))], [[-4/5, 1/5, 3/5, 2/5], -2+2*5^(1/2)], [[-4/5, 1/5, 4/5, -1/5], -(8-\ 16*5^(1/2))/(7+7*5^(1/2))], [[-4/5, 2/5, -1/5, -2/5], -(7-7*5^(1/2))/(2+5^(1/2))], [[-4/5, 2/5, 4/5, -2/5], 7*5^(1/2)/(4+4*5^(1/2))], [[-4/5, 3/5, -3/5, -2/5], -(5-\ 15*5^(1/2))/(6+2*5^(1/2))], [[-4/5, 3/5, -3/5, 3/5], -5/(3-5^(1/2))], [[-4/5, 3/5, 2/5, -2/5], 5*5^(1/2)/(2+2*5^(1/2))], [[-4/5, 3/5, 2/5, 3/5], -5^(1/2)-1], [[-4/5 , 4/5, -3/5, -3/5], 55/(6+6*5^(1/2))], [[-4/5, 4/5, -3/5, 2/5], -5/(3-5^(1/2))], [[-4/5, 4/5, -2/5, -1/5], 10*5^(1/2)/(3+5^(1/2))], [[-4/5, 4/5, -2/5, 4/5], -(15-10 *5^(1/2))/(4-4*5^(1/2))], [[-4/5, 4/5, 2/5, -3/5], 5*5^(1/2)/(2+2*5^(1/2))], [[-4/5, 4/5, 2/5, 2/5], -(20+5*5^(1/2))/(4+4*5^(1/2))], [[-4/5, 4/5, 3/5, -1/5], -5/(2-\ 2*5^(1/2))], [[-3/5, -4/5, -1/5, -4/5], -(10-15*5^(1/2))/(9+4*5^(1/2))], [[-3/5, -4/5, -1/5, 1/5], 10*5^(1/2)/(7+3*5^(1/2))], [[-3/5, -4/5, 4/5, -4/5], -(-5-20*5^(1 /2))/(22+11*5^(1/2))], [[-3/5, -4/5, 4/5, 1/5], -21/22+21/22*5^(1/2)], [[-3/5, -3/5, -2/5, -2/5], 33/(11+5*5^(1/2))], [[-3/5, -3/5, -2/5, 3/5], -11/6+11/6*5^(1/2)], [[-3/5, -3/5, 1/5, -1/5], 55*5^(1/2)/(42+21*5^(1/2))], [[-3/5, -3/5, 1/5, 4/5], 11/14+11/14*5^(1/2)], [[-3/5, -3/5, 3/5, -2/5], -(44-66*5^(1/2))/(27+27*5^(1/2))], [ [-3/5, -3/5, 3/5, 3/5], 22/27+11/27*5^(1/2)], [[-3/5, -2/5, -1/5, -1/5], 35/(11+5*5^(1/2))], [[-3/5, -2/5, -1/5, 4/5], -(15-35*5^(1/2))/(6+6*5^(1/2))], [[-3/5, -2/5 , 1/5, -2/5], -(5-10*5^(1/2))/(6+3*5^(1/2))], [[-3/5, -2/5, 1/5, 3/5], -5/6+25/18*5^(1/2)], [[-3/5, -2/5, 4/5, -1/5], -5/12+25/36*5^(1/2)], [[-3/5, -2/5, 4/5, 4/5], -(-70-15*5^(1/2))/(27+9*5^(1/2))], [[-3/5, -1/5, -2/5, -4/5], 33/(11+5*5^(1/2))], [[-3/5, -1/5, -2/5, 1/5], 9/(2+5^(1/2))], [[-3/5, -1/5, 3/5, -4/5], -(-9-27*5^(1/2 ))/(28+14*5^(1/2))], [[-3/5, -1/5, 3/5, 1/5], -3/7+6/7*5^(1/2)], [[-3/5, 1/5, -1/5, -4/5], 35/(11+5*5^(1/2))], [[-3/5, 1/5, -1/5, 1/5], 35/(6+3*5^(1/2))], [[-3/5, 1 /5, 4/5, -4/5], -(35-35*5^(1/2))/(12+12*5^(1/2))], [[-3/5, 1/5, 4/5, 1/5], -7/6+7/6*5^(1/2)], [[-3/5, 2/5, -2/5, -2/5], 9/(2+5^(1/2))], [[-3/5, 2/5, 1/5, -1/5], -(-\ 5-5*5^(1/2))/(4+2*5^(1/2))], [[-3/5, 2/5, 1/5, 4/5], -3/2-3/2*5^(1/2)], [[-3/5, 2/5, 3/5, -2/5], 2*5^(1/2)/(5^(1/2)+1)], [[-3/5, 3/5, -1/5, -1/5], 35/(6+3*5^(1/2))] , [[-3/5, 3/5, -1/5, 4/5], -10*5^(1/2)/(3+3*5^(1/2))], [[-3/5, 3/5, 1/5, -2/5], -(-5-5*5^(1/2))/(4+2*5^(1/2))], [[-3/5, 3/5, 1/5, 3/5], -5/3*5^(1/2)], [[-3/5, 3/5, 4/5, -1/5], -5/(3-3*5^(1/2))], [[-3/5, 4/5, -2/5, -4/5], -11/6+11/6*5^(1/2)], [[-3/5, 4/5, 3/5, -4/5], 2*5^(1/2)/(5^(1/2)+1)], [[-2/5, -4/5, 2/5, -1/5], -(44+11*5^( 1/2))/(-28-12*5^(1/2))], [[-2/5, -4/5, 2/5, 4/5], -(55+22*5^(1/2))/(-16-16*5^(1/2))], [[-2/5, -3/5, -1/5, -3/5], -(15-15*5^(1/2))/(7+3*5^(1/2))], [[-2/5, -3/5, -1/5 , 2/5], -(5-15*5^(1/2))/(9+3*5^(1/2))], [[-2/5, -3/5, 1/5, -4/5], -(55+5*5^(1/2))/(-27-12*5^(1/2))], [[-2/5, -3/5, 1/5, 1/5], -(5+15*5^(1/2))/(-12-6*5^(1/2))], [[-2 /5, -3/5, 4/5, -3/5], -(45+35*5^(1/2))/(-54-27*5^(1/2))], [[-2/5, -3/5, 4/5, 2/5], -(5-10*5^(1/2))/(54-18*5^(1/2))], [[-2/5, -2/5, -1/5, -4/5], -(15-15*5^(1/2))/(7+ 3*5^(1/2))], [[-2/5, -2/5, -1/5, 1/5], 15/(4+2*5^(1/2))], [[-2/5, -2/5, 2/5, -3/5], -(3-6*5^(1/2))/(4+2*5^(1/2))], [[-2/5, -2/5, 2/5, 2/5], 3/4*5^(1/2)], [[-2/5, -2 /5, 4/5, -4/5], 45/(24+8*5^(1/2))], [[-2/5, -2/5, 4/5, 1/5], -3/(2-2*5^(1/2))], [[-2/5, -1/5, 1/5, -1/5], -(5-5*5^(1/2))/(2+5^(1/2))], [[-2/5, -1/5, 1/5, 4/5], -3+3 *5^(1/2)], [[-2/5, 1/5, 2/5, -1/5], -(-2-2*5^(1/2))/(2+5^(1/2))], [[-2/5, 2/5, -1/5, -3/5], 15/(4+2*5^(1/2))], [[-2/5, 2/5, -1/5, 2/5], -5+5*5^(1/2)], [[-2/5, 2/5, 1/5, -4/5], -(5-5*5^(1/2))/(2+5^(1/2))], [[-2/5, 2/5, 1/5, 1/5], 15*5^(1/2)/(5+3*5^(1/2))], [[-2/5, 2/5, 4/5, -3/5], 5*5^(1/2)/(3+3*5^(1/2))], [[-2/5, 2/5, 4/5, 2/5 ], -(20+5*5^(1/2))/(-4-4*5^(1/2))], [[-2/5, 3/5, -1/5, -4/5], -(5-15*5^(1/2))/(9+3*5^(1/2))], [[-2/5, 3/5, -1/5, 1/5], -5+5*5^(1/2)], [[-2/5, 3/5, 2/5, -3/5], -(-2-\ 2*5^(1/2))/(2+5^(1/2))], [[-2/5, 3/5, 4/5, -4/5], 5*5^(1/2)/(3+3*5^(1/2))], [[-2/5, 3/5, 4/5, 1/5], 2/3+2/3*5^(1/2)], [[-2/5, 4/5, 1/5, -1/5], 15*5^(1/2)/(5+3*5^(1/ 2))], [[-2/5, 4/5, 1/5, 4/5], -2/(5^(1/2)+1)], [[-1/5, -4/5, 2/5, -4/5], -(5-25*5^(1/2))/(22+10*5^(1/2))], [[-1/5, -4/5, 2/5, 1/5], -(-60+5*5^(1/2))/(21+7*5^(1/2))] , [[-1/5, -4/5, 3/5, -2/5], -(-5-15*5^(1/2))/(16+8*5^(1/2))], [[-1/5, -4/5, 3/5, 3/5], -(-35-10*5^(1/2))/(12+12*5^(1/2))], [[-1/5, -3/5, 3/5, -3/5], 15*5^(1/2)/(14+ 7*5^(1/2))], [[-1/5, -3/5, 3/5, 2/5], 3/7+3/7*5^(1/2)], [[-1/5, -2/5, 1/5, -3/5], -(7+7*5^(1/2))/(-9-4*5^(1/2))], [[-1/5, -2/5, 1/5, 2/5], -(-5-5^(1/2))/(2+5^(1/2)) ], [[-1/5, -1/5, 1/5, -4/5], -(7+7*5^(1/2))/(-9-4*5^(1/2))], [[-1/5, -1/5, 1/5, 1/5], 7/(2+5^(1/2))], [[-1/5, -1/5, 2/5, -2/5], 35/(14+6*5^(1/2))], [[-1/5, -1/5, 2/ 5, 3/5], 7*5^(1/2)/(5+5^(1/2))], [[-1/5, 1/5, 2/5, -4/5], 35/(14+6*5^(1/2))], [[-1/5, 1/5, 2/5, 1/5], -(-5-5*5^(1/2))/(4+2*5^(1/2))], [[-1/5, 1/5, 3/5, -2/5], -(5+5 *5^(1/2))/(-6-3*5^(1/2))], [[-1/5, 1/5, 3/5, 3/5], 5/3*5^(1/2)], [[-1/5, 2/5, 3/5, -3/5], -(5+5*5^(1/2))/(-6-3*5^(1/2))], [[-1/5, 2/5, 3/5, 2/5], 5^(1/2)+1], [[-1/5 , 3/5, 1/5, -3/5], 7/(2+5^(1/2))], [[-1/5, 4/5, 1/5, -4/5], -(-5-5^(1/2))/(2+5^(1/2))], [[-1/5, 4/5, 2/5, -2/5], -(-5-5*5^(1/2))/(4+2*5^(1/2))], [[-1/5, 4/5, 2/5, 3 /5], -2/(5^(1/2)+1)], [[1/5, -4/5, 3/5, -3/5], 20*5^(1/2)/(21+9*5^(1/2))], [[1/5, -4/5, 3/5, 2/5], 5^(1/2)-1], [[1/5, -4/5, 4/5, -1/5], -(7+11*5^(1/2))/(-14-7*5^(1/ 2))], [[1/5, -4/5, 4/5, 4/5], 3/7+3/7*5^(1/2)], [[1/5, -3/5, 4/5, -2/5], -(21-14*5^(1/2))/(3+3*5^(1/2))], [[1/5, -3/5, 4/5, 3/5], 7/18+7/18*5^(1/2)], [[1/5, -2/5, 2 /5, -2/5], -(5-5*5^(1/2))/(3+5^(1/2))], [[1/5, -2/5, 2/5, 3/5], -2/(-5^(1/2)+1)], [[1/5, -1/5, 2/5, -3/5], -(5-5*5^(1/2))/(3+5^(1/2))], [[1/5, -1/5, 2/5, 2/5], 5/(5 ^(1/2)+1)], [[1/5, -1/5, 3/5, -1/5], -(5-5*5^(1/2))/(3+5^(1/2))], [[1/5, -1/5, 3/5, 4/5], 10*5^(1/2)/(3+3*5^(1/2))], [[1/5, 1/5, 3/5, -3/5], -(5-5*5^(1/2))/(3+5^(1/ 2))], [[1/5, 1/5, 3/5, 2/5], -(3+3*5^(1/2))/(-3-5^(1/2))], [[1/5, 1/5, 4/5, -1/5], 6/(3+5^(1/2))], [[1/5, 2/5, 4/5, -2/5], 6/(3+5^(1/2))], [[1/5, 3/5, 2/5, -2/5], 5 /(5^(1/2)+1)], [[1/5, 3/5, 2/5, 3/5], -2/(5^(1/2)-1)], [[1/5, 4/5, 2/5, -3/5], -2/(-5^(1/2)+1)], [[1/5, 4/5, 2/5, 2/5], -2/(5^(1/2)-1)], [[1/5, 4/5, 3/5, -1/5], -(3 +3*5^(1/2))/(-3-5^(1/2))], [[1/5, 4/5, 3/5, 4/5], 2/(3+3*5^(1/2))], [[2/5, -4/5, 4/5, -4/5], 35*5^(1/2)/(40+16*5^(1/2))], [[2/5, -4/5, 4/5, 1/5], 7/(2+2*5^(1/2))], [[2/5, -3/5, 3/5, -2/5], -(1-3*5^(1/2))/(3+5^(1/2))], [[2/5, -3/5, 3/5, 3/5], -1/(5^(1/2)-3)], [[2/5, -2/5, 4/5, -1/5], 5*5^(1/2)/(6+2*5^(1/2))], [[2/5, -2/5, 4/5, 4/5], -(-15+10*5^(1/2))/(4-4*5^(1/2))], [[2/5, -1/5, 3/5, -4/5], -(1-3*5^(1/2))/(3+5^(1/2))], [[2/5, -1/5, 3/5, 1/5], 5^(1/2)-1], [[2/5, 1/5, 4/5, -4/5], 5*5^(1/2)/ (6+2*5^(1/2))], [[2/5, 1/5, 4/5, 1/5], 5^(1/2)-1], [[2/5, 2/5, 3/5, -2/5], 5^(1/2)-1], [[2/5, 3/5, 4/5, -1/5], 5^(1/2)-1], [[2/5, 3/5, 4/5, 4/5], 1/(5^(1/2)+1)], [[ 2/5, 4/5, 3/5, -4/5], -1/(5^(1/2)-3)], [[3/5, -3/5, 4/5, -3/5], -(5+5*5^(1/2))/(-9-3*5^(1/2))], [[3/5, -3/5, 4/5, 2/5], -(10+5*5^(1/2))/(-6-6*5^(1/2))], [[3/5, -2/5 , 4/5, -4/5], -(5+5*5^(1/2))/(-9-3*5^(1/2))], [[3/5, -2/5, 4/5, 1/5], -4/(3-3*5^(1/2))], [[3/5, 2/5, 4/5, -3/5], -4/(3-3*5^(1/2))], [[3/5, 2/5, 4/5, 2/5], -2/(-5^(1 /2)+1)], [[3/5, 3/5, 4/5, -4/5], -(10+5*5^(1/2))/(-6-6*5^(1/2))], [[3/5, 3/5, 4/5, 1/5], -2/(-5^(1/2)+1)]], [[[-5/6, -5/6, -1/2, -1/2], -(-1792+320*3^(1/2))/(420+ 245*3^(1/2))], [[-5/6, -5/6, -1/2, 1/2], -(160-288*3^(1/2))/(105+35*3^(1/2))], [[-5/6, -5/6, -1/6, -1/6], -(-512-640*3^(1/2))/(540+315*3^(1/2))], [[-5/6, -5/6, -1/6 , 5/6], -1/135*(-256+32*3^(1/2))*3^(1/2)], [[-5/6, -5/6, 1/2, -1/2], -(-544-1728*3^(1/2))/(1365+910*3^(1/2))], [[-5/6, -5/6, 1/2, 1/2], 256/273*3^(1/2)], [[-5/6, -5 /6, 5/6, -1/6], -1/675*(512-544*3^(1/2))*3^(1/2)], [[-5/6, -5/6, 5/6, 5/6], 1/225*(128+64*3^(1/2))*3^(1/2)], [[-5/6, -1/2, -1/6, -1/2], -(16+52*3^(1/2))/(-36-21*3^( 1/2))], [[-5/6, -1/2, -1/6, 1/2], -1/45*(-128+40*3^(1/2))*3^(1/2)], [[-5/6, -1/2, 5/6, -1/2], -1/585*(256-360*3^(1/2))*3^(1/2)], [[-5/6, -1/2, 5/6, 1/2], 1/585*(224 +140*3^(1/2))*3^(1/2)], [[-5/6, -1/3, -1/2, -1/2], 13*3^(1/2)/(7+4*3^(1/2))], [[-5/6, -1/3, -1/2, 1/2], -(-65-78*3^(1/2))/(40+20*3^(1/2))], [[-5/6, -1/3, 1/2, -1/2] , -(65-117*3^(1/2))/(40+40*3^(1/2))], [[-5/6, -1/3, 1/2, 1/2], 91/80*3^(1/2)], [[-5/6, -1/6, -1/2, -2/3], 13*3^(1/2)/(7+4*3^(1/2))], [[-5/6, -1/6, -1/2, -1/6], -(32 +8*3^(1/2))/(-12-7*3^(1/2))], [[-5/6, -1/6, -1/2, 1/3], 28*3^(1/2)/(10+5*3^(1/2))], [[-5/6, -1/6, -1/2, 5/6], -(80+64*3^(1/2))/(-15-10*3^(1/2))], [[-5/6, -1/6, 1/2, -2/3], 14/(6+3*3^(1/2))], [[-5/6, -1/6, 1/2, -1/6], -(-80-32*3^(1/2))/(45+30*3^(1/2))], [[-5/6, -1/6, 1/2, 1/3], -28/15+32/15*3^(1/2)], [[-5/6, -1/6, 1/2, 5/6], -1/ 45*(56-104*3^(1/2))*3^(1/2)], [[-5/6, 1/2, -1/6, -1/2], -(16-32*3^(1/2))/(9+6*3^(1/2))], [[-5/6, 1/2, 5/6, -1/2], -1/315*(64-160*3^(1/2))*3^(1/2)], [[-5/6, 1/6, -1/ 2, -1/2], -(32+8*3^(1/2))/(-12-7*3^(1/2))], [[-5/6, 1/6, -1/2, 1/2], -1/3*(-16+4*3^(1/2))*3^(1/2)], [[-5/6, 1/6, -1/6, -1/6], -(16-32*3^(1/2))/(9+6*3^(1/2))], [[-5/ 6, 1/6, 1/2, -1/2], -(12-52*3^(1/2))/(21+21*3^(1/2))], [[-5/6, 1/6, 1/2, 1/2], 40/21*3^(1/2)], [[-5/6, 1/6, 5/6, -1/6], -1/27*(16-20*3^(1/2))*3^(1/2)], [[-5/6, 2/3, -1/2, -1/2], 28*3^(1/2)/(10+5*3^(1/2))], [[-5/6, 2/3, -1/2, 1/2], -(-14+14*3^(1/2))/(10-5*3^(1/2))], [[-5/6, 2/3, 1/2, -1/2], 14/5-7/10*3^(1/2)], [[-5/6, 2/3, 1/2, 1/2], -7/4*3^(1/2)], [[-5/6, 5/6, -1/2, -2/3], -(-65-78*3^(1/2))/(40+20*3^(1/2))], [[-5/6, 5/6, -1/2, -1/6], -1/3*(-16+4*3^(1/2))*3^(1/2)], [[-5/6, 5/6, -1/2, 1/3], -(-14+14*3^(1/2))/(10-5*3^(1/2))], [[-5/6, 5/6, -1/2, 5/6], -1/15*(-2+8*3^(1/2))*3^(1/2)], [[-5/6, 5/6, 1/2, -2/3], 14/5-7/10*3^(1/2)], [[-5/6, 5/6, 1/2, -1/6], 1/ 15*(8+8*3^(1/2))*3^(1/2)], [[-5/6, 5/6, 1/2, 1/3], -(20+14*3^(1/2))/(10+5*3^(1/2))], [[-5/6, 5/6, 1/2, 5/6], -1/30*(-7+8*3^(1/2))*3^(1/2)], [[-2/3, -1/2, -1/3, -1/2 ], 143/(48+28*3^(1/2))], [[-2/3, -1/2, -1/3, 1/2], -(-65-78*3^(1/2))/(48+24*3^(1/2))], [[-2/3, -1/2, 2/3, -1/2], -1/66*(91-78*3^(1/2))*3^(1/2)], [[-2/3, -1/2, 2/3, 1/2], 13/33+91/132*3^(1/2)], [[-2/3, -1/6, -1/3, -5/6], 143/(48+28*3^(1/2))], [[-2/3, -1/6, -1/3, 1/6], -(77-154*3^(1/2))/(48+24*3^(1/2))], [[-2/3, -1/6, 2/3, -5/6] , 77*3^(1/2)/(54+36*3^(1/2))], [[-2/3, -1/6, 2/3, 1/6], -11/9+55/36*3^(1/2)], [[-2/3, 1/2, -1/3, -1/2], -(77-154*3^(1/2))/(48+24*3^(1/2))], [[-2/3, 1/2, 2/3, -1/2], 7/3-7/12*3^(1/2)], [[-2/3, 5/6, -1/3, -5/6], -(-65-78*3^(1/2))/(48+24*3^(1/2))], [[-2/3, 5/6, 2/3, -5/6], 7/3-7/12*3^(1/2)], [[-1/2, -5/6, -1/6, -5/6], -(-224+40*3^ (1/2))/(60+35*3^(1/2))], [[-1/2, -5/6, -1/6, 1/6], -(-92+24*3^(1/2))/(15+10*3^(1/2))], [[-1/2, -5/6, 5/6, -5/6], -(784+500*3^(1/2))/(-780-455*3^(1/2))], [[-1/2, -5/ 6, 5/6, 1/6], 128/195*3^(1/2)], [[-1/2, -2/3, 1/6, -1/6], -(-65-221*3^(1/2))/(160+96*3^(1/2))], [[-1/2, -2/3, 1/6, 5/6], 91/64*3^(1/2)], [[-1/2, -1/2, -1/6, -2/3], 11*3^(1/2)/(7+4*3^(1/2))], [[-1/2, -1/2, -1/6, -1/6], -(32-96*3^(1/2))/(45+25*3^(1/2))], [[-1/2, -1/2, -1/6, 1/3], 4*3^(1/2)/(2+3^(1/2))], [[-1/2, -1/2, -1/6, 5/6], -1/15*(16-24*3^(1/2))*3^(1/2)], [[-1/2, -1/2, 1/6, -5/6], -(-32-104*3^(1/2))/(84+49*3^(1/2))], [[-1/2, -1/2, 1/6, -1/3], -(12+4*3^(1/2))/(-7-4*3^(1/2))], [[-1/2, -1 /2, 1/6, 1/6], -(16+32*3^(1/2))/(-21-14*3^(1/2))], [[-1/2, -1/2, 1/6, 2/3], -12/7+16/7*3^(1/2)], [[-1/2, -1/2, 5/6, -2/3], -(6-22*3^(1/2))/(11+11*3^(1/2))], [[-1/2, -1/2, 5/6, -1/6], 1/165*(64+24*3^(1/2))*3^(1/2)], [[-1/2, -1/2, 5/6, 1/3], 12/55+32/55*3^(1/2)], [[-1/2, -1/2, 5/6, 5/6], -1/165*(56-144*3^(1/2))*3^(1/2)], [[-1/2, -1/3, -1/6, -5/6], 11*3^(1/2)/(7+4*3^(1/2))], [[-1/2, -1/3, -1/6, 1/6], -(11-22*3^(1/2))/(8+4*3^(1/2))], [[-1/2, -1/3, 5/6, -5/6], -(55-99*3^(1/2))/(40+40*3^(1/2))] , [[-1/2, -1/3, 5/6, 1/6], 11/16*3^(1/2)], [[-1/2, -1/6, 1/6, -1/6], -(4-8*3^(1/2))/(3+2*3^(1/2))], [[-1/2, -1/6, 1/6, 5/6], 8/3*3^(1/2)], [[-1/2, 1/2, -1/6, -2/3], -(11-22*3^(1/2))/(8+4*3^(1/2))], [[-1/2, 1/2, -1/6, -1/6], 16*3^(1/2)/(6+3*3^(1/2))], [[-1/2, 1/2, -1/6, 1/3], -(-10-10*3^(1/2))/(2+3^(1/2))], [[-1/2, 1/2, -1/6, 5/ 6], -1/3*(-2+4*3^(1/2))*3^(1/2)], [[-1/2, 1/2, 1/6, -5/6], -(4-8*3^(1/2))/(3+2*3^(1/2))], [[-1/2, 1/2, 1/6, -1/3], 7/(2+3^(1/2))], [[-1/2, 1/2, 1/6, 1/6], -(-8-8*3^ (1/2))/(3+2*3^(1/2))], [[-1/2, 1/2, 1/6, 2/3], -(8+6*3^(1/2))/(2+3^(1/2))], [[-1/2, 1/2, 5/6, -2/3], -(-1-3*3^(1/2))/(2+2*3^(1/2))], [[-1/2, 1/2, 5/6, -1/6], 1/15*( 4+4*3^(1/2))*3^(1/2)], [[-1/2, 1/2, 5/6, 1/3], -(-20-14*3^(1/2))/(10+5*3^(1/2))], [[-1/2, 1/2, 5/6, 5/6], -1/15*(-7+8*3^(1/2))*3^(1/2)], [[-1/2, 1/3, 1/6, -1/6], 7/ (2+3^(1/2))], [[-1/2, 1/3, 1/6, 5/6], -7/2*3^(1/2)], [[-1/2, 1/6, -1/6, -5/6], -(32-96*3^(1/2))/(45+25*3^(1/2))], [[-1/2, 1/6, -1/6, 1/6], 16*3^(1/2)/(6+3*3^(1/2))] , [[-1/2, 1/6, 5/6, -5/6], -1/105*(128-112*3^(1/2))*3^(1/2)], [[-1/2, 1/6, 5/6, 1/6], 16/21*3^(1/2)], [[-1/2, 2/3, -1/6, -5/6], 4*3^(1/2)/(2+3^(1/2))], [[-1/2, 2/3, -1/6, 1/6], -(-10-10*3^(1/2))/(2+3^(1/2))], [[-1/2, 2/3, 5/6, -5/6], -(-1-3*3^(1/2))/(2+2*3^(1/2))], [[-1/2, 2/3, 5/6, 1/6], 5/4*3^(1/2)], [[-1/2, 5/6, 1/6, -1/6], -(-8-8*3^(1/2))/(3+2*3^(1/2))], [[-1/2, 5/6, 1/6, 5/6], -1/3*3^(1/2)], [[-1/3, -5/6, 1/3, -1/6], -(-65+13*3^(1/2))/(18+9*3^(1/2))], [[-1/3, -5/6, 1/3, 5/6], 13/45+ 91/90*3^(1/2)], [[-1/3, -1/2, 1/3, -1/2], -(-11-11*3^(1/2))/(12+7*3^(1/2))], [[-1/3, -1/2, 1/3, 1/2], -11/21+55/42*3^(1/2)], [[-1/3, 1/2, 1/3, -1/2], -(35-35*3^(1/2 ))/(6+6*3^(1/2))], [[-1/3, 1/6, 1/3, -1/6], -(35-35*3^(1/2))/(6+6*3^(1/2))], [[-1/6, -5/6, 1/2, -5/6], -(-128-160*3^(1/2))/(180+105*3^(1/2))], [[-1/6, -5/6, 1/2, -1 /3], -(-20+4*3^(1/2))/(6+3*3^(1/2))], [[-1/6, -5/6, 1/2, 1/6], -(-40-48*3^(1/2))/(45+30*3^(1/2))], [[-1/6, -5/6, 1/2, 2/3], -4/15+16/15*3^(1/2)], [[-1/6, -2/3, 1/2, -1/2], -(-253+66*3^(1/2))/(64+32*3^(1/2))], [[-1/6, -2/3, 1/2, 1/2], 55/64*3^(1/2)], [[-1/6, -1/2, 1/6, -1/2], -(16-48*3^(1/2))/(27+15*3^(1/2))], [[-1/6, -1/2, 1/6, 1/2], -(-4-12*3^(1/2))/(9+3*3^(1/2))], [[-1/6, -1/6, 1/2, -1/2], -(16-32*3^(1/2))/(15+10*3^(1/2))], [[-1/6, -1/6, 1/2, 1/2], 16/15*3^(1/2)], [[-1/6, -1/6, 1/6, -5/6 ], -(16-48*3^(1/2))/(27+15*3^(1/2))], [[-1/6, -1/6, 1/6, 1/6], -(32-32*3^(1/2))/(9+3*3^(1/2))], [[-1/6, 1/2, 1/6, -1/2], -(32-32*3^(1/2))/(9+3*3^(1/2))], [[-1/6, 1/ 3, 1/2, -1/2], 5/(2+3^(1/2))], [[-1/6, 1/3, 1/2, 1/2], 5/2*3^(1/2)], [[-1/6, 1/6, 1/2, -5/6], -(16-32*3^(1/2))/(15+10*3^(1/2))], [[-1/6, 1/6, 1/2, -1/3], 5/(2+3^(1/ 2))], [[-1/6, 1/6, 1/2, 1/6], -1/3*(4-4*3^(1/2))*3^(1/2)], [[-1/6, 1/6, 1/2, 2/3], -(-8-6*3^(1/2))/(2+3^(1/2))], [[-1/6, 5/6, 1/2, -1/2], -1/3*(4-4*3^(1/2))*3^(1/2) ], [[-1/6, 5/6, 1/2, 1/2], -1/3*3^(1/2)], [[-1/6, 5/6, 1/6, -5/6], -(-4-12*3^(1/2))/(9+3*3^(1/2))], [[1/2, -5/6, 5/6, -5/6], -(-176-32*3^(1/2))/(105+70*3^(1/2))], [ [1/2, -5/6, 5/6, 1/6], 64/105*3^(1/2)], [[1/2, -1/2, 5/6, -2/3], -2+7/4*3^(1/2)], [[1/2, -1/2, 5/6, -1/6], -1/15*(-16+4*3^(1/2))*3^(1/2)], [[1/2, -1/2, 5/6, 1/3], 1 /15*(6+2*3^(1/2))*3^(1/2)], [[1/2, -1/2, 5/6, 5/6], -1/15*(2-8*3^(1/2))*3^(1/2)], [[1/2, -1/3, 5/6, -5/6], -2+7/4*3^(1/2)], [[1/2, -1/3, 5/6, 1/6], 5/8*3^(1/2)], [[ 1/2, 1/2, 5/6, -2/3], 5/8*3^(1/2)], [[1/2, 1/2, 5/6, -1/6], 2/3*3^(1/2)], [[1/2, 1/2, 5/6, 1/3], 3^(1/2)], [[1/2, 1/2, 5/6, 5/6], 1/6*3^(1/2)], [[1/2, 1/6, 5/6, -5/ 6], -1/15*(-16+4*3^(1/2))*3^(1/2)], [[1/2, 1/6, 5/6, 1/6], 2/3*3^(1/2)], [[1/2, 2/3, 5/6, -5/6], 1/15*(6+2*3^(1/2))*3^(1/2)], [[1/2, 2/3, 5/6, 1/6], 3^(1/2)], [[1/3 , -1/2, 2/3, -1/2], 7/(3+2*3^(1/2))], [[1/3, -1/2, 2/3, 1/2], 7/15+7/15*3^(1/2)], [[1/3, -1/6, 2/3, -5/6], 7/(3+2*3^(1/2))], [[1/3, -1/6, 2/3, 1/6], -5/3+5/3*3^(1/2 )], [[1/3, 1/2, 2/3, -1/2], -5/3+5/3*3^(1/2)], [[1/3, 5/6, 2/3, -5/6], 7/15+7/15*3^(1/2)], [[1/6, -5/6, 1/2, -1/2], -(112+44*3^(1/2))/(-84-49*3^(1/2))], [[1/6, -5/6 , 1/2, 1/2], 16/21*3^(1/2)], [[1/6, -5/6, 5/6, -1/6], -(20+24*3^(1/2))/(-27-18*3^(1/2))], [[1/6, -5/6, 5/6, 5/6], 1/27*(8+8*3^(1/2))*3^(1/2)], [[1/6, -1/2, 5/6, -1/ 2], -(-32-64*3^(1/2))/(63+42*3^(1/2))], [[1/6, -1/2, 5/6, 1/2], 1/63*(16+16*3^(1/2))*3^(1/2)], [[1/6, -1/3, 1/2, -1/2], -(28+21*3^(1/2))/(-28-16*3^(1/2))], [[1/6, -\ 1/3, 1/2, 1/2], 7/8*3^(1/2)], [[1/6, -1/6, 1/2, -2/3], -(28+21*3^(1/2))/(-28-16*3^(1/2))], [[1/6, -1/6, 1/2, -1/6], 8/(3+2*3^(1/2))], [[1/6, -1/6, 1/2, 1/3], 4*3^(1 /2)/(3+3^(1/2))], [[1/6, -1/6, 1/2, 5/6], -1/3*(2-4*3^(1/2))*3^(1/2)], [[1/6, 1/2, 5/6, -1/2], -1/9*(8-8*3^(1/2))*3^(1/2)], [[1/6, 1/6, 1/2, -1/2], 8/(3+2*3^(1/2))] , [[1/6, 1/6, 1/2, 1/2], 4/3*3^(1/2)], [[1/6, 1/6, 5/6, -1/6], -1/9*(8-8*3^(1/2))*3^(1/2)], [[1/6, 2/3, 1/2, -1/2], 4*3^(1/2)/(3+3^(1/2))], [[1/6, 2/3, 1/2, 1/2], - 3^(1/2)], [[1/6, 5/6, 1/2, -2/3], 7/8*3^(1/2)], [[1/6, 5/6, 1/2, -1/6], 4/3*3^(1/2)], [[1/6, 5/6, 1/2, 1/3], -3^(1/2)], [[1/6, 5/6, 1/2, 5/6], 1/12*3^(1/2)]], [[[-5 /6, -5/6, -1/3, -2/3], -1/10*(-1944+1536*2^(1/3))*2^(2/3)], [[-5/6, -5/6, -1/3, -1/6], -1/10*(648-522*2^(1/3))*2^(2/3)], [[-5/6, -5/6, -1/3, 1/3], -1/10*(-72+48*2^( 1/3))*2^(2/3)], [[-5/6, -5/6, -1/3, 5/6], -1/10*(-24+6*2^(1/3))*2^(2/3)], [[-5/6, -5/6, 2/3, -2/3], -1/70*(162-168*2^(1/3))*2^(2/3)], [[-5/6, -5/6, 2/3, -1/6], -1/ 70*(144-156*2^(1/3))*2^(2/3)], [[-5/6, -5/6, 2/3, 1/3], 6/7*2^(2/3)], [[-5/6, -5/6, 2/3, 5/6], 1/70*(64+24*2^(1/3))*2^(2/3)], [[-5/6, -2/3, -1/3, -2/3], -261+1458/7 *2^(1/3)], [[-5/6, -2/3, -1/3, -1/3], -1/14*(1215-975*2^(1/3))*2^(2/3)], [[-5/6, -2/3, -1/3, 1/3], -9+243/28*2^(1/3)], [[-5/6, -2/3, -1/3, 2/3], -1/28*(-81+30*2^(1/ 3))*2^(2/3)], [[-5/6, -2/3, 2/3, -2/3], 9/2-243/91*2^(1/3)], [[-5/6, -2/3, 2/3, -1/3], -1/182*(243-300*2^(1/3))*2^(2/3)], [[-5/6, -2/3, 2/3, 1/3], 405/364*2^(1/3)], [[-5/6, -2/3, 2/3, 2/3], 1/104*(81+30*2^(1/3))*2^(2/3)], [[-5/6, -1/2, -2/3, -1/3], -210+168*2^(1/3)], [[-5/6, -1/2, -2/3, 2/3], -21/5+28/5*2^(1/3)], [[-5/6, -1/2, 1/3, -1/3], 42/5-28/5*2^(1/3)], [[-5/6, -1/2, 1/3, 2/3], 28/15*2^(1/3)], [[-5/6, -1/3, -2/3, -1/3], -1/10*(-1092+858*2^(1/3))*2^(2/3)], [[-5/6, -1/3, -2/3, 2/3], -1 /20*(-91+39*2^(1/3))*2^(2/3)], [[-5/6, -1/3, 1/3, -1/3], -1/90*(364-351*2^(1/3))*2^(2/3)], [[-5/6, -1/3, 1/3, 2/3], 91/54*2^(2/3)], [[-5/6, -1/6, -2/3, -2/3], -210+ 168*2^(1/3)], [[-5/6, -1/6, -2/3, -1/2], -1/10*(-1092+858*2^(1/3))*2^(2/3)], [[-5/6, -1/6, -2/3, 1/2], -1/10*(-126+84*2^(1/3))*2^(2/3)], [[-5/6, -1/6, -2/3, 1/3], -\ 168/5+144/5*2^(1/3)], [[-5/6, -1/6, -1/3, -1/3], -1/2*(-108+84*2^(1/3))*2^(2/3)], [[-5/6, -1/6, -1/3, -1/6], -297/5+243/5*2^(1/3)], [[-5/6, -1/6, -1/3, 2/3], -1/10* (36-48*2^(1/3))*2^(2/3)], [[-5/6, -1/6, -1/3, 5/6], 63/5-27/5*2^(1/3)], [[-5/6, -1/6, 1/3, -2/3], 24-18*2^(1/3)], [[-5/6, -1/6, 1/3, -1/2], -1/20*(168-147*2^(1/3))* 2^(2/3)], [[-5/6, -1/6, 1/3, 1/2], -1/20*(-72+33*2^(1/3))*2^(2/3)], [[-5/6, -1/6, 1/3, 1/3], -24/5+27/5*2^(1/3)], [[-5/6, -1/6, 2/3, -1/3], -1/50*(-54+12*2^(1/3))*2 ^(2/3)], [[-5/6, -1/6, 2/3, -1/6], -36/25+54/25*2^(1/3)], [[-5/6, -1/6, 2/3, 2/3], -1/50*(63-114*2^(1/3))*2^(2/3)], [[-5/6, -1/6, 2/3, 5/6], 198/25-72/25*2^(1/3)], [[-5/6, 1/2, -2/3, -1/3], -168/5+144/5*2^(1/3)], [[-5/6, 1/2, -2/3, 2/3], -12/5-24/5*2^(1/3)], [[-5/6, 1/2, 1/3, -1/3], 24/5-12/5*2^(1/3)], [[-5/6, 1/2, 1/3, 2/3], -4*2^(1/3)], [[-5/6, 1/3, -1/3, -2/3], -297/5+243/5*2^(1/3)], [[-5/6, 1/3, -1/3, -1/3], -1/2*(54-45*2^(1/3))*2^(2/3)], [[-5/6, 1/3, -1/3, 1/3], -27/5+81/10*2^(1/3)] , [[-5/6, 1/3, 2/3, -2/3], 27/10-81/70*2^(1/3)], [[-5/6, 1/3, 2/3, -1/3], -1/70*(54-90*2^(1/3))*2^(2/3)], [[-5/6, 1/3, 2/3, 1/3], 27/14*2^(1/3)], [[-5/6, 1/6, -1/3, -2/3], -1/2*(-108+84*2^(1/3))*2^(2/3)], [[-5/6, 1/6, -1/3, -1/6], -1/2*(54-45*2^(1/3))*2^(2/3)], [[-5/6, 1/6, -1/3, 1/3], -1/2*(-12+6*2^(1/3))*2^(2/3)], [[-5/6, 1/6 , 2/3, -2/3], -1/8*(9-12*2^(1/3))*2^(2/3)], [[-5/6, 1/6, 2/3, -1/6], -1/8*(12-15*2^(1/3))*2^(2/3)], [[-5/6, 1/6, 2/3, 1/3], 5/4*2^(2/3)], [[-5/6, 2/3, -2/3, -1/3], -1/10*(-126+84*2^(1/3))*2^(2/3)], [[-5/6, 2/3, -2/3, 2/3], -1/20*(21+21*2^(1/3))*2^(2/3)], [[-5/6, 2/3, 1/3, -1/3], -1/10*(14-21*2^(1/3))*2^(2/3)], [[-5/6, 2/3, 1/3 , 2/3], -7/6*2^(2/3)], [[-5/6, 5/6, -2/3, -2/3], -21/5+28/5*2^(1/3)], [[-5/6, 5/6, -2/3, -1/2], -1/20*(-91+39*2^(1/3))*2^(2/3)], [[-5/6, 5/6, -2/3, 1/2], -1/20*(21+ 21*2^(1/3))*2^(2/3)], [[-5/6, 5/6, -2/3, 1/3], -12/5-24/5*2^(1/3)], [[-5/6, 5/6, -1/3, -1/3], -1/2*(-12+6*2^(1/3))*2^(2/3)], [[-5/6, 5/6, -1/3, -1/6], -27/5+81/10*2 ^(1/3)], [[-5/6, 5/6, -1/3, 2/3], -1/10*(-4+12*2^(1/3))*2^(2/3)], [[-5/6, 5/6, -1/3, 5/6], -9/5+9/20*2^(1/3)], [[-5/6, 5/6, 1/3, -2/3], 24/5-12/5*2^(1/3)], [[-5/6, 5/6, 1/3, -1/2], -1/10*(14-21*2^(1/3))*2^(2/3)], [[-5/6, 5/6, 1/3, 1/2], -1/10*(12-3*2^(1/3))*2^(2/3)], [[-5/6, 5/6, 1/3, 1/3], 6/5-18/5*2^(1/3)], [[-5/6, 5/6, 2/3, -1/3], 1/10*(3+6*2^(1/3))*2^(2/3)], [[-5/6, 5/6, 2/3, -1/6], 9/10+9/10*2^(1/3)], [[-5/6, 5/6, 2/3, 2/3], -1/20*(-7+6*2^(1/3))*2^(2/3)], [[-5/6, 5/6, 2/3, 5/6], -9/ 10+3/5*2^(1/3)], [[-2/3, -5/6, -1/6, -5/6], -1/4*(-729+576*2^(1/3))*2^(2/3)], [[-2/3, -5/6, -1/6, -1/6], 78-243/4*2^(1/3)], [[-2/3, -5/6, -1/6, 1/6], -1/16*(-243+ 180*2^(1/3))*2^(2/3)], [[-2/3, -5/6, -1/6, 5/6], -3/4+81/32*2^(1/3)], [[-2/3, -5/6, 5/6, -5/6], -1/112*(243-252*2^(1/3))*2^(2/3)], [[-2/3, -5/6, 5/6, -1/6], 69/28-\ 243/224*2^(1/3)], [[-2/3, -5/6, 5/6, 1/6], 81/112*2^(2/3)], [[-2/3, -5/6, 5/6, 5/6], 6/7+81/112*2^(1/3)], [[-2/3, -2/3, -1/2, -1/3], -385/2+154*2^(1/3)], [[-2/3, -2 /3, -1/2, 2/3], -7/2+14/3*2^(1/3)], [[-2/3, -2/3, -1/6, -5/6], -1218/5+972/5*2^(1/3)], [[-2/3, -2/3, -1/6, -1/3], 207/2-81*2^(1/3)], [[-2/3, -2/3, -1/6, 1/6], -21+ 18*2^(1/3)], [[-2/3, -2/3, -1/6, 2/3], -3/2+3*2^(1/3)], [[-2/3, -2/3, 1/2, -1/3], 133/22-42/11*2^(1/3)], [[-2/3, -2/3, 1/2, 2/3], 7/22+14/11*2^(1/3)], [[-2/3, -2/3, 1/6, -1/6], 21-140/9*2^(1/3)], [[-2/3, -2/3, 1/6, 5/6], 56/27*2^(1/3)], [[-2/3, -2/3, 5/6, -5/6], 21/5-162/65*2^(1/3)], [[-2/3, -2/3, 5/6, -1/3], 51/26-9/13*2^(1/3) ], [[-2/3, -2/3, 5/6, 1/6], 12/13*2^(1/3)], [[-2/3, -2/3, 5/6, 2/3], 21/26+7/13*2^(1/3)], [[-2/3, -1/2, 1/6, -1/6], -1/8*(91-78*2^(1/3))*2^(2/3)], [[-2/3, -1/2, 1/6 , 5/6], 91/48*2^(2/3)], [[-2/3, -1/3, -1/6, -1/3], -1/10*(-486+378*2^(1/3))*2^(2/3)], [[-2/3, -1/3, -1/6, -1/6], -264/5+216/5*2^(1/3)], [[-2/3, -1/3, -1/6, 2/3], -1 /10*(27-36*2^(1/3))*2^(2/3)], [[-2/3, -1/3, -1/6, 5/6], 42/5-18/5*2^(1/3)], [[-2/3, -1/3, 1/6, -1/2], 312/7-240/7*2^(1/3)], [[-2/3, -1/3, 1/6, -1/3], -1/2*(36-30*2^ (1/3))*2^(2/3)], [[-2/3, -1/3, 1/6, 1/2], -30/7+36/7*2^(1/3)], [[-2/3, -1/3, 1/6, 2/3], -1/14*(-54+24*2^(1/3))*2^(2/3)], [[-2/3, -1/3, 5/6, -1/3], 1/110*(54+18*2^(1 /3))*2^(2/3)], [[-2/3, -1/3, 5/6, -1/6], -6/55+54/55*2^(1/3)], [[-2/3, -1/3, 5/6, 2/3], -1/110*(63-144*2^(1/3))*2^(2/3)], [[-2/3, -1/3, 5/6, 5/6], 228/55-72/55*2^(1 /3)], [[-2/3, -1/6, -1/2, -5/6], -385/2+154*2^(1/3)], [[-2/3, -1/6, -1/2, 1/6], -44+110/3*2^(1/3)], [[-2/3, -1/6, 1/2, -5/6], 22-33/2*2^(1/3)], [[-2/3, -1/6, 1/2, 1 /6], -11/4+55/16*2^(1/3)], [[-2/3, 1/2, 1/6, -1/6], -1/4*(21-21*2^(1/3))*2^(2/3)], [[-2/3, 1/2, 1/6, 5/6], -7/4*2^(2/3)], [[-2/3, 1/3, -1/2, -1/3], -44+110/3*2^(1/3 )], [[-2/3, 1/3, -1/6, -5/6], -264/5+216/5*2^(1/3)], [[-2/3, 1/3, -1/6, -1/3], 36-27*2^(1/3)], [[-2/3, 1/3, -1/6, 1/6], -12+12*2^(1/3)], [[-2/3, 1/3, 1/2, -1/3], 4-\ 2*2^(1/3)], [[-2/3, 1/3, 1/6, -1/6], 12-8*2^(1/3)], [[-2/3, 1/3, 1/6, 5/6], -16/3*2^(1/3)], [[-2/3, 1/3, 5/6, -5/6], 12/5-36/35*2^(1/3)], [[-2/3, 1/3, 5/6, -1/3], 12/7-3/7*2^(1/3)], [[-2/3, 1/3, 5/6, 1/6], 8/7*2^(1/3)], [[-2/3, 1/6, -1/6, -5/6], -1/10*(-486+378*2^(1/3))*2^(2/3)], [[-2/3, 1/6, -1/6, -1/6], 36-27*2^(1/3)], [[-2 /3, 1/6, -1/6, 1/6], -1/8*(-81+54*2^(1/3))*2^(2/3)], [[-2/3, 1/6, 5/6, -5/6], -1/80*(81-108*2^(1/3))*2^(2/3)], [[-2/3, 1/6, 5/6, -1/6], 9/4-27/32*2^(1/3)], [[-2/3, 1/6, 5/6, 1/6], 27/32*2^(2/3)], [[-2/3, 2/3, -1/6, -1/3], -1/8*(-81+54*2^(1/3))*2^(2/3)], [[-2/3, 2/3, -1/6, -1/6], -12+12*2^(1/3)], [[-2/3, 2/3, -1/6, 2/3], -1/8*( -9+18*2^(1/3))*2^(2/3)], [[-2/3, 2/3, -1/6, 5/6], -3+2^(1/3)], [[-2/3, 2/3, 1/6, -1/2], 12-8*2^(1/3)], [[-2/3, 2/3, 1/6, -1/3], -1/4*(21-21*2^(1/3))*2^(2/3)], [[-2/ 3, 2/3, 1/6, 1/2], 3-6*2^(1/3)], [[-2/3, 2/3, 1/6, 2/3], -1/4*(9-3*2^(1/3))*2^(2/3)], [[-2/3, 2/3, 5/6, -1/3], 1/40*(9+18*2^(1/3))*2^(2/3)], [[-2/3, 2/3, 5/6, -1/6] , 3/5+3/5*2^(1/3)], [[-2/3, 2/3, 5/6, 2/3], -1/40*(-21+18*2^(1/3))*2^(2/3)], [[-2/3, 2/3, 5/6, 5/6], -6/5+4/5*2^(1/3)], [[-2/3, 5/6, -1/2, -5/6], -7/2+14/3*2^(1/3)] , [[-2/3, 5/6, 1/2, -5/6], 4-2*2^(1/3)], [[-1/2, -5/6, 1/3, -1/6], 77/5-56/5*2^(1/3)], [[-1/2, -5/6, 1/3, 5/6], 7/25+112/75*2^(1/3)], [[-1/2, -2/3, -1/3, -1/3], -1/ 2*(-182+143*2^(1/3))*2^(2/3)], [[-1/2, -2/3, -1/3, 2/3], -1/30*(-91+39*2^(1/3))*2^(2/3)], [[-1/2, -2/3, 2/3, -1/3], -1/110*(182-208*2^(1/3))*2^(2/3)], [[-1/2, -2/3, 2/3, 2/3], 1/132*(91+39*2^(1/3))*2^(2/3)], [[-1/2, -1/3, 1/3, -2/3], 286/7-220/7*2^(1/3)], [[-1/2, -1/3, 1/3, 1/3], -11/7+55/21*2^(1/3)], [[-1/2, -1/6, -1/3, -5/6], -1/2*(-182+143*2^(1/3))*2^(2/3)], [[-1/2, -1/6, -1/3, 1/6], -1/6*(-140+105*2^(1/3))*2^(2/3)], [[-1/2, -1/6, 2/3, -5/6], -1/8*(56-49*2^(1/3))*2^(2/3)], [[-1/2, -1/6, 2/3, 1/6], -1/24*(-40+15*2^(1/3))*2^(2/3)], [[-1/2, 1/3, -1/3, -1/3], -1/6*(-140+105*2^(1/3))*2^(2/3)], [[-1/2, 1/3, 2/3, -1/3], -1/30*(28-42*2^(1/3))*2^(2/3)], [[-\ 1/2, 1/6, 1/3, -1/6], 10-20/3*2^(1/3)], [[-1/2, 2/3, 1/3, -2/3], 10-20/3*2^(1/3)], [[-1/2, 5/6, -1/3, -5/6], -1/30*(-91+39*2^(1/3))*2^(2/3)], [[-1/2, 5/6, 2/3, -5/6 ], -1/30*(28-42*2^(1/3))*2^(2/3)], [[-1/3, -5/6, 1/2, -1/6], -1/50*(273-247*2^(1/3))*2^(2/3)], [[-1/3, -5/6, 1/2, 5/6], 1/100*(91+26*2^(1/3))*2^(2/3)], [[-1/3, -2/3 , -1/6, -2/3], -165+132*2^(1/3)], [[-1/3, -2/3, -1/6, -1/2], -1/2*(-168+132*2^(1/3))*2^(2/3)], [[-1/3, -2/3, -1/6, 1/2], -1/10*(-72+48*2^(1/3))*2^(2/3)], [[-1/3, -2 /3, -1/6, 1/3], -21+18*2^(1/3)], [[-1/3, -2/3, 1/6, -5/6], -1/14*(972-780*2^(1/3))*2^(2/3)], [[-1/3, -2/3, 1/6, -2/3], 621/7-486/7*2^(1/3)], [[-1/3, -2/3, 1/6, 1/3] , 45/7-27/7*2^(1/3)], [[-1/3, -2/3, 1/6, 1/6], -1/14*(108-96*2^(1/3))*2^(2/3)], [[-1/3, -2/3, 5/6, -2/3], 57/11-36/11*2^(1/3)], [[-1/3, -2/3, 5/6, -1/2], -1/110*( 168-192*2^(1/3))*2^(2/3)], [[-1/3, -2/3, 5/6, 1/2], 1/110*(72+12*2^(1/3))*2^(2/3)], [[-1/3, -2/3, 5/6, 1/3], -3/55+54/55*2^(1/3)], [[-1/3, -1/2, -1/6, -5/6], -165+ 132*2^(1/3)], [[-1/3, -1/2, -1/6, 1/6], -33+55/2*2^(1/3)], [[-1/3, -1/2, 5/6, -5/6], 33/5-22/5*2^(1/3)], [[-1/3, -1/2, 5/6, 1/6], 11/12*2^(1/3)], [[-1/3, -1/3, -1/6 , -5/6], -1/2*(-168+132*2^(1/3))*2^(2/3)], [[-1/3, -1/3, -1/6, 1/6], -1/2*(-40+30*2^(1/3))*2^(2/3)], [[-1/3, -1/3, 1/2, -2/3], -1/2*(30-25*2^(1/3))*2^(2/3)], [[-1/3 , -1/3, 1/2, 1/3], -1/14*(-20+5*2^(1/3))*2^(2/3)], [[-1/3, -1/3, 1/6, -2/3], -1/2*(-81+63*2^(1/3))*2^(2/3)], [[-1/3, -1/3, 1/6, -1/6], -1/2*(36-30*2^(1/3))*2^(2/3)] , [[-1/3, -1/3, 1/6, 1/3], -1/2*(-6+3*2^(1/3))*2^(2/3)], [[-1/3, -1/3, 1/6, 5/6], 2*2^(2/3)], [[-1/3, -1/3, 5/6, -5/6], -1/18*(56-54*2^(1/3))*2^(2/3)], [[-1/3, -1/3 , 5/6, 1/6], 20/27*2^(2/3)], [[-1/3, -1/6, 1/6, -5/6], -1/2*(-81+63*2^(1/3))*2^(2/3)], [[-1/3, -1/6, 1/6, -1/6], 27-81/4*2^(1/3)], [[-1/3, -1/6, 1/6, 1/6], -1/4*(-\ 27+18*2^(1/3))*2^(2/3)], [[-1/3, -1/6, 1/6, 5/6], 27/8*2^(1/3)], [[-1/3, 1/2, -1/6, -5/6], -21+18*2^(1/3)], [[-1/3, 1/2, -1/6, 1/6], -15+15*2^(1/3)], [[-1/3, 1/2, 5 /6, -5/6], 3-3/2*2^(1/3)], [[-1/3, 1/2, 5/6, 1/6], 5/4*2^(1/3)], [[-1/3, 1/3, -1/6, -2/3], -33+55/2*2^(1/3)], [[-1/3, 1/3, -1/6, -1/2], -1/2*(-40+30*2^(1/3))*2^(2/3 )], [[-1/3, 1/3, -1/6, 1/2], -1/2*(-24+12*2^(1/3))*2^(2/3)], [[-1/3, 1/3, -1/6, 1/3], -15+15*2^(1/3)], [[-1/3, 1/3, 1/6, -5/6], -1/2*(36-30*2^(1/3))*2^(2/3)], [[-1/ 3, 1/3, 1/6, -2/3], 27-81/4*2^(1/3)], [[-1/3, 1/3, 1/6, 1/3], 9-9/2*2^(1/3)], [[-1/3, 1/3, 1/6, 1/6], -1/2*(12-12*2^(1/3))*2^(2/3)], [[-1/3, 1/3, 5/6, -2/3], 3-3/2* 2^(1/3)], [[-1/3, 1/3, 5/6, -1/2], -1/10*(8-12*2^(1/3))*2^(2/3)], [[-1/3, 1/3, 5/6, 1/2], -1/10*(-24+6*2^(1/3))*2^(2/3)], [[-1/3, 1/3, 5/6, 1/3], -3/5+9/5*2^(1/3)], [[-1/3, 1/6, 1/2, -1/6], -1/2*(7-7*2^(1/3))*2^(2/3)], [[-1/3, 2/3, -1/6, -5/6], -1/10*(-72+48*2^(1/3))*2^(2/3)], [[-1/3, 2/3, -1/6, 1/6], -1/2*(-24+12*2^(1/3))*2^(2 /3)], [[-1/3, 2/3, 1/2, -2/3], -1/2*(7-7*2^(1/3))*2^(2/3)], [[-1/3, 2/3, 1/6, -2/3], -1/4*(-27+18*2^(1/3))*2^(2/3)], [[-1/3, 2/3, 1/6, -1/6], -1/2*(12-12*2^(1/3))*2 ^(2/3)], [[-1/3, 2/3, 1/6, 5/6], -2/3*2^(2/3)], [[-1/3, 2/3, 5/6, -5/6], -1/10*(8-12*2^(1/3))*2^(2/3)], [[-1/3, 2/3, 5/6, 1/6], 4/3*2^(2/3)], [[-1/3, 5/6, 1/6, -5/6 ], -1/2*(-6+3*2^(1/3))*2^(2/3)], [[-1/3, 5/6, 1/6, -1/6], 9-9/2*2^(1/3)], [[-1/3, 5/6, 1/6, 5/6], -3/8*2^(1/3)], [[-1/6, -5/6, 1/3, -5/6], -1/20*(972-783*2^(1/3))*2 ^(2/3)], [[-1/6, -5/6, 1/3, -2/3], 312/5-243/5*2^(1/3)], [[-1/6, -5/6, 1/3, 1/3], 24/5-27/10*2^(1/3)], [[-1/6, -5/6, 1/3, 1/6], -1/20*(108-99*2^(1/3))*2^(2/3)], [[-\ 1/6, -5/6, 2/3, -1/2], 66/5-48/5*2^(1/3)], [[-1/6, -5/6, 2/3, -1/3], -1/50*(252-228*2^(1/3))*2^(2/3)], [[-1/6, -5/6, 2/3, 1/2], -12/25+36/25*2^(1/3)], [[-1/6, -5/6, 2/3, 2/3], -1/50*(-54+6*2^(1/3))*2^(2/3)], [[-1/6, -2/3, 2/3, -2/3], 33/2-110/9*2^(1/3)], [[-1/6, -2/3, 2/3, 1/3], 55/54*2^(1/3)], [[-1/6, -1/2, 2/3, -2/3], -1/4*( 35-30*2^(1/3))*2^(2/3)], [[-1/6, -1/2, 2/3, 1/3], 5/6*2^(2/3)], [[-1/6, -1/3, 1/3, -2/3], -198/5+162/5*2^(1/3)], [[-1/6, -1/3, 1/3, -1/3], -1/10*(162-135*2^(1/3))*2 ^(2/3)], [[-1/6, -1/3, 1/3, 1/3], -9/5+27/10*2^(1/3)], [[-1/6, -1/3, 1/3, 2/3], 27/20*2^(2/3)], [[-1/6, -1/6, 1/3, -5/6], -198/5+162/5*2^(1/3)], [[-1/6, -1/6, 1/3, -1/3], 24-18*2^(1/3)], [[-1/6, -1/6, 1/3, 1/6], -6+6*2^(1/3)], [[-1/6, -1/6, 1/3, 2/3], 2*2^(1/3)], [[-1/6, 1/2, 2/3, -2/3], -1/2*(6-6*2^(1/3))*2^(2/3)], [[-1/6, 1/ 2, 2/3, 1/3], 2*2^(2/3)], [[-1/6, 1/3, 2/3, -2/3], 15/2-5*2^(1/3)], [[-1/6, 1/3, 2/3, 1/3], 5/3*2^(1/3)], [[-1/6, 1/6, 1/3, -5/6], -1/10*(162-135*2^(1/3))*2^(2/3)], [[-1/6, 1/6, 1/3, -2/3], 24-18*2^(1/3)], [[-1/6, 1/6, 1/3, 1/3], 6-3*2^(1/3)], [[-1/6, 1/6, 1/3, 1/6], -1/2*(9-9*2^(1/3))*2^(2/3)], [[-1/6, 1/6, 2/3, -1/2], 15/2-5* 2^(1/3)], [[-1/6, 1/6, 2/3, -1/3], -1/2*(6-6*2^(1/3))*2^(2/3)], [[-1/6, 1/6, 2/3, 1/2], -3/2+3*2^(1/3)], [[-1/6, 1/6, 2/3, 2/3], -1/2*(-9+3*2^(1/3))*2^(2/3)], [[-1/ 6, 2/3, 1/3, -2/3], -6+6*2^(1/3)], [[-1/6, 2/3, 1/3, -1/3], -1/2*(9-9*2^(1/3))*2^(2/3)], [[-1/6, 2/3, 1/3, 2/3], -3/4*2^(2/3)], [[-1/6, 5/6, 1/3, -5/6], -9/5+27/10* 2^(1/3)], [[-1/6, 5/6, 1/3, -1/3], 6-3*2^(1/3)], [[-1/6, 5/6, 1/3, 2/3], -1/3*2^(1/3)], [[1/2, -2/3, 2/3, -1/3], -1/10*(-42+28*2^(1/3))*2^(2/3)], [[1/2, -2/3, 2/3, 2/3], 1/20*(7+7*2^(1/3))*2^(2/3)], [[1/2, -1/6, 2/3, -5/6], -1/10*(-42+28*2^(1/3))*2^(2/3)], [[1/2, -1/6, 2/3, 1/6], -1/2*(-4+2*2^(1/3))*2^(2/3)], [[1/2, 1/3, 2/3, -1/3], -1/2*(-4+2*2^(1/3))*2^(2/3)], [[1/2, 5/6, 2/3, -5/6], 1/20*(7+7*2^(1/3))*2^(2/3)], [[1/3, -5/6, 5/6, -5/6], -1/20*(-81+54*2^(1/3))*2^(2/3)], [[1/3, -5/6, 5/6 , -1/6], 18/5-81/40*2^(1/3)], [[1/3, -5/6, 5/6, 1/6], 27/40*2^(2/3)], [[1/3, -5/6, 5/6, 5/6], 9/10+27/80*2^(1/3)], [[1/3, -2/3, 1/2, -1/3], -14+12*2^(1/3)], [[1/3, -2/3, 1/2, 2/3], 2/5+4/5*2^(1/3)], [[1/3, -2/3, 5/6, -5/6], -24/5+162/35*2^(1/3)], [[1/3, -2/3, 5/6, -1/3], 30/7-18/7*2^(1/3)], [[1/3, -2/3, 5/6, 1/6], 6/7*2^(1/3)] , [[1/3, -2/3, 5/6, 2/3], 6/7+2/7*2^(1/3)], [[1/3, -1/3, 5/6, -1/3], -1/10*(-18+9*2^(1/3))*2^(2/3)], [[1/3, -1/3, 5/6, -1/6], -6/5+9/5*2^(1/3)], [[1/3, -1/3, 5/6, 2 /3], -1/10*(3-9*2^(1/3))*2^(2/3)], [[1/3, -1/3, 5/6, 5/6], 12/5-3/5*2^(1/3)], [[1/3, -1/6, 1/2, -5/6], -14+12*2^(1/3)], [[1/3, -1/6, 1/2, 1/6], -5+5*2^(1/3)], [[1/3 , 1/3, 1/2, -1/3], -5+5*2^(1/3)], [[1/3, 1/3, 5/6, -5/6], -6/5+9/5*2^(1/3)], [[1/3, 1/3, 5/6, -1/3], 3-3/2*2^(1/3)], [[1/3, 1/3, 5/6, 1/6], 2^(1/3)], [[1/3, 1/6, 5/ 6, -5/6], -1/10*(-18+9*2^(1/3))*2^(2/3)], [[1/3, 1/6, 5/6, -1/6], 3-3/2*2^(1/3)], [[1/3, 1/6, 5/6, 1/6], 3/4*2^(2/3)], [[1/3, 2/3, 5/6, -1/3], 3/4*2^(2/3)], [[1/3, 2/3, 5/6, -1/6], 2^(1/3)], [[1/3, 2/3, 5/6, 2/3], 1/4*2^(2/3)], [[1/3, 2/3, 5/6, 5/6], 1/3*2^(1/3)], [[1/3, 5/6, 1/2, -5/6], 2/5+4/5*2^(1/3)], [[1/6, -5/6, 2/3, -2/ 3], -1/8*(-81+60*2^(1/3))*2^(2/3)], [[1/6, -5/6, 2/3, -1/6], -1/8*(36-33*2^(1/3))*2^(2/3)], [[1/6, -5/6, 2/3, 1/3], 3/4*2^(2/3)], [[1/6, -5/6, 2/3, 5/6], 1/8*(4+3*2 ^(1/3))*2^(2/3)], [[1/6, -2/3, 2/3, -2/3], -27/2+81/7*2^(1/3)], [[1/6, -2/3, 2/3, -1/3], -1/14*(81-72*2^(1/3))*2^(2/3)], [[1/6, -2/3, 2/3, 1/3], 27/28*2^(1/3)], [[1 /6, -2/3, 2/3, 2/3], 1/56*(27+18*2^(1/3))*2^(2/3)], [[1/6, -1/2, 1/3, -1/3], -24+20*2^(1/3)], [[1/6, -1/2, 1/3, 2/3], 4/3*2^(1/3)], [[1/6, -1/3, 1/3, -1/3], -1/2*(-\ 28+21*2^(1/3))*2^(2/3)], [[1/6, -1/3, 1/3, 2/3], 7/6*2^(2/3)], [[1/6, -1/6, 1/3, -2/3], -24+20*2^(1/3)], [[1/6, -1/6, 1/3, -1/2], -1/2*(-28+21*2^(1/3))*2^(2/3)], [[ 1/6, -1/6, 1/3, 1/2], -1/2*(-6+3*2^(1/3))*2^(2/3)], [[1/6, -1/6, 1/3, 1/3], -6+6*2^(1/3)], [[1/6, -1/6, 2/3, -1/3], -1/2*(-9+6*2^(1/3))*2^(2/3)], [[1/6, -1/6, 2/3, -1/6], -9/2+9/2*2^(1/3)], [[1/6, -1/6, 2/3, 2/3], -1/4*(3-6*2^(1/3))*2^(2/3)], [[1/6, -1/6, 2/3, 5/6], 9/2-3/2*2^(1/3)], [[1/6, 1/2, 1/3, -1/3], -6+6*2^(1/3)], [[1/ 6, 1/2, 1/3, 2/3], -2*2^(1/3)], [[1/6, 1/3, 2/3, -2/3], -9/2+9/2*2^(1/3)], [[1/6, 1/3, 2/3, -1/3], -1/2*(6-6*2^(1/3))*2^(2/3)], [[1/6, 1/3, 2/3, 1/3], 3/2*2^(1/3)], [[1/6, 1/6, 2/3, -2/3], -1/2*(-9+6*2^(1/3))*2^(2/3)], [[1/6, 1/6, 2/3, -1/6], -1/2*(6-6*2^(1/3))*2^(2/3)], [[1/6, 1/6, 2/3, 1/3], 2^(2/3)], [[1/6, 2/3, 1/3, -1/3], -1/2*(-6+3*2^(1/3))*2^(2/3)], [[1/6, 2/3, 1/3, 2/3], -1/2*2^(2/3)], [[1/6, 5/6, 1/3, -2/3], 4/3*2^(1/3)], [[1/6, 5/6, 1/3, -1/2], 7/6*2^(2/3)], [[1/6, 5/6, 1/3, 1/2 ], -1/2*2^(2/3)], [[1/6, 5/6, 1/3, 1/3], -2*2^(1/3)], [[1/6, 5/6, 2/3, -1/3], 2^(2/3)], [[1/6, 5/6, 2/3, -1/6], 3/2*2^(1/3)], [[1/6, 5/6, 2/3, 2/3], 1/6*2^(2/3)], [ [1/6, 5/6, 2/3, 5/6], 1/4*2^(1/3)], [[2/3, -2/3, 5/6, -2/3], -3/2+2*2^(1/3)], [[2/3, -2/3, 5/6, -1/2], -1/10*(-14+6*2^(1/3))*2^(2/3)], [[2/3, -2/3, 5/6, 1/2], 1/10* (3+3*2^(1/3))*2^(2/3)], [[2/3, -2/3, 5/6, 1/3], 3/10+3/5*2^(1/3)], [[2/3, -1/2, 5/6, -5/6], -3/2+2*2^(1/3)], [[2/3, -1/2, 5/6, 1/6], 5/6*2^(1/3)], [[2/3, -1/3, 5/6, -5/6], -1/10*(-14+6*2^(1/3))*2^(2/3)], [[2/3, -1/3, 5/6, 1/6], 2/3*2^(2/3)], [[2/3, 1/2, 5/6, -5/6], 3/10+3/5*2^(1/3)], [[2/3, 1/2, 5/6, 1/6], 2^(1/3)], [[2/3, 1/3, 5/6, -2/3], 5/6*2^(1/3)], [[2/3, 1/3, 5/6, -1/2], 2/3*2^(2/3)], [[2/3, 1/3, 5/6, 1/2], 2^(2/3)], [[2/3, 1/3, 5/6, 1/3], 2^(1/3)], [[2/3, 2/3, 5/6, -5/6], 1/10*(3+3* 2^(1/3))*2^(2/3)], [[2/3, 2/3, 5/6, 1/6], 2^(2/3)]]]: end: #end pre-computed #OPEZ2(a1,a2,b1,b2,n,N): The second-order linear recurrence equation annihilated by the Generalized #Beukers integral #print(Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)): #Here N is the shift operator in n, Nf(n):=f(n+1). #Try: #For the original Apery Recurrence for Zeta(2) type: OPEZ2(0,0,0,0,n,N); #For the Zudilin (2003) recurrence for Catalan's constant type: OPEZ2(1/2,0,0,1/2,n,N); OPEZ2:=proc(a1,a2,b1,b2,n,N) local ope,i: ope:=-(b2-n-1)*(a2-n-1)*(a2+b2-n-1)*(b1-n-1)*(a1-1-n)*(a1*a2*b1+a1*a2*b2-2*a1*a2*n+ a1*b1*b2-2*a1*b1*n+a1*b2^2-3*a1*b2*n+3*a1*n^2+a2^2*b1+a2^2*b2-2*a2^2*n+a2*b1*b2 -3*a2*b1*n+a2*b2^2-5*a2*b2*n+6*a2*n^2-2*b1*b2*n+3*b1*n^2-2*b2^2*n+6*b2*n^2-5*n^ 3-4*a1*a2-4*a1*b1-6*a1*b2+12*a1*n-4*a2^2-6*a2*b1-10*a2*b2+24*a2*n-4*b1*b2+12*b1 *n-4*b2^2+24*b2*n-30*n^2+12*a1+24*a2+12*b1+24*b2-60*n-40)/(2+n)/(b1+b2-n-2)/(n+ 2+a1-b1-b2)/(a1+a2-n-2)/(-n-2+a1+a2-b1)/(a1*a2*b1+a1*a2*b2-2*a1*a2*n+a1*b1*b2-2 *a1*b1*n+a1*b2^2-3*a1*b2*n+3*a1*n^2+a2^2*b1+a2^2*b2-2*a2^2*n+a2*b1*b2-3*a2*b1*n +a2*b2^2-5*a2*b2*n+6*a2*n^2-2*b1*b2*n+3*b1*n^2-2*b2^2*n+6*b2*n^2-5*n^3-2*a1*a2-\ 2*a1*b1-3*a1*b2+6*a1*n-2*a2^2-3*a2*b1-5*a2*b2+12*a2*n-2*b1*b2+6*b1*n-2*b2^2+12* b2*n-15*n^2+3*a1+6*a2+3*b1+6*b2-15*n-5)+(a1^3*a2^2*b1^2*b2-2*a1^3*a2^2*b1^2*n+2 *a1^3*a2^2*b1*b2^2-6*a1^3*a2^2*b1*b2*n+6*a1^3*a2^2*b1*n^2+a1^3*a2^2*b2^3-4*a1^3 *a2^2*b2^2*n+6*a1^3*a2^2*b2*n^2-4*a1^3*a2^2*n^3+2*a1^3*a2*b1^2*b2^2-6*a1^3*a2* b1^2*b2*n+6*a1^3*a2*b1^2*n^2+4*a1^3*a2*b1*b2^3-16*a1^3*a2*b1*b2^2*n+24*a1^3*a2* b1*b2*n^2-16*a1^3*a2*b1*n^3+2*a1^3*a2*b2^4-10*a1^3*a2*b2^3*n+20*a1^3*a2*b2^2*n^ 2-20*a1^3*a2*b2*n^3+10*a1^3*a2*n^4+a1^3*b1^2*b2^3-4*a1^3*b1^2*b2^2*n+6*a1^3*b1^ 2*b2*n^2-4*a1^3*b1^2*n^3+2*a1^3*b1*b2^4-10*a1^3*b1*b2^3*n+20*a1^3*b1*b2^2*n^2-\ 20*a1^3*b1*b2*n^3+10*a1^3*b1*n^4+a1^3*b2^5-6*a1^3*b2^4*n+15*a1^3*b2^3*n^2-20*a1 ^3*b2^2*n^3+15*a1^3*b2*n^4-6*a1^3*n^5+a1^2*a2^3*b1^3+5*a1^2*a2^3*b1^2*b2-10*a1^ 2*a2^3*b1^2*n+7*a1^2*a2^3*b1*b2^2-24*a1^2*a2^3*b1*b2*n+24*a1^2*a2^3*b1*n^2+3*a1 ^2*a2^3*b2^3-14*a1^2*a2^3*b2^2*n+24*a1^2*a2^3*b2*n^2-16*a1^2*a2^3*n^3+2*a1^2*a2 ^2*b1^3*b2-4*a1^2*a2^2*b1^3*n+10*a1^2*a2^2*b1^2*b2^2-40*a1^2*a2^2*b1^2*b2*n+43* a1^2*a2^2*b1^2*n^2+14*a1^2*a2^2*b1*b2^3-76*a1^2*a2^2*b1*b2^2*n+144*a1^2*a2^2*b1 *b2*n^2-102*a1^2*a2^2*b1*n^3+6*a1^2*a2^2*b2^4-40*a1^2*a2^2*b2^3*n+103*a1^2*a2^2 *b2^2*n^2-126*a1^2*a2^2*b2*n^3+66*a1^2*a2^2*n^4+a1^2*a2*b1^3*b2^2-6*a1^2*a2*b1^ 3*b2*n+6*a1^2*a2*b1^3*n^2+5*a1^2*a2*b1^2*b2^3-40*a1^2*a2*b1^2*b2^2*n+90*a1^2*a2 *b1^2*b2*n^2-66*a1^2*a2*b1^2*n^3+7*a1^2*a2*b1*b2^4-66*a1^2*a2*b1*b2^3*n+203*a1^ 2*a2*b1*b2^2*n^2-274*a1^2*a2*b1*b2*n^3+149*a1^2*a2*b1*n^4+3*a1^2*a2*b2^5-32*a1^ 2*a2*b2^4*n+121*a1^2*a2*b2^3*n^2-224*a1^2*a2*b2^2*n^3+215*a1^2*a2*b2*n^4-92*a1^ 2*a2*n^5-2*a1^2*b1^3*b2^2*n+6*a1^2*b1^3*b2*n^2-4*a1^2*b1^3*n^3-10*a1^2*b1^2*b2^ 3*n+43*a1^2*b1^2*b2^2*n^2-66*a1^2*b1^2*b2*n^3+36*a1^2*b1^2*n^4-14*a1^2*b1*b2^4* n+76*a1^2*b1*b2^3*n^2-164*a1^2*b1*b2^2*n^3+170*a1^2*b1*b2*n^4-74*a1^2*b1*n^5-6* a1^2*b2^5*n+39*a1^2*b2^4*n^2-106*a1^2*b2^3*n^3+153*a1^2*b2^2*n^4-120*a1^2*b2*n^ 5+43*a1^2*n^6+2*a1*a2^4*b1^3+7*a1*a2^4*b1^2*b2-14*a1*a2^4*b1^2*n+8*a1*a2^4*b1* b2^2-30*a1*a2^4*b1*b2*n+30*a1*a2^4*b1*n^2+3*a1*a2^4*b2^3-16*a1*a2^4*b2^2*n+30* a1*a2^4*b2*n^2-20*a1*a2^4*n^3+4*a1*a2^3*b1^3*b2-10*a1*a2^3*b1^3*n+14*a1*a2^3*b1 ^2*b2^2-66*a1*a2^3*b1^2*b2*n+76*a1*a2^3*b1^2*n^2+16*a1*a2^3*b1*b2^3-106*a1*a2^3 *b1*b2^2*n+228*a1*a2^3*b1*b2*n^2-168*a1*a2^3*b1*n^3+6*a1*a2^3*b2^4-50*a1*a2^3* b2^3*n+152*a1*a2^3*b2^2*n^2-208*a1*a2^3*b2*n^3+112*a1*a2^3*n^4+2*a1*a2^2*b1^3* b2^2-16*a1*a2^2*b1^3*b2*n+20*a1*a2^2*b1^3*n^2+7*a1*a2^2*b1^2*b2^3-76*a1*a2^2*b1 ^2*b2^2*n+203*a1*a2^2*b1^2*b2*n^2-164*a1*a2^2*b1^2*n^3+8*a1*a2^2*b1*b2^4-106*a1 *a2^2*b1*b2^3*n+404*a1*a2^2*b1*b2^2*n^2-630*a1*a2^2*b1*b2*n^3+366*a1*a2^2*b1*n^ 4+3*a1*a2^2*b2^5-46*a1*a2^2*b2^4*n+221*a1*a2^2*b2^3*n^2-490*a1*a2^2*b2^2*n^3+ 534*a1*a2^2*b2*n^4-240*a1*a2^2*n^5-6*a1*a2*b1^3*b2^2*n+24*a1*a2*b1^3*b2*n^2-20* a1*a2*b1^3*n^3-24*a1*a2*b1^2*b2^3*n+144*a1*a2*b1^2*b2^2*n^2-274*a1*a2*b1^2*b2*n ^3+170*a1*a2*b1^2*n^4-30*a1*a2*b1*b2^4*n+228*a1*a2*b1*b2^3*n^2-630*a1*a2*b1*b2^ 2*n^3+776*a1*a2*b1*b2*n^4-370*a1*a2*b1*n^5-12*a1*a2*b2^5*n+108*a1*a2*b2^4*n^2-\ 380*a1*a2*b2^3*n^3+672*a1*a2*b2^2*n^4-610*a1*a2*b2*n^5+234*a1*a2*n^6+6*a1*b1^3* b2^2*n^2-16*a1*b1^3*b2*n^3+10*a1*b1^3*n^4+24*a1*b1^2*b2^3*n^2-102*a1*b1^2*b2^2* n^3+149*a1*b1^2*b2*n^4-74*a1*b1^2*n^5+30*a1*b1*b2^4*n^2-168*a1*b1*b2^3*n^3+366* a1*b1*b2^2*n^4-370*a1*b1*b2*n^5+148*a1*b1*n^6+12*a1*b2^5*n^2-82*a1*b2^4*n^3+232 *a1*b2^3*n^4-342*a1*b2^2*n^5+265*a1*b2*n^6-88*a1*n^7+a2^5*b1^3+3*a2^5*b1^2*b2-6 *a2^5*b1^2*n+3*a2^5*b1*b2^2-12*a2^5*b1*b2*n+12*a2^5*b1*n^2+a2^5*b2^3-6*a2^5*b2^ 2*n+12*a2^5*b2*n^2-8*a2^5*n^3+2*a2^4*b1^3*b2-6*a2^4*b1^3*n+6*a2^4*b1^2*b2^2-32* a2^4*b1^2*b2*n+39*a2^4*b1^2*n^2+6*a2^4*b1*b2^3-46*a2^4*b1*b2^2*n+108*a2^4*b1*b2 *n^2-82*a2^4*b1*n^3+2*a2^4*b2^4-20*a2^4*b2^3*n+69*a2^4*b2^2*n^2-102*a2^4*b2*n^3 +56*a2^4*n^4+a2^3*b1^3*b2^2-10*a2^3*b1^3*b2*n+15*a2^3*b1^3*n^2+3*a2^3*b1^2*b2^3 -40*a2^3*b1^2*b2^2*n+121*a2^3*b1^2*b2*n^2-106*a2^3*b1^2*n^3+3*a2^3*b1*b2^4-50* a2^3*b1*b2^3*n+221*a2^3*b1*b2^2*n^2-380*a2^3*b1*b2*n^3+232*a2^3*b1*n^4+a2^3*b2^ 5-20*a2^3*b2^4*n+115*a2^3*b2^3*n^2-290*a2^3*b2^2*n^3+344*a2^3*b2*n^4-160*a2^3*n ^5-4*a2^2*b1^3*b2^2*n+20*a2^2*b1^3*b2*n^2-20*a2^2*b1^3*n^3-14*a2^2*b1^2*b2^3*n+ 103*a2^2*b1^2*b2^2*n^2-224*a2^2*b1^2*b2*n^3+153*a2^2*b1^2*n^4-16*a2^2*b1*b2^4*n +152*a2^2*b1*b2^3*n^2-490*a2^2*b1*b2^2*n^3+672*a2^2*b1*b2*n^4-342*a2^2*b1*n^5-6 *a2^2*b2^5*n+69*a2^2*b2^4*n^2-290*a2^2*b2^3*n^3+585*a2^2*b2^2*n^4-582*a2^2*b2*n ^5+234*a2^2*n^6+6*a2*b1^3*b2^2*n^2-20*a2*b1^3*b2*n^3+15*a2*b1^3*n^4+24*a2*b1^2* b2^3*n^2-126*a2*b1^2*b2^2*n^3+215*a2*b1^2*b2*n^4-120*a2*b1^2*n^5+30*a2*b1*b2^4* n^2-208*a2*b1*b2^3*n^3+534*a2*b1*b2^2*n^4-610*a2*b1*b2*n^5+265*a2*b1*n^6+12*a2* b2^5*n^2-102*a2*b2^4*n^3+344*a2*b2^3*n^4-582*a2*b2^2*n^5+499*a2*b2*n^6-176*a2*n ^7-4*b1^3*b2^2*n^3+10*b1^3*b2*n^4-6*b1^3*n^5-16*b1^2*b2^3*n^3+66*b1^2*b2^2*n^4-\ 92*b1^2*b2*n^5+43*b1^2*n^6-20*b1*b2^4*n^3+112*b1*b2^3*n^4-240*b1*b2^2*n^5+234* b1*b2*n^6-88*b1*n^7-8*b2^5*n^3+56*b2^4*n^4-160*b2^3*n^5+234*b2^2*n^6-176*b2*n^7 +55*n^8-3*a1^3*a2^2*b1^2-9*a1^3*a2^2*b1*b2+18*a1^3*a2^2*b1*n-6*a1^3*a2^2*b2^2+ 18*a1^3*a2^2*b2*n-18*a1^3*a2^2*n^2-9*a1^3*a2*b1^2*b2+18*a1^3*a2*b1^2*n-24*a1^3* a2*b1*b2^2+72*a1^3*a2*b1*b2*n-72*a1^3*a2*b1*n^2-15*a1^3*a2*b2^3+60*a1^3*a2*b2^2 *n-90*a1^3*a2*b2*n^2+60*a1^3*a2*n^3-6*a1^3*b1^2*b2^2+18*a1^3*b1^2*b2*n-18*a1^3* b1^2*n^2-15*a1^3*b1*b2^3+60*a1^3*b1*b2^2*n-90*a1^3*b1*b2*n^2+60*a1^3*b1*n^3-9* a1^3*b2^4+45*a1^3*b2^3*n-90*a1^3*b2^2*n^2+90*a1^3*b2*n^3-45*a1^3*n^4-15*a1^2*a2 ^3*b1^2-36*a1^2*a2^3*b1*b2+72*a1^2*a2^3*b1*n-21*a1^2*a2^3*b2^2+72*a1^2*a2^3*b2* n-72*a1^2*a2^3*n^2-6*a1^2*a2^2*b1^3-60*a1^2*a2^2*b1^2*b2+129*a1^2*a2^2*b1^2*n-\ 114*a1^2*a2^2*b1*b2^2+432*a1^2*a2^2*b1*b2*n-459*a1^2*a2^2*b1*n^2-60*a1^2*a2^2* b2^3+309*a1^2*a2^2*b2^2*n-567*a1^2*a2^2*b2*n^2+396*a1^2*a2^2*n^3-9*a1^2*a2*b1^3 *b2+18*a1^2*a2*b1^3*n-60*a1^2*a2*b1^2*b2^2+270*a1^2*a2*b1^2*b2*n-297*a1^2*a2*b1 ^2*n^2-99*a1^2*a2*b1*b2^3+609*a1^2*a2*b1*b2^2*n-1233*a1^2*a2*b1*b2*n^2+894*a1^2 *a2*b1*n^3-48*a1^2*a2*b2^4+363*a1^2*a2*b2^3*n-1008*a1^2*a2*b2^2*n^2+1290*a1^2* a2*b2*n^3-690*a1^2*a2*n^4-3*a1^2*b1^3*b2^2+18*a1^2*b1^3*b2*n-18*a1^2*b1^3*n^2-\ 15*a1^2*b1^2*b2^3+129*a1^2*b1^2*b2^2*n-297*a1^2*b1^2*b2*n^2+216*a1^2*b1^2*n^3-\ 21*a1^2*b1*b2^4+228*a1^2*b1*b2^3*n-738*a1^2*b1*b2^2*n^2+1020*a1^2*b1*b2*n^3-555 *a1^2*b1*n^4-9*a1^2*b2^5+117*a1^2*b2^4*n-477*a1^2*b2^3*n^2+918*a1^2*b2^2*n^3-\ 900*a1^2*b2*n^4+387*a1^2*n^5-21*a1*a2^4*b1^2-45*a1*a2^4*b1*b2+90*a1*a2^4*b1*n-\ 24*a1*a2^4*b2^2+90*a1*a2^4*b2*n-90*a1*a2^4*n^2-15*a1*a2^3*b1^3-99*a1*a2^3*b1^2* b2+228*a1*a2^3*b1^2*n-159*a1*a2^3*b1*b2^2+684*a1*a2^3*b1*b2*n-756*a1*a2^3*b1*n^ 2-75*a1*a2^3*b2^3+456*a1*a2^3*b2^2*n-936*a1*a2^3*b2*n^2+672*a1*a2^3*n^3-24*a1* a2^2*b1^3*b2+60*a1*a2^2*b1^3*n-114*a1*a2^2*b1^2*b2^2+609*a1*a2^2*b1^2*b2*n-738* a1*a2^2*b1^2*n^2-159*a1*a2^2*b1*b2^3+1212*a1*a2^2*b1*b2^2*n-2835*a1*a2^2*b1*b2* n^2+2196*a1*a2^2*b1*n^3-69*a1*a2^2*b2^4+663*a1*a2^2*b2^3*n-2205*a1*a2^2*b2^2*n^ 2+3204*a1*a2^2*b2*n^3-1800*a1*a2^2*n^4-9*a1*a2*b1^3*b2^2+72*a1*a2*b1^3*b2*n-90* a1*a2*b1^3*n^2-36*a1*a2*b1^2*b2^3+432*a1*a2*b1^2*b2^2*n-1233*a1*a2*b1^2*b2*n^2+ 1020*a1*a2*b1^2*n^3-45*a1*a2*b1*b2^4+684*a1*a2*b1*b2^3*n-2835*a1*a2*b1*b2^2*n^2 +4656*a1*a2*b1*b2*n^3-2775*a1*a2*b1*n^4-18*a1*a2*b2^5+324*a1*a2*b2^4*n-1710*a1* a2*b2^3*n^2+4032*a1*a2*b2^2*n^3-4575*a1*a2*b2*n^4+2106*a1*a2*n^5+18*a1*b1^3*b2^ 2*n-72*a1*b1^3*b2*n^2+60*a1*b1^3*n^3+72*a1*b1^2*b2^3*n-459*a1*b1^2*b2^2*n^2+894 *a1*b1^2*b2*n^3-555*a1*b1^2*n^4+90*a1*b1*b2^4*n-756*a1*b1*b2^3*n^2+2196*a1*b1* b2^2*n^3-2775*a1*b1*b2*n^4+1332*a1*b1*n^5+36*a1*b2^5*n-369*a1*b2^4*n^2+1392*a1* b2^3*n^3-2565*a1*b2^2*n^4+2385*a1*b2*n^5-924*a1*n^6-9*a2^5*b1^2-18*a2^5*b1*b2+ 36*a2^5*b1*n-9*a2^5*b2^2+36*a2^5*b2*n-36*a2^5*n^2-9*a2^4*b1^3-48*a2^4*b1^2*b2+ 117*a2^4*b1^2*n-69*a2^4*b1*b2^2+324*a2^4*b1*b2*n-369*a2^4*b1*n^2-30*a2^4*b2^3+ 207*a2^4*b2^2*n-459*a2^4*b2*n^2+336*a2^4*n^3-15*a2^3*b1^3*b2+45*a2^3*b1^3*n-60* a2^3*b1^2*b2^2+363*a2^3*b1^2*b2*n-477*a2^3*b1^2*n^2-75*a2^3*b1*b2^3+663*a2^3*b1 *b2^2*n-1710*a2^3*b1*b2*n^2+1392*a2^3*b1*n^3-30*a2^3*b2^4+345*a2^3*b2^3*n-1305* a2^3*b2^2*n^2+2064*a2^3*b2*n^3-1200*a2^3*n^4-6*a2^2*b1^3*b2^2+60*a2^2*b1^3*b2*n -90*a2^2*b1^3*n^2-21*a2^2*b1^2*b2^3+309*a2^2*b1^2*b2^2*n-1008*a2^2*b1^2*b2*n^2+ 918*a2^2*b1^2*n^3-24*a2^2*b1*b2^4+456*a2^2*b1*b2^3*n-2205*a2^2*b1*b2^2*n^2+4032 *a2^2*b1*b2*n^3-2565*a2^2*b1*n^4-9*a2^2*b2^5+207*a2^2*b2^4*n-1305*a2^2*b2^3*n^2 +3510*a2^2*b2^2*n^3-4365*a2^2*b2*n^4+2106*a2^2*n^5+18*a2*b1^3*b2^2*n-90*a2*b1^3 *b2*n^2+90*a2*b1^3*n^3+72*a2*b1^2*b2^3*n-567*a2*b1^2*b2^2*n^2+1290*a2*b1^2*b2*n ^3-900*a2*b1^2*n^4+90*a2*b1*b2^4*n-936*a2*b1*b2^3*n^2+3204*a2*b1*b2^2*n^3-4575* a2*b1*b2*n^4+2385*a2*b1*n^5+36*a2*b2^5*n-459*a2*b2^4*n^2+2064*a2*b2^3*n^3-4365* a2*b2^2*n^4+4491*a2*b2*n^5-1848*a2*n^6-18*b1^3*b2^2*n^2+60*b1^3*b2*n^3-45*b1^3* n^4-72*b1^2*b2^3*n^2+396*b1^2*b2^2*n^3-690*b1^2*b2*n^4+387*b1^2*n^5-90*b1*b2^4* n^2+672*b1*b2^3*n^3-1800*b1*b2^2*n^4+2106*b1*b2*n^5-924*b1*n^6-36*b2^5*n^2+336* b2^4*n^3-1200*b2^3*n^4+2106*b2^2*n^5-1848*b2*n^6+660*n^7+13*a1^3*a2^2*b1+13*a1^ 3*a2^2*b2-26*a1^3*a2^2*n+13*a1^3*a2*b1^2+53*a1^3*a2*b1*b2-106*a1^3*a2*b1*n+44* a1^3*a2*b2^2-132*a1^3*a2*b2*n+132*a1^3*a2*n^2+13*a1^3*b1^2*b2-26*a1^3*b1^2*n+44 *a1^3*b1*b2^2-132*a1^3*b1*b2*n+132*a1^3*b1*n^2+33*a1^3*b2^3-132*a1^3*b2^2*n+198 *a1^3*b2*n^2-132*a1^3*n^3+52*a1^2*a2^3*b1+52*a1^2*a2^3*b2-104*a1^2*a2^3*n+96*a1 ^2*a2^2*b1^2+320*a1^2*a2^2*b1*b2-679*a1^2*a2^2*b1*n+228*a1^2*a2^2*b2^2-835*a1^2 *a2^2*b2*n+874*a1^2*a2^2*n^2+13*a1^2*a2*b1^3+200*a1^2*a2*b1^2*b2-439*a1^2*a2*b1 ^2*n+453*a1^2*a2*b1*b2^2-1829*a1^2*a2*b1*b2*n+1988*a1^2*a2*b1*n^2+270*a1^2*a2* b2^3-1494*a1^2*a2*b2^2*n+2862*a1^2*a2*b2*n^2-2040*a1^2*a2*n^3+13*a1^2*b1^3*b2-\ 26*a1^2*b1^3*n+96*a1^2*b1^2*b2^2-439*a1^2*b1^2*b2*n+478*a1^2*b1^2*n^2+171*a1^2* b1*b2^3-1098*a1^2*b1*b2^2*n+2268*a1^2*b1*b2*n^2-1644*a1^2*b1*n^3+88*a1^2*b2^4-\ 711*a1^2*b2^3*n+2043*a1^2*b2^2*n^2-2664*a1^2*b2*n^3+1431*a1^2*n^4+65*a1*a2^4*b1 +65*a1*a2^4*b2-130*a1*a2^4*n+171*a1*a2^3*b1^2+508*a1*a2^3*b1*b2-1120*a1*a2^3*b1 *n+337*a1*a2^3*b2^2-1380*a1*a2^3*b2*n+1484*a1*a2^3*n^2+44*a1*a2^2*b1^3+453*a1* a2^2*b1^2*b2-1098*a1*a2^2*b1^2*n+902*a1*a2^2*b1*b2^2-4213*a1*a2^2*b1*b2*n+4892* a1*a2^2*b1*n^2+493*a1*a2^2*b2^3-3271*a1*a2^2*b2^2*n+7118*a1*a2^2*b2*n^2-5328*a1 *a2^2*n^3+53*a1*a2*b1^3*b2-132*a1*a2*b1^3*n+320*a1*a2*b1^2*b2^2-1829*a1*a2*b1^2 *b2*n+2268*a1*a2*b1^2*n^2+508*a1*a2*b1*b2^3-4213*a1*a2*b1*b2^2*n+10372*a1*a2*b1 *b2*n^2-8240*a1*a2*b1*n^3+241*a1*a2*b2^4-2542*a1*a2*b2^3*n+8978*a1*a2*b2^2*n^2-\ 13568*a1*a2*b2*n^3+7804*a1*a2*n^4+13*a1*b1^3*b2^2-106*a1*b1^3*b2*n+132*a1*b1^3* n^2+52*a1*b1^2*b2^3-679*a1*b1^2*b2^2*n+1988*a1*b1^2*b2*n^2-1644*a1*b1^2*n^3+65* a1*b1*b2^4-1120*a1*b1*b2^3*n+4892*a1*b1*b2^2*n^2-8240*a1*b1*b2*n^3+4942*a1*b1*n ^4+26*a1*b2^5-547*a1*b2^4*n+3102*a1*b2^3*n^2-7616*a1*b2^2*n^3+8844*a1*b2*n^4-\ 4110*a1*n^5+26*a2^5*b1+26*a2^5*b2-52*a2^5*n+88*a2^4*b1^2+241*a2^4*b1*b2-547*a2^ 4*b1*n+153*a2^4*b2^2-677*a2^4*b2*n+742*a2^4*n^2+33*a2^3*b1^3+270*a2^3*b1^2*b2-\ 711*a2^3*b1^2*n+493*a2^3*b1*b2^2-2542*a2^3*b1*b2*n+3102*a2^3*b1*n^2+256*a2^3*b2 ^3-1935*a2^3*b2^2*n+4586*a2^3*b2*n^2-3552*a2^3*n^3+44*a2^2*b1^3*b2-132*a2^2*b1^ 3*n+228*a2^2*b1^2*b2^2-1494*a2^2*b1^2*b2*n+2043*a2^2*b1^2*n^2+337*a2^2*b1*b2^3-\ 3271*a2^2*b1*b2^2*n+8978*a2^2*b1*b2*n^2-7616*a2^2*b1*n^3+153*a2^2*b2^4-1935*a2^ 2*b2^3*n+7809*a2^2*b2^2*n^2-12944*a2^2*b2*n^3+7804*a2^2*n^4+13*a2*b1^3*b2^2-132 *a2*b1^3*b2*n+198*a2*b1^3*n^2+52*a2*b1^2*b2^3-835*a2*b1^2*b2^2*n+2862*a2*b1^2* b2*n^2-2664*a2*b1^2*n^3+65*a2*b1*b2^4-1380*a2*b1*b2^3*n+7118*a2*b1*b2^2*n^2-\ 13568*a2*b1*b2*n^3+8844*a2*b1*n^4+26*a2*b2^5-677*a2*b2^4*n+4586*a2*b2^3*n^2-\ 12944*a2*b2^2*n^3+16648*a2*b2*n^4-8220*a2*n^5-26*b1^3*b2^2*n+132*b1^3*b2*n^2-\ 132*b1^3*n^3-104*b1^2*b2^3*n+874*b1^2*b2^2*n^2-2040*b1^2*b2*n^3+1431*b1^2*n^4-\ 130*b1*b2^4*n+1484*b1*b2^3*n^2-5328*b1*b2^2*n^3+7804*b1*b2*n^4-4110*b1*n^5-52* b2^5*n+742*b2^4*n^2-3552*b2^3*n^3+7804*b2^2*n^4-8220*b2*n^5+3425*n^6-12*a1^3*a2 ^2-51*a1^3*a2*b1-63*a1^3*a2*b2+126*a1^3*a2*n-12*a1^3*b1^2-63*a1^3*b1*b2+126*a1^ 3*b1*n-63*a1^3*b2^2+189*a1^3*b2*n-189*a1^3*n^2-48*a1^2*a2^3-330*a1^2*a2^2*b1-\ 402*a1^2*a2^2*b2+840*a1^2*a2^2*n-213*a1^2*a2*b1^2-894*a1^2*a2*b1*b2+1941*a1^2* a2*b1*n-729*a1^2*a2*b2^2+2781*a1^2*a2*b2*n-2970*a1^2*a2*n^2-12*a1^2*b1^3-213*a1 ^2*b1^2*b2+462*a1^2*b1^2*n-540*a1^2*b1*b2^2+2214*a1^2*b1*b2*n-2403*a1^2*b1*n^2-\ 351*a1^2*b2^3+1998*a1^2*b2^2*n-3888*a1^2*b2*n^2+2781*a1^2*n^3-60*a1*a2^4-546*a1 *a2^3*b1-666*a1*a2^3*b2+1428*a1*a2^3*n-540*a1*a2^2*b1^2-2067*a1*a2^2*b1*b2+4794 *a1*a2^2*b1*n-1599*a1*a2^2*b2^2+6936*a1*a2^2*b2*n-7776*a1*a2^2*n^2-63*a1*a2*b1^ 3-894*a1*a2*b1^2*b2+2214*a1*a2*b1^2*n-2067*a1*a2*b1*b2^2+10164*a1*a2*b1*b2*n-\ 12105*a1*a2*b1*n^2-1248*a1*a2*b2^3+8790*a1*a2*b2^2*n-19881*a1*a2*b2*n^2+15234* a1*a2*n^3-51*a1*b1^3*b2+126*a1*b1^3*n-330*a1*b1^2*b2^2+1941*a1*b1^2*b2*n-2403* a1*b1^2*n^2-546*a1*b1*b2^3+4794*a1*b1*b2^2*n-12105*a1*b1*b2*n^2+9672*a1*b1*n^3-\ 267*a1*b2^4+3042*a1*b2^3*n-11187*a1*b2^2*n^2+17289*a1*b2*n^3-10035*a1*n^4-24*a2 ^5-267*a2^4*b1-327*a2^4*b2+714*a2^4*n-351*a2^3*b1^2-1248*a2^3*b1*b2+3042*a2^3* b1*n-945*a2^3*b2^2+4470*a2^3*b2*n-5184*a2^3*n^2-63*a2^2*b1^3-729*a2^2*b1^2*b2+ 1998*a2^2*b1^2*n-1599*a2^2*b1*b2^2+8790*a2^2*b1*b2*n-11187*a2^2*b1*n^2-945*a2^2 *b2^3+7632*a2^2*b2^2*n-18963*a2^2*b2*n^2+15234*a2^2*n^3-63*a2*b1^3*b2+189*a2*b1 ^3*n-402*a2*b1^2*b2^2+2781*a2*b1^2*b2*n-3888*a2*b1^2*n^2-666*a2*b1*b2^3+6936*a2 *b1*b2^2*n-19881*a2*b1*b2*n^2+17289*a2*b1*n^3-327*a2*b2^4+4470*a2*b2^3*n-18963* a2*b2^2*n^2+32523*a2*b2*n^3-20070*a2*n^4-12*b1^3*b2^2+126*b1^3*b2*n-189*b1^3*n^ 2-48*b1^2*b2^3+840*b1^2*b2^2*n-2970*b1^2*b2*n^2+2781*b1^2*n^3-60*b1*b2^4+1428* b1*b2^3*n-7776*b1*b2^2*n^2+15234*b1*b2*n^3-10035*b1*n^4-24*b2^5+714*b2^4*n-5184 *b2^3*n^2+15234*b2^2*n^3-20070*b2*n^4+10035*n^5+44*a1^3*a2+44*a1^3*b1+66*a1^3* b2-132*a1^3*n+296*a1^2*a2^2+702*a1^2*a2*b1+998*a1^2*a2*b2-2128*a1^2*a2*n+164*a1 ^2*b1^2+800*a1^2*b1*b2-1732*a1^2*b1*n+724*a1^2*b2^2-2796*a1^2*b2*n+2994*a1^2*n^ 2+504*a1*a2^3+1744*a1*a2^2*b1+2500*a1*a2^2*b2-5592*a1*a2^2*n+800*a1*a2*b1^2+ 3696*a1*a2*b1*b2-8796*a1*a2*b1*n+3192*a1*a2*b2^2-14388*a1*a2*b2*n+16516*a1*a2*n ^2+44*a1*b1^3+702*a1*b1^2*b2-1732*a1*b1^2*n+1744*a1*b1*b2^2-8796*a1*b1*b2*n+ 10528*a1*b1*n^2+1108*a1*b2^3-8128*a1*b2^2*n+18786*a1*b2*n^2-14520*a1*n^3+252*a2 ^4+1108*a2^3*b1+1612*a2^3*b2-3728*a2^3*n+724*a2^2*b1^2+3192*a2^2*b1*b2-8128*a2^ 2*b1*n+2764*a2^2*b2^2-13720*a2^2*b2*n+16516*a2^2*n^2+66*a2*b1^3+998*a2*b1^2*b2-\ 2796*a2*b1^2*n+2500*a2*b1*b2^2-14388*a2*b1*b2*n+18786*a2*b1*n^2+1612*a2*b2^3-\ 13720*a2*b2^2*n+35302*a2*b2*n^2-29040*a2*n^3+44*b1^3*b2-132*b1^3*n+296*b1^2*b2^ 2-2128*b1^2*b2*n+2994*b1^2*n^2+504*b1*b2^3-5592*b1*b2^2*n+16516*b1*b2*n^2-14520 *b1*n^3+252*b2^4-3728*b2^3*n+16516*b2^2*n^2-29040*b2*n^3+18150*n^4-36*a1^3-600* a1^2*a2-492*a1^2*b1-792*a1^2*b2+1692*a1^2*n-1584*a1*a2^2-2529*a1*a2*b1-4113*a1* a2*b2+9426*a1*a2*n-492*a1*b1^2-2529*a1*b1*b2+6042*a1*b1*n-2337*a1*b2^2+10755*a1 *b2*n-12447*a1*n^2-1056*a2^3-2337*a2^2*b1-3921*a2^2*b2+9426*a2^2*n-792*a2*b1^2-\ 4113*a2*b1*b2+10755*a2*b1*n-3921*a2*b2^2+20181*a2*b2*n-24894*a2*n^2-36*b1^3-600 *b1^2*b2+1692*b1^2*n-1584*b1*b2^2+9426*b1*b2*n-12447*b1*n^2-1056*b2^3+9426*b2^2 *n-24894*b2*n^2+20745*n^3+392*a1^2+2212*a1*a2+1428*a1*b1+2534*a1*b2-5852*a1*n+ 2212*a2^2+2534*a2*b1+4746*a2*b2-11704*a2*n+392*b1^2+2212*b1*b2-5852*b1*n+2212* b2^2-11704*b2*n+14630*n^2-1164*a1-2328*a2-1164*b1-2328*b2+5820*n+1000)/(2+n)/( b1+b2-n-2)/(n+2+a1-b1-b2)/(a1+a2-n-2)/(-n-2+a1+a2-b1)/(a1*a2*b1+a1*a2*b2-2*a1* a2*n+a1*b1*b2-2*a1*b1*n+a1*b2^2-3*a1*b2*n+3*a1*n^2+a2^2*b1+a2^2*b2-2*a2^2*n+a2* b1*b2-3*a2*b1*n+a2*b2^2-5*a2*b2*n+6*a2*n^2-2*b1*b2*n+3*b1*n^2-2*b2^2*n+6*b2*n^2 -5*n^3-2*a1*a2-2*a1*b1-3*a1*b2+6*a1*n-2*a2^2-3*a2*b1-5*a2*b2+12*a2*n-2*b1*b2+6* b1*n-2*b2^2+12*b2*n-15*n^2+3*a1+6*a2+3*b1+6*b2-15*n-5)*N+N^2: add(factor(normal(coeff(ope,N,i)))*N^i,i=0..degree(ope,N)): end: #SeqFromRec(ope,n,N,ini,L): Given an (ordinary) recurrence operator #ope(n,N) in the variable n and the shift operator N (Nf(n):=f(n+1)) #and given initial values [ini0,ini1,..,ini_{ORD-1}],computes #the first L+1 terms of the sequence a(n) satisfying #ope(n,N)a(n)=0 and a[i]=ini[i] for i=0,...,ORD-1 #For example, try: SeqFromRec(N^2-N-1,n,N,[0,1],10); SeqFromRec:=proc(ope,n,N,ini,L) local gu,lu,j,ORD,n0,i: ORD:=degree(ope,N): if ORD<>nops(ini) then ERROR(`The length of`,ini, `should be `, degree(ope,N)): fi: gu:=ini: for i from ORD to L do lu:=0: n0:=i-ORD: lu:=0: for j from 0 to ORD-1 do lu:=lu+subs(n=n0,coeff(ope,N,j))*gu[n0+j+1]: od: lu:=-lu/subs(n=n0,coeff(ope,N,ORD)): gu:=[op(gu),lu]: od: gu: end: #IntGBnaked(a1,a2,b1,b2,n1); #int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y))/(1-x*y))^n1,x=0..1),y=0..1); #Try: #IntGBnaked(0,0,0,0,0); IntGBnaked:=proc(a1,a2,b1,b2,n1) local x,y: int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))^n1,x=0..1),y=0..1); end: #IntGB(a1,a2,b1,b2,n1); #int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y))/(1-x*y))^n1,x=0..1),y=0..1); #Try: #IntGB(0,0,0,0,0); IntGB:=proc(a1,a2,b1,b2,n1) local x,y,lu,mu: lu:=int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))^n1,x=0..1),y=0..1); mu:=int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2),x=0..1),y=0..1); lu/mu: end: #IntGBg(a1,a2,b1,b2,c,n1); #int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(c+1)*(x*(1-x)*y*(1-y))/(1-x*y))^n1,x=0..1),y=0..1) divided by #int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^c*(x*(1-x)*y*(1-y))/(1-x*y))^n1,x=0..1),y=0..1) divided by #Try: #IntGBg(0,0,0,0,0,0); IntGBg:=proc(a1,a2,b1,b2,c,n1) local x,y,lu,mu: lu:=int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(c+1)*(x*(1-x)*y*(1-y)/(1-x*y))^n1,x=0..1),y=0..1); mu:=int(int( x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^c,x=0..1),y=0..1); lu/mu: end: #delt(a,c): Given a rational number a and a constant #c, finds the delta such that |a-c|=1/denom(a)^(1+delta) #For example, try delta(22/7,evalf(Pi)): delt:=proc(a,c): evalf(-log(abs(c-a))/log(denom(a)))-1: end: #AppxSeq1(ope,n,N,RE,K): It inputs a second order operator ope, in n where N is the shift operator N #where it is known that ope(n,N) annihilates a sequence a(n) that goes to zero. #It also inputs a pair RE=[[c0,c1],L] satisfying c0*a(0)+c1*a(1)=L where c0,c1 are integers and #L is a rational number, It outputs the list of the first K terms in the rational approximations to a(0). Try #AppxSeq1(N^2-N-1,n,N,[[11,12],3],20); AppxSeq1:=proc(ope,n,N,RE,K) local c0,c1,L,gu,a0,lu,i,mu0,mu1: if not (type(RE,list) and nops(RE)=2 and type(RE[1],list) and nops(RE[1])=2) then print(`Bad input`): RETURN(FAIL): fi: c0:=RE[1][1]: c1:=RE[1][2]: if c1=0 then RETURN(FAIL): fi: L:=RE[2]: gu:=SeqFromRec(ope,n,N,[a0,(L-c0*a0)/c1],K): gu:=[op(3..nops(gu),gu)]: lu:=[]: for i from 2 to nops(gu) do mu0:=coeff(gu[i],a0,0): mu1:=coeff(gu[i],a0,1): if mu1=0 then RETURN(FAIL): fi: lu:=[op(lu),-mu0/mu1]: od: lu: end: #AppxSeq(a1,a2,b1,b2,K): The approximating sequence for IntGB(a1,a2,b1,b2,0); #Try: #AppxSeq(0,0,0,0,40); #AppxSeq(1/2,0,0,1/2,40); #AppxSeq(1/3,0,1/3,0,40); AppxSeq:=proc(a1,a2,b1,b2,K) local ope,n,N,RE: RE:=FindRel(a1,a2,b1,b2): if RE=FAIL then RETURN(FAIL): fi: ope:=OPEZ2(a1,a2,b1,b2,n,N): AppxSeq1(ope,n,N,RE,K): end: #GBC1(a1,a2,b1,b2, K): A floating-point approximation to the constant #IntGB(a1,a2,b1,b2,0) using the sequence to K terms #followed by the differene of two consecutive terms. Try: #GBC1(0,0,0,0,100); GBC1:=proc(a1,a2,b1,b2,K) local RE, n,N,ope,lu: RE:=FindRel(a1,a2,b1,b2): if RE=FAIL then RETURN(FAIL): fi: ope:=OPEZ2(a1,a2,b1,b2,n,N): lu:=AppxSeq1(ope,n,N,RE,K): if lu=FAIL then RETURN(FAIL): fi: [evalf(lu[nops(lu)]),evalf(abs(lu[nops(lu)]-lu[nops(lu)-1]))]: end: #GBC(a1,a2,b1,b2): A floating-point approximation to the constant #IntGB(a1,a2,b1,b2,0) supposed to be good for the number of digits #Try: #GBC(0,0,0,0); GBC:=proc(a1,a2,b1,b2) local lu,K,RE: RE:=FindRel(a1,a2,b1,b2): if RE=FAIL then RETURN(FAIL): fi: lu:=GBC1(a1,a2,b1,b2,100): if lu=FAIL then RETURN(FAIL): fi: if lu[2]<10^(-3*Digits) then RETURN(lu[1]): fi: for K from 150 to 20000 by 50 do lu:=GBC1(a1,a2,b1,b2,K): if lu<>FAIL and lu[2]<10^(-3*Digits) then RETURN(lu[1]): fi: od: FAIL: end: #deltSeq(a1,a2,b1,b2,K): the sequence of empirial deltas AppxSeq(a1,a2,b1,b2,K) starting at n=10 and until it makes sense #K must be at least 10. #to IntGB(a1,a2,b1,b2). Try: #deltSeq(0,0,0,0,30); deltSeq:=proc(a1,a2,b1,b2,K) local c,gu,i,lu,RE: if K<10 then print(K, `should have been at least 10`): RETURN(FAIL): fi: RE:=FindRel(a1,a2,b1,b2): if RE=FAIL then RETURN(FAIL): fi: c:=GBC(a1,a2,b1,b2): if c=FAIL then RETURN(FAIL): fi: gu:=AppxSeq(a1,a2,b1,b2,K): lu:=[]: for i from 11 to nops(gu) while abs(gu[i]-c)>10^(-Digits) do lu:=[op(lu),delt(gu[i],c)]: od: lu: end: #rf(a,n): The raising factorial a(a+1)...*(a+n-1). Try: #rf(1/3,10); rf:=proc(a,n) local i: mul(a+i,i=0..n-1): end: #IntGBser(a1,a2,b1,b2,K): an approximation to GBC(a1,a2,b1,b2) using the series with K terms. Try: #IntGBser(0,0,0,0,100); #IntGBser(1/2,0,0,1/2,100); IntGBser:=proc(a1,a2,b1,b2,K) local n1: add(rf(-a1+1,n1)*rf(-b1+1,n1)/(rf(2-a1-a2,n1)*rf(2-b1-b2,n1)),n1=0..K): end: rf1:=proc(a,n): (a+n-1)!/(a-1)!:end: #IntGBsummand(a1,a2,b1,b2,n): The summand in the series representation for IntGB(a1,a2,b1,b2,0); Try: #IntGBsummand(0,0,0,0,100); #IntGBsummand(1/2,0,0,1/2,100); IntGBsummand:=proc(a1,a2,b1,b2,n): simplify(rf1(-a1+1,n)*rf1(-b1+1,n)/(rf1(2-a1-a2,n)*rf1(2-b1-b2,n))): end: #IntGBsummandRF(a1,a2,b1,b2,n,RF): The summand in the series representation for IntGB(a1,a2,b1,b2,0) in terms of the raising-factorial #denoted by RF. Try #IntGBsummandRF(0,0,0,0,n,RF); #IntGBsummandRF(1/2,0,0,1/2,n,RF); IntGBsummandRF:=proc(a1,a2,b1,b2,n,RF): RF(-a1+1,n)*RF(-b1+1,n)/(RF(2-a1-a2,n)*RF(2-b1-b2,n)): end: #IntGB3F2(a1,a2,b1,b2): The summand in the series representation for IntGL(a,b,c,0) expressed as an #2F1, a pair of lists [NumeratorParameters,DenominatorParameters], followed by the argument #IntGB3F2(0,0,1/2,1/2); IntGB3F2:=proc(a1,a2,b1,b2) local ku: ku:=[[1,-a1+1,-b1+1],[2-a1-a2,2-b1-b2]]: cat(`3F2(` , ku[1][1] , `,` , ku[1][2], `,`, ku[1][3], `;`, ku[2][1], `,`, ku[2][2] , `;`, 1, `)`); end: #FindRel(a1,a2,b1,b2): A clever way to find a relationship #between IntGB(a1,a2,b1,b2,0) and IntGB(a1,a2,b1,b2,1) . Try: #FindRel(1/2,0,0,1/2); FindRel:=proc(a1,a2,b1,b2) local x,y,c00,c01,c10, d00,d01,d10,gu,eq,var,lu,A,B,C,gu1,gu2,hal,ka,i,j: option remember: lu:=x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2): gu1:=normal(diff((c00+c01*x+c10*y)*x*(1-x)*lu/(1-x*y),x)+diff((d00+d01*x+d10*y)*y*(1-y)*lu/(1-x*y),y)): gu1:=normal(gu1/lu): gu2:=normal(A/(1-x*y)+B*x*(1-x)*y*(1-y)/(1-x*y)^2-C): gu:=normal(gu1-gu2): gu:=numer(gu): var:={c00,c01,c10, d00,d01,d10,A,B,C}: eq:={seq(seq(coeff(coeff(gu,x,i),y,j),j=0..degree(coeff(gu,x,i),y)),i=0..degree(gu,x))}: var:=solve(eq,var): hal:=subs(var,[A,B,C]): if hal[1]=0 then RETURN(FAIL): fi: hal:=[1,normal(hal[2]/hal[1]),normal(hal[3]/hal[1])]: hal: ka:=lcm(seq(denom(hal[i]),i=1..nops(hal))): hal:=ka*hal: [[hal[1],hal[2]],hal[3]]: end: #IsGoodOpe(ope,n,N): Is ope(n,N) a good operator? IsGoodOpe:=proc(ope,n,N) local gu: gu:=denom(ope): if subs(n=0,gu)<>0 then true: else false: fi: end: #AnBn(a1,a2,b1,b2,K): The first K terms in the sequences An and Bn in the expression #IntGB(a1,a2,b1,b2,n)=B(n)*c-A(n) #where c=IntGB(a1,a2,b1,b2,0); #It also returns the first K terms in the floating point of the sequence IntGB(a1,a2,b1,b2,n) itself. #Try: #AnBn(0,0,0,0,50); #AnBn(1/2,0,0,1/2,50); #AnBn(2/3,1/3,1/6,1/3,50); AnBn:=proc(a1,a2,b1,b2,K) local ope,n,N,RE,c0,c1,L,a0,i,gu,guF: RE:=FindRel(a1,a2,b1,b2): if RE=FAIL then RETURN(FAIL): fi: c0:=RE[1][1]: c1:=RE[1][2]: if c1=0 then RETURN(FAIL): fi: L:=RE[2]: ope:=OPEZ2(a1,a2,b1,b2,n,N): if not IsGoodOpe(ope,n,N) then RETURN(FAIL): fi: gu:=SeqFromRec(ope,n,N,[a0,(L-c0*a0)/c1],K): guF:=evalf(subs(a0=GBC(a1,a2,b1,b2),gu)): [[seq(-coeff(gu[i],a0,0),i=1..nops(gu))],[seq(coeff(gu[i],a0,1),i=1..nops(gu))],guF]: end: LC:=proc(n) local j:lcm(seq(j,j=1..n)):end: #Nu1(a,b,K,r): if you have a sequence of diophantine approximations A(n)+B(n)*c such that #(i)|A(n)+B(n)*c|<=Cb^n, (ii) max(|A(n)|,|B(n)|)=OMEGA(a^n) (iii) K^n*dn(r*n)*A(n) and K^n*dn(r*n)*B(n) are integers #outputs the implied rigorous delta #mu:=5*sqrt(5)/2-11/2; #Nu1(1/mu,mu,16,4); #Nu1(1/mu,mu,1,2); Nu1:=proc(a,b,K,r): -(log(b)+r+log(K))/(log(a)+r+log(K)): end: #Nu1Extra(a,b,K,r,K1): if you have a sequence of diophantine approximations A(n)+B(n)*c such that #(i)|A(n)+B(n)*c|<=CONST*b^n, (ii) max(|A(n)|,|B(n)|)=OMEGA(a^n) (iii) K^n*dn(r*n)*A(n) and K^n*dn(r*n)*B(n) are integers #AND it looks like, empirically or rigorously that gcd(K^n*dn(r*n)*A(n), K^n*dn(r*n)*B(n)) are O(e^(K1*n)) #outputs the implied rigorous delta #Nu1Extra(op(ShoreshPi(N)[2]),25/16,10,0); Nu1Extra:=proc(a,b,K,r,K1): -(log(b)+r+log(K)-K1)/(log(a)+r+log(K)-K1): end: #GuessK1(L): Given a list of integers finds an integer K such that L[i]/K^i is still an integer or fixed denominator #Try #GuessK1([seq(7*5^i,i=1..50)]); GuessK1:=proc(L) local i,lu,gu,N,K,j,mu: if nops(L)<40 then print(`The list must have at least 40 terms `): RETURN(FAIL): fi: lu:=ifactors(L[10])[2]: gu:=[]: for i from 1 to nops(lu) do if lu[i][2]>5 then gu:=[op(gu),lu[i][1]]: fi: od: if gu=[] then RETURN(1): fi: N:=nops(L): mu:=1: for j from 1 to nops(gu) do for i from 1 while type(L[N]/gu[j]^i,integer) do od: K:=round(i/N): mu:=mu*gu[j]^K: od: if max(seq(denom(L[i]/mu^i),i=1..nops(gu)))>100 then RETURN(FAIL): fi: mu: end: #GuessK1(L): Given a list of integers finds an integer K such that L[i]/K^i is still an integer or fixed denominator #Try #GuessK1([seq(7*5^i,i=1..50)]); GuessK:=proc(L) local Lt,Lb,Kt,Kb: Lt:=numer(L): Lb:=denom(L): Kt:=GuessK1(Lt): if Kt=FAIL then RETURN(FAIL): fi: Kb:=GuessK1(Lb): if Kb=FAIL then RETURN(FAIL): fi: Kb/Kt: end: #NoralizePair(P,K): Given a pair of sequenes of rational numbers P[1],P[2], and a pos. rational number K, outputs the #sequence K^i*P[1][i], K^i*P[2][i]. Try: #gu:=AnBn(1/2,0,0,1/2,50): Normalize([gu[1],gu[2]],8); NormalizePair:=proc(P,K) local i: [[seq(P[1][i]*K^i,i=1..nops(P[1]))],[seq(P[2][i]*K^i,i=1..nops(P[2]))]]: end: #CnDn(a1,a2,b1,b2,K): The first K terms in the sequences gcd(numer(An[i]),number(Bn[i])) #lcm(denom(An[i]),denom(Bn[i])) #It also returns the last 20 terms of the logs of the normailizing sequence #as well as the last 20 terms of the implied deltas #Try: #CnDn(0,0,0,0,50); #CnDn(1/2,0,0,1/2,50); #CnDn(1/2,0,0,1/2,50); #CnDn(2/3,1/3,1/6,1/3,50); CnDn:=proc(a1,a2,b1,b2,K) local gu,i,lu,vu,ku: if K<20 then print(K, `shpild be at least 20 `): RETURN(FAIL): fi: gu:=AnBn(a1,a2,b1,b2,K): if gu=FAIL then RETURN(FAIL): fi: lu:= [ [seq(gcd(numer(gu[1][i]),numer(gu[2][i])),i=1..nops(gu[1]))], [seq(lcm(denom(gu[1][i]),denom(gu[2][i])),i=1..nops(gu[1]))] ]: vu:=evalf([seq((log(lu[2][i+1])-log(lu[1][i+1]))/i,i=K-20..K)]): ku:=[ seq( (log(BC())-vu[i])/(log(BC())+vu[i]),i=1..nops(vu))]: ku:=evalf(ku,10): vu:=evalf(vu,10): [lu,vu,ku]: end: #IsGarbage(L): decides whether an expression is garbage. IsGarbage:=proc(L) local i,L1: if not type(L,`*`) then RETURN(false): fi: for i from 1 to nops(L) do if op(0,op(i,L))=int or op(0,op(i,L))=hypergeom then RETURN(true): fi: od: L1:=expand(L): for i from 1 to nops(L1) do if IsGarbage(op(i,L1)) then RETURN(true): fi: od: false: end: #hopefulSearchP(numers, denoms): Like #hopefulSearch(numers, denoms, eps=0.001, blockPosInts=true, report=true) (q.v.) #but does not print out and also supplies the values of identify(GBC(GoodQuad)) and IntGB at n=0. # Try: # hopefulSearchP([0, 1], [2, 3]); # hopefulSearchP([0, 1], [2, 3], eps=0.1); # hopefulSearchP([0, 1, 2, 3], [2, 3, 4, 5, 6]); hopefulSearchP:=proc(numers, denoms) local mu,i,gu,ku: mu:=hopefulSearch(numers, denoms) : gu:=[]: for i from 1 to nops(mu) do ku:=IntGB(op(mu[i][1]),0): if not IsGarbage(ku) then gu:=[op(gu),[mu[i][1],mu[i][2],identify(GBC(op(mu[i][1]))),ku]]: else gu:=[op(gu),[mu[i][1],mu[i][2],identify(GBC(op(mu[i][1])))]]: fi: od: gu: end: #LeadA(a1,a2,b1,b2,n): The leading asymptotics in n in the terms of the series IntGBser(a1,a2,b1,b2). #LeadA(0,0,0,0,n); LeadA:=proc(a1,a2,b1,b2,n) local lu: lu:=IntGBsummand(a1,a2,b1,b2,n): lu:=asympt(lu,n,5); lu:=simplify(op(1,lu)): lu: end: #FindRelG(a1,a2,b1,b2,c): A clever way to find a relationship #between IntGBg(a1,a2,b1,b2,c,0) and IntGBg(a1,a2,b1,b2,c,1) . Try: #FindRelG(1/2,0,0,1/2,0); FindRelG:=proc(a1,a2,b1,b2,c) local x,y,c00,c01,c10, d00,d01,d10,gu,eq,var,lu,A,B,C,gu1,gu2,hal,ka,i,j: option remember: lu:=x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^c: gu1:=normal(diff((c00+c01*x+c10*y)*x*(1-x)*lu/(1-x*y),x)+diff((d00+d01*x+d10*y)*y*(1-y)*lu/(1-x*y),y)): gu1:=normal(gu1/lu): gu2:=normal(A/(1-x*y)+B*x*(1-x)*y*(1-y)/(1-x*y)^2-C): gu:=normal(gu1-gu2): gu:=numer(gu): var:={c00,c01,c10, d00,d01,d10,A,B,C}: eq:={seq(seq(coeff(coeff(gu,x,i),y,j),j=0..degree(coeff(gu,x,i),y)),i=0..degree(gu,x))}: var:=solve(eq,var): hal:=subs(var,[A,B,C]): if hal[1]=0 then RETURN(FAIL): fi: hal:=[1,normal(hal[2]/hal[1]),normal(hal[3]/hal[1])]: hal: ka:=lcm(seq(denom(hal[i]),i=1..nops(hal))): hal:=ka*hal: [[hal[1],hal[2]],hal[3]]: end: #GBCg1(a1,a2,b1,b2,c, K): A floating-point approximation to the constant #IntGBg(a1,a2,b1,b2,c,0) using the sequence to K terms #followed by the differene of two consecutive terms. Try: #GBCg1(0,0,0,0,100); GBCg1:=proc(a1,a2,b1,b2,c,K) local RE, n,N,ope,lu: RE:=FindRelG(a1,a2,b1,b2,c): if RE=FAIL then RETURN(FAIL): fi: ope:=OPEZ2g(a1,a2,b1,b2,c,n,N): lu:=AppxSeq1(ope,n,N,RE,K): if lu=FAIL then RETURN(FAIL): fi: [evalf(lu[nops(lu)]),evalf(abs(lu[nops(lu)]-lu[nops(lu)-1]))]: end: #GBCg(a1,a2,b1,b2,c): A floating-point approximation to the constant #IntGBg(a1,a2,b1,b2,c,0) supposed to be good for the number of digits #Try: #GBCg(0,0,0,0,0); GBCg:=proc(a1,a2,b1,b2,c) local lu,K,RE: RE:=FindRelG(a1,a2,b1,b2,c): if RE=FAIL then RETURN(FAIL): fi: lu:=GBCg1(a1,a2,b1,b2,c,100): if lu=FAIL then RETURN(FAIL): fi: if lu[2]<10^(-3*Digits) then RETURN(lu[1]): fi: for K from 150 to 20000 by 50 do lu:=GBCg1(a1,a2,b1,b2,c,K): if lu<>FAIL and lu[2]<10^(-3*Digits) then RETURN(lu[1]): fi: od: FAIL: end: #AppxSeqG(a1,a2,b1,b2,c,K): The approximating sequence for IntGB(a1,a2,b1,b2,0); #Try: #AppxSeqG(0,0,0,0,0,40); #AppxSeqG(1/2,0,0,1/2,0,40); #AppxSeqG(1/3,0,1/3,0,0,40); AppxSeqG:=proc(a1,a2,b1,b2,c,K) local ope,n,N,RE: RE:=FindRelG(a1,a2,b1,b2,c): if RE=FAIL then RETURN(FAIL): fi: ope:=OPEZ2g(a1,a2,b1,b2,c,n,N): AppxSeq1(ope,n,N,RE,K): end: #deltSeqG(a1,a2,b1,b2,c,K): the sequence of empirial deltas AppxSeq(a1,a2,b1,b2,K) starting at n=10 and until it makes sense #K must be at least 10. #to IntGBg(a1,a2,b1,b2,c,0). Try: #deltSeqG(0,0,0,0,0,30); deltSeqG:=proc(a1,a2,b1,b2,c,K) local c1,gu,i,lu,RE: if K<10 then print(K, `should have been at least 10`): RETURN(FAIL): fi: RE:=FindRelG(a1,a2,b1,b2,c): if RE=FAIL then RETURN(FAIL): fi: c1:=GBCg(a1,a2,b1,b2,c): if c1=FAIL then RETURN(FAIL): fi: gu:=AppxSeqG(a1,a2,b1,b2,c,K): lu:=[]: for i from 11 to nops(gu) while abs(gu[i]-c1)>10^(-Digits) do lu:=[op(lu),delt(gu[i],c1)]: od: lu: end: #deltSeqGold(a1,a2,b1,b2,c,K): the sequence of empirial deltas AppxSeqG(a1,a2,b1,b2,c,K) starting at n=10 and until it makes sense #K must be at least 10. #to IntGBg(a1,a2,b1,b2,c). Try: #deltSeqG(0,0,0,0,0,30); deltSeqGold:=proc(a1,a2,b1,b2,c,K) local con1,gu,i,lu,RE: if K<10 then print(K, `should have been at least 10`): RETURN(FAIL): fi: RE:=FindRelG(a1,a2,b1,b2,c): if RE=FAIL then RETURN(FAIL): fi: con1:=GBCg(a1,a2,b1,b2,c): #I am here if con1=FAIL then RETURN(FAIL): fi: gu:=AppxSeqG(a1,a2,b1,b2,c,K): lu:=[]: for i from 11 to nops(gu) while abs(gu[i]-c)>10^(-Digits) do lu:=[op(lu),delt(gu[i],con1)]: od: lu: end: #PPold(N): Inputs a positive integer N, outputs a list whose entries are #(i): The largest prime that shows up, let's call it p. #(ii) the list of lists whose j-th entry is the list primes between sqrt(p) and p with exponent is j. #Try: #PPold(LC(100)); PPold:=proc(N) local gu,i,P,gadol,a,T: gu:=ifactors(N)[2]: P:=max(seq(gu[i][1],i=1..nops(gu))): for i from 1 to nops(gu) while gu[i][1]=evalf(sqrt(K*n)) then gu:=gu union {frac(n/s)}: fi: od: evalf(gu,20): end: #HopeStatus(a1,a2,b1,b2,K): inputs a1,a2,b1,b2, such that [a1,a2,b1,b2] is hopeful, checks the #further rating for the more conserative test of CnDn(a1,a2,b1,b2,K)[3]. If they #all negative then it returns 0 followed by the smallest neative. If some are negative and some positive, it returns the #1/2 followed by the smallest negative and larger positive, if they are all positive #it returns 1 followed by the smallest positive. Try: #HopeStatus(5/3,5/3,0,0,2000); HopeStatus:=proc(a1,a2,b1,b2,K) local lu,lu1,lu2,i: lu:=CnDn(a1,a2,b1,b2,K)[3]: lu1:={}; lu2:={}: for i from 1 to nops(lu) do if lu[i]<0 then lu1:=lu1 union {lu[i]}: elif lu[i]>=0 then lu2:=lu2 union {lu[i]}: fi: od: if lu2={} then RETURN([0,min(op(lu1))]): elif lu1={} then RETURN([1,min(op(lu2))]): else RETURN([1/2,min(op(lu1)),max(op(lu2))]): fi: end: #TheoremZ2(a1,a2,b1,b2,K,P): Inputs rational numbers a1,a2,b1,b2, and a large positive integer K and outputs #a theorem regarding the constant #print(Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y),x=0..1),y=0..1))/(B(1-a1,1-a2)*B(1-b1,1-b2)) #Either a suggested proof of irrationality or a way to compute it exponentially fast. #P is 0 if no INTEGERating factor is known, otherwise it is a proposed one. #Try: #TheoremZ2(0,0,0,0,2000,[ [1,0],[1,2],[]] ): TheoremZ2:=proc(a1,a2,b1,b2,K,P) local n,N,gu,x,y,ope,lu,X,A,B,beta,F,c,E,A1,B1,delta,d1,ka,nuE,deltE,WADIM,su3F2,deltE1: beta:=BC(): gu:=CnDn(a1,a2,b1,b2,K): lu:=AnBn(a1,a2,b1,b2,K): ka:=GBC(a1,a2,b1,b2): su3F2:=IntGB3F2(a1,a2,b1,b2): ope:=OPEZ2(a1,a2,b1,b2,n,N): print(``): if min(op(gu[3]))<0 then print(`Very fast Computation of rational approximations to the constant `): print(cat(`3F2`,`(`, op(su3F2),`;`,1, `)` )): # print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y),x=0..1),y=0..1)/(Beta(1-a1,1-a2)*Beta(1-b1,1-b2))): print(``): print(`By Shalosh B. Ekhad `): print(``): print(`Theorem: , let A(n), B(n), be two sequences of rational numbers that satisfy the second-order recurrence`): print(``): print( add(coeff(ope,N,i)*X(n+i),i=0..degree(ope,N)) =0): print(``): print(`Subject to the initial conditions`): print(``): print(A(0)=lu[1][1],A(1)=lu[1][2]): print(``): print(B(0)=lu[2][1],B(1)=lu[2][2]): print(``): print(`Then`, A(n)/B(n), `approximates the constant of the title, let's call it c`, cat(`3F2`,`(`, op(su3F2), `;`,1,`)` ) ): print(`That is easily seen to be given by the following Beukers-type double integral`): print(``): # print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y),x=0..1),y=0..1)/(Beta(1-a1,1-a2)*Beta(1-b1,1-b2))): print( c=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y),x=0..1),y=0..1)/(Beta(1-a1,1-a2)*Beta(1-b1,1-b2))): print(``): print(`with an error that is OMEGA of`, (1/BC()^2)^n, ` that in floating point is`, evalf((1/BC()^2)^n) ): print(``): if identify(ka)<>ka then print(`Comment: Note that this constant appears to be `, identify(ka) ): print(`Prove it!`): fi: if P=0 then print(`Comment: while this sequence does not lead to an irrationality proof, for the record, the delta, happens to be roughly`): print(``): print(min(op(gu[3]))): print(``): else nuE:=AsyPpG(P): deltE1:= (log(beta)-nuE)/(log(beta)+nuE): print(`Comment: while this sequence does not lead to an irrationality proof, for the record, the delta, happens to be exactly`): print(``): print(deltE1): print(``): print(`that in decimals is`): print(evalf(deltE1,10)): print(`In order to prove the exact value of the delta such that there exist integer sequences An, Bn such that abs(c-An/Bn)0 or P[2][2][2]<>0 then print(`where LCM(1..m) is the least-common-multiple of the first m integers, and`): fi: if P[1][3]<>[] or P[2][3]<>[] then print(`where for 0ka then print(`Comment: Note that this constant appears to be `, identify(ka) ): print(`Prove it!`): fi: print(`We need two lemmas `): print(``): print(`Lemma ONE: , let A(n), B(n), be two sequences of rational numbers that satisfy the second-order recurrence`): print(``): print( add(coeff(ope,N,i)*X(n+i),i=0..degree(ope,N)) =0): print(``): print(`Subject to the initial conditions`): print(``): print(A(0)=lu[1][1],A(1)=lu[1][2]): print(``): print(B(0)=lu[2][1],B(1)=lu[2][2]): print(``): print(`Then`, A(n)/B(n), `approximates the constant of the title`, cat(`3F2`,`(`, op(su3F2), `;`,1,`)`) ): print(` let's call it c, that can be easily seen to be given by the Beukers-type integral`): print(``): print( c=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y),x=0..1),y=0..1)/(Beta(1-a1,1-a2)*Beta(1-b1,1-b2))): print(``): print(`with an error that is OMEGA of`, (1/BC()^2)^n, ` that in floating point is`, evalf((1/BC()^2)^n) ): print(``): print(`Proof, consider the Beukers type-integral `): print(F(n)=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)/(Beta(1-a1,1-a2)*Beta(1-b1,1-b2))): print(``): print(`Then `, F(0)=B(0)*c-A(0), F(1)=c*B(1)-A(1) ): print(``): print(`and F(n) also satisfies the above recurrence, thanks to the amazing multivariable Almkvist-Zeilberger algorithm `): print(``): print(`Hence`, F(n)=B(n)*c-A(n)): print(``): print(`By a simple bound of the integrand, F(n) is OMEGA of`, 1/beta^n, ` and by the Poincare lemma, B(n) (and for that matter, A(n)) are OMEGA of`, beta^n): print(``): print(`Dividing by B(n) gives that A(n)/B(n)-c is OMEGA of `, 1/beta^(2*n) , `QED. `): print(``): print(`we now claim that the sequence of RATIONAL numbers A(n),B(n), can be multiplied by another sequence of rational numbers `): print(`E(n) such that both A(n)E(n) and B(n)E(n) are integers `): print(``): if P=0 then print(`Lemma TWO: There exists a sequence of rational numbers, whose prime factorizations consists of small primes, that hopefully`): print(`can be described (and proved) explicity, that we leave to the expert reader such that `): print(` A1(n):=E(n)A(n), B1(n):=E(n)B(n) are BOTH integers`): print(``): print(`Furthermore there exists a contant, nu, that hopefully the learned reader can determine such that E(n) is OMEGA of `, exp(nu*n) ): print(``): print(`The empircal values of nu for E(n) from`, K+1-nops(gu[2]), `to `, K+1, `are `): print(``): print(gu[2]): print(``): print(`Multiplying F(n) by E(n) we get `): print(``): print( E(n)*F(n)=B1(n)*c-A1(n)): print(``): print(`and this implies that `): print(``): print(abs(c-A1(n)/B1(n)) <= CONSTANT/B1(n)^(1+delta)): print(``): print(` where `, delta= (log(beta)-nu)/(log(beta) + nu) ): print(``): print(`Using the above values of nu for E(n) from`, K+1-nops(gu[3]), `to `, K+1, `the estimated deltas are `): print(``): print(gu[3]): print(``): print(`As you can see, they are all positive `): print(``): print(`We leave it to the reader to fill-in the details.`): print(``): else print(`Lemma TWO: Let E(n) be`): print(``): print(PrintPpG(P,n,LCM,PP)): print(``): if P[1][2][2]<>0 or P[2][2][2]<>0 then print(`where LCM(1..m) is the least-common-multiple of the first m integers, and`): fi: if P[1][3]<>[] or P[2][3]<>[] then print(`where for 0ka then print(`Comment: Note that this constant appears to be `, identify(ka) ): print(`Prove it!`): fi: print(`Proof: Consider the Beukers type-integral `): print(F(n)=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)/(Beta(1-a1,1-a2)*Beta(1-b1,1-b2))): print(``): print(`Then `, F(0)=B(0)*c-A(0), F(1)=c*B(1)-A(1) ): print(``): print(`and F(n) also satisfies the above recurrence, thanks to the amazing multivariable Almkvist-Zeilberger algorithm `): print(``): print(`Hence`, F(n)=B(n)*c-A(n)): print(``): print(`By a simple bound of the integrand, F(n) is OMEGA of`, 1/beta^n, ` and by the Poincare lemma, B(n) (and for that matter, A(n)) are OMEGA of`, beta^n): print(``): print(`Dividing by B(n) gives that A(n)/B(n)-c is OMEGA of `, 1/beta^(2*n) , `QED. `): else print(``): print(`Theorem number`, num, `: The following constant c. `): print(``): print( c=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y),x=0..1),y=0..1)/(Beta(1-a1,1-a2)*Beta(1-b1,1-b2))): print(``): print(`is irrational, with an irrationality measure`, 1+ (log(beta)+nu)/(log(beta)-nu), `for a certain number nu `): print(`that is approximately `, max(op(gu[2])) , ` yielding an irrationality measure that is approximately `, evalf(1+1/min(op(gu[3])),10)): print(``): print(`We hope that the reader can find nu exactly.`): if identify(ka)<>ka then print(`Comment: Note that this constant appears to be `, identify(ka) ): print(`Prove it!`): fi: print(`We need two lemmas `): print(``): print(`Lemma: , let A(n), B(n), be two sequences of rational numbers that satisfy the second-order recurrence`): print(``): print( add(coeff(ope,N,i)*X(n+i),i=0..degree(ope,N)) =0): print(``): print(`Subject to the initial conditions`): print(``): print(A(0)=lu[1][1],A(1)=lu[1][2]): print(``): print(B(0)=lu[2][1],B(1)=lu[2][2]): print(``): print(`Then`, A(n)/B(n), `approximates `): print(``): print( c=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y),x=0..1),y=0..1)/(Beta(1-a1,1-a2)*Beta(1-b1,1-b2))): print(``): print(`with an error that is OMEGA of`, (1/BC()^2)^n, ` that in floating point is`, evalf((1/BC()^2)^n) ): print(``): print(`Proof: Consider the Beukers type-integral `): print(F(n)=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)/(Beta(1-a1,1-a2)*Beta(1-b1,1-b2))): print(``): print(`Then `, F(0)=B(0)*c-A(0), F(1)=c*B(1)-A(1) ): print(``): print(`and F(n) also satisfies the above recurrence, thanks to the amazing multivariable Almkvist-Zeilberger algorithm `): print(``): print(`Hence`, F(n)=B(n)*c-A(n)): print(``): print(`By a simple bound of the integrand, F(n) is OMEGA of`, 1/beta^n, ` and by the Poincare lemma, B(n) (and for that matter, A(n)) are OMEGA of `, beta^n): print(``): print(`Dividing by B(n) gives that A(n)/B(n)-c is OMEGA of `, 1/beta^(2*n) , `QED. `): print(``): print(`we now claim that the sequence of RATIONAL numbers A(n),B(n), can be multiplied by another sequence of rational numbers `): print(`E(n) such that both A(n)E(n) and B(n)E(n) are integers `): print(``): print(`Lemma: There exists a sequence of rational numbers, whose prime factorizations consists of small primes, that hopefully`): print(`can be described (and proved) explicity, that we leave to the expert reader such that `): print(` A1(n):=E(n)A(n), B1(n):=E(n)B(n) are BOTH integers`): print(``): print(`Furthermore there exists a contant, nu, that hopefully the learned reader can determine such that E(n) is OMEGA of `, exp(nu*n) ): print(``): print(`The empircal values of nu for E(n) from`, K+1-nops(gu[2]), `to `, K+1, `are `): print(``): print(gu[2]): print(``): print(`Multiplying F(n) by E(n) we get `): print(``): print( E(n)*F(n)=B1(n)*c-A1(n)): print(``): print(`and this implies that `): print(``): print(abs(c-A1(n)/B1(n)) <= CONSTANT/B1(n)^(1+delta)): print(``): print(` where `, delta= (log(beta)-nu)/(log(beta) + nu) ): print(``): print(`Using the above values of nu for E(n) from`, K+1-nops(gu[3]), `to `, K+1, `the estimated deltas are `): print(``): print(gu[3]): print(``): print(`As you can see, they are all positive `): print(``): print(`We leave it to the reader to fill-in the details.`): print(``): fi: end: #PaperZ2(L,K): Given a list L of quadruples that are believed to be provably irrational and a large positive ineger K (around 2000 is OK) # outputs a paper with sketches #of proof. Try: #PaperZ2([[0,0,0,0],[1/2,0,0,0]],2000): PaperZ2:=proc(L,K) local i,t0: t0:=time(): print(``): print(`Sketches of proofs of the Irrationality of `, nops(L), `Constants given as certain double integrals`): print(``): print(`By Shalosh B. Ekhad `): print(``): for i from 1 to nops(L) do print(``): print(`------------------------------------------------------------`): print(``): TheoremZ2num(op(L[i]),K,i): print(``): od: print(``): print(`-----------------------------------------------`): print(``): print(`This ends this paper that took`, time()-t0, `seconds to generate `): print(``): end: #Mamar2: PaperZ2(L,K): where L is given by Hopefuls2(): Try: #Mamar2(2000): Mamar2:=proc(K) local L,i: L:=Hopefuls2(): L:=[seq(L[i][1][1],i=1..nops(L))]: PaperZ2(L,K): end: #Mamar3: PaperZ2(L,K): where L is given by Hopefuls3(): Try: #Mamar3(2000): Mamar3:=proc(K) local L,i: L:=Hopefuls3(): PaperZ2(L,K): end: #Mamar4: PaperZ2(L,K): where L is given by Hopefuls3(): Try: #Mamar4(2000): Mamar4:=proc(K) local L,i: L:=Hopefuls4(): PaperZ2(L,K): end: # Exhaustively searches a collection of user-supplied arguments for "hopeful" # values. See hopefulSearch() for an example use. # tuples: List of "argument generators." # generateArgs: Function that turns a tuple into a list of arguments. # blockArgs: Boolean function that possibly tells us to skip some arguments. # checkRes: Function that returns a numeric "score" for the result of an # argument, where bigger and positive is better. # eps: "Hopeful" tolerance. # report: If true, print hopefulSearchGen:=proc(tuples, generateArgs, blockArgs, checkRes, {eps:=0.001, report:=true, tuple_size:=false}) local blockPosIntMap, hopeful, l, res, new, count: local arguments: print(tuple_size); hopeful := []: count := 0; for l in tuples do count += 1: arguments := generateArgs(l): if type(tuple_size, integer) then printf("%d / %d\n", count, tuple_size); fi: # Do not retry parameters we've already seen. # (e.g, 1 / 2 = 2 / 4) if ormap(p -> arguments = p[1], hopeful) then next: fi: if blockArgs(arguments) then next: fi: try res := checkRes(arguments): if res <> FAIL and res > eps then new := [arguments, res]: hopeful := [op(hopeful), new]: if report then print(new): fi: fi: catch: print("error occurred!"); print(lastexception); end: od: hopeful: end: with(Iterator): # Exhaustively searches a collection of rational parameters to IntGB for # promising irrationality measures. Searches all possible p / q where p is in # `numers` and `q` is in `denoms` and reports deltas > `eps`. Optionally blocks # positive integers (which often results in division by zero errors.) # Try: # hopefulSearch([0, 1], [2, 3]); # hopefulSearch([0, 1], [2, 3], eps=0.1); # hopefulSearch([0, 1, 2, 3], [2, 3, 4, 5, 6]); hopefulSearch:=proc(numers, denoms, {eps:=0.001, report:=true}) local tuples, generateArgs, blockPosIntMap, blockArgs, checkRes: tuples := CartesianProduct(numers, denoms, numers, denoms, numers, denoms, numers, denoms): generateArgs := l -> [l[1] / l[2], l[3] / l[4], l[5] / l[6], l[7] / l[8]]: blockPosIntMap := x -> x > 0 and type(x, integer): blockArgs := L -> ormap(blockPosIntMap, L): checkRes := proc(L) local res: res := deltSeq(seq(L), 50): if res = FAIL then FAIL else res[-1]: fi: end: hopefulSearchGen(tuples, generateArgs, blockArgs, checkRes, eps=eps, report=report): end: # Exhaustively searches a collection of rational parameters to IntGBg for # promising irrationality measures. # Try: # hopefulSearch([0, 1], [2, 3], [1, 2], [2, 3]); hopefulSearchG:=proc(numers, denoms, c_numers, c_denoms, {eps:=0.001, report:=true}) local tuples, generateArgs, blockPosIntMap, blockArgs, checkRes, n_tuples: tuples := CartesianProduct(numers, denoms, numers, denoms, numers, denoms, numers, denoms, c_numers, c_denoms): n_tuples := (nops(numers) * nops(denoms))^4 * nops(c_numers) * nops(c_denoms): generateArgs := l -> [l[1] / l[2], l[3] / l[4], l[5] / l[6], l[7] / l[8], l[9] / l[10]]: blockPosIntMap := x -> x > 0 and type(x, integer): blockArgs := proc(L) if ormap(blockPosIntMap, L) then return true: fi: try if type(identify(GBCg(seq(L))), fraction) then return true: fi: catch: return true: end: return false: end: checkRes := proc(L) local res: res := deltSeqG(seq(L), 50): if res = FAIL then FAIL else res[-1]: fi: end: hopefulSearchGen(tuples, generateArgs, blockArgs, checkRes, eps=eps, report=report, tuple_size=n_tuples): end: #CleanUp1(L): Given a list L like in Hopefuls2() kicks out trivial duplicates. Try: #CleanUp1(Hopefuls2()): CleanUp1:=proc(L) local lu,i,L1,mu, mu1: lu:={}: L1:=[]: for i from 1 to nops(L) do mu:=L[i][1]: mu1:=[mu[3],mu[4],mu[1],mu[2]]: if not member(mu1,lu) then L1:=[op(L1),L[i]]: lu:=lu union {mu,mu1}: fi: od: L1: end: #NorOp(ope,n,N): normalizes the operator ope NorOp:=proc(ope,N) local i,ope1: ope1:=ope/coeff(ope,N,degree(ope,N)): add(factor(coeff(ope1,N,i))*N^i,i=0..degree(ope1,N)): end: # Second-order recurrence for the generalized Beukers-Zeta2 integral Int(Int( # (x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2))/(1-x*y)^(c+1)*(x*(1-x)*y*(1-y)/(1-x*y))^n, # x=0..1), y=0..1). # OPEZ2g:= proc(a1,a2,b1,b2,c,n,N) local ope: ope:=(-2+a1+a2-b1-n)*(-2+a1+a2+c-n)*(-2+b1+b2+c-n\ )*(2+a1-b1-b2+n)*(2+c+n)*(-5+3*a1+6*a2-2*a1*a2-2*a2^2+3*b1-2*a1*b1-3*a2*b1+a1*a2\ *b1+a2^2*b1+6*b2-3*a1*b2-5*a2*b2+a1*a2*b2+a2^2*b2-2*b1*b2+a1*b1*b2+a2*b1*b2-2*b2\ ^2+a1*b2^2+a2*b2^2+3*c-a1*c-2*a2*c-b1*c+a2*b1*c-2*b2*c+a1*b2*c+a2*b2*c-15*n+6*a1\ *n+12*a2*n-2*a1*a2*n-2*a2^2*n+6*b1*n-2*a1*b1*n-3*a2*b1*n+12*b2*n-3*a1*b2*n-5*a2*\ b2*n-2*b1*b2*n-2*b2^2*n+6*c*n-a1*c*n-2*a2*c*n-b1*c*n-2*b2*c*n-15*n^2+3*a1*n^2+6*\ a2*n^2+3*b1*n^2+6*b2*n^2+3*c*n^2-5*n^3)*N^2+(1000-1164*a1+392*a1^2-36*a1^3-2328\ *a2+2212*a1*a2-600*a1^2*a2+44*a1^3*a2+2212*a2^2-1584*a1*a2^2+296*a1^2*a2^2-12*a1\ ^3*a2^2-1056*a2^3+504*a1*a2^3-48*a1^2*a2^3+252*a2^4-60*a1*a2^4-24*a2^5-1164*b1+1\ 428*a1*b1-492*a1^2*b1+44*a1^3*b1+2534*a2*b1-2529*a1*a2*b1+702*a1^2*a2*b1-51*a1^3\ *a2*b1-2337*a2^2*b1+1744*a1*a2^2*b1-330*a1^2*a2^2*b1+13*a1^3*a2^2*b1+1108*a2^3*b\ 1-546*a1*a2^3*b1+52*a1^2*a2^3*b1-267*a2^4*b1+65*a1*a2^4*b1+26*a2^5*b1+392*b1^2-4\ 92*a1*b1^2+164*a1^2*b1^2-12*a1^3*b1^2-792*a2*b1^2+800*a1*a2*b1^2-213*a1^2*a2*b1^\ 2+13*a1^3*a2*b1^2+724*a2^2*b1^2-540*a1*a2^2*b1^2+96*a1^2*a2^2*b1^2-3*a1^3*a2^2*b\ 1^2-351*a2^3*b1^2+171*a1*a2^3*b1^2-15*a1^2*a2^3*b1^2+88*a2^4*b1^2-21*a1*a2^4*b1^\ 2-9*a2^5*b1^2-36*b1^3+44*a1*b1^3-12*a1^2*b1^3+66*a2*b1^3-63*a1*a2*b1^3+13*a1^2*a\ 2*b1^3-63*a2^2*b1^3+44*a1*a2^2*b1^3-6*a1^2*a2^2*b1^3+33*a2^3*b1^3-15*a1*a2^3*b1^\ 3+a1^2*a2^3*b1^3-9*a2^4*b1^3+2*a1*a2^4*b1^3+a2^5*b1^3-2328*b2+2534*a1*b2-792*a1^\ 2*b2+66*a1^3*b2+4746*a2*b2-4113*a1*a2*b2+998*a1^2*a2*b2-63*a1^3*a2*b2-3921*a2^2*\ b2+2500*a1*a2^2*b2-402*a1^2*a2^2*b2+13*a1^3*a2^2*b2+1612*a2^3*b2-666*a1*a2^3*b2+\ 52*a1^2*a2^3*b2-327*a2^4*b2+65*a1*a2^4*b2+26*a2^5*b2+2212*b1*b2-2529*a1*b1*b2+80\ 0*a1^2*b1*b2-63*a1^3*b1*b2-4113*a2*b1*b2+3696*a1*a2*b1*b2-894*a1^2*a2*b1*b2+53*a\ 1^3*a2*b1*b2+3192*a2^2*b1*b2-2067*a1*a2^2*b1*b2+320*a1^2*a2^2*b1*b2-9*a1^3*a2^2*\ b1*b2-1248*a2^3*b1*b2+508*a1*a2^3*b1*b2-36*a1^2*a2^3*b1*b2+241*a2^4*b1*b2-45*a1*\ a2^4*b1*b2-18*a2^5*b1*b2-600*b1^2*b2+702*a1*b1^2*b2-213*a1^2*b1^2*b2+13*a1^3*b1^\ 2*b2+998*a2*b1^2*b2-894*a1*a2*b1^2*b2+200*a1^2*a2*b1^2*b2-9*a1^3*a2*b1^2*b2-729*\ a2^2*b1^2*b2+453*a1*a2^2*b1^2*b2-60*a1^2*a2^2*b1^2*b2+a1^3*a2^2*b1^2*b2+270*a2^3\ *b1^2*b2-99*a1*a2^3*b1^2*b2+5*a1^2*a2^3*b1^2*b2-48*a2^4*b1^2*b2+7*a1*a2^4*b1^2*b\ 2+3*a2^5*b1^2*b2+44*b1^3*b2-51*a1*b1^3*b2+13*a1^2*b1^3*b2-63*a2*b1^3*b2+53*a1*a2\ *b1^3*b2-9*a1^2*a2*b1^3*b2+44*a2^2*b1^3*b2-24*a1*a2^2*b1^3*b2+2*a1^2*a2^2*b1^3*b\ 2-15*a2^3*b1^3*b2+4*a1*a2^3*b1^3*b2+2*a2^4*b1^3*b2+2212*b2^2-2337*a1*b2^2+724*a1\ ^2*b2^2-63*a1^3*b2^2-3921*a2*b2^2+3192*a1*a2*b2^2-729*a1^2*a2*b2^2+44*a1^3*a2*b2\ ^2+2764*a2^2*b2^2-1599*a1*a2^2*b2^2+228*a1^2*a2^2*b2^2-6*a1^3*a2^2*b2^2-945*a2^3\ *b2^2+337*a1*a2^3*b2^2-21*a1^2*a2^3*b2^2+153*a2^4*b2^2-24*a1*a2^4*b2^2-9*a2^5*b2\ ^2-1584*b1*b2^2+1744*a1*b1*b2^2-540*a1^2*b1*b2^2+44*a1^3*b1*b2^2+2500*a2*b1*b2^2\ -2067*a1*a2*b1*b2^2+453*a1^2*a2*b1*b2^2-24*a1^3*a2*b1*b2^2-1599*a2^2*b1*b2^2+902\ *a1*a2^2*b1*b2^2-114*a1^2*a2^2*b1*b2^2+2*a1^3*a2^2*b1*b2^2+493*a2^3*b1*b2^2-159*\ a1*a2^3*b1*b2^2+7*a1^2*a2^3*b1*b2^2-69*a2^4*b1*b2^2+8*a1*a2^4*b1*b2^2+3*a2^5*b1*\ b2^2+296*b1^2*b2^2-330*a1*b1^2*b2^2+96*a1^2*b1^2*b2^2-6*a1^3*b1^2*b2^2-402*a2*b1\ ^2*b2^2+320*a1*a2*b1^2*b2^2-60*a1^2*a2*b1^2*b2^2+2*a1^3*a2*b1^2*b2^2+228*a2^2*b1\ ^2*b2^2-114*a1*a2^2*b1^2*b2^2+10*a1^2*a2^2*b1^2*b2^2-60*a2^3*b1^2*b2^2+14*a1*a2^\ 3*b1^2*b2^2+6*a2^4*b1^2*b2^2-12*b1^3*b2^2+13*a1*b1^3*b2^2-3*a1^2*b1^3*b2^2+13*a2\ *b1^3*b2^2-9*a1*a2*b1^3*b2^2+a1^2*a2*b1^3*b2^2-6*a2^2*b1^3*b2^2+2*a1*a2^2*b1^3*b\ 2^2+a2^3*b1^3*b2^2-1056*b2^3+1108*a1*b2^3-351*a1^2*b2^3+33*a1^3*b2^3+1612*a2*b2^\ 3-1248*a1*a2*b2^3+270*a1^2*a2*b2^3-15*a1^3*a2*b2^3-945*a2^2*b2^3+493*a1*a2^2*b2^\ 3-60*a1^2*a2^2*b2^3+a1^3*a2^2*b2^3+256*a2^3*b2^3-75*a1*a2^3*b2^3+3*a1^2*a2^3*b2^\ 3-30*a2^4*b2^3+3*a1*a2^4*b2^3+a2^5*b2^3+504*b1*b2^3-546*a1*b1*b2^3+171*a1^2*b1*b\ 2^3-15*a1^3*b1*b2^3-666*a2*b1*b2^3+508*a1*a2*b1*b2^3-99*a1^2*a2*b1*b2^3+4*a1^3*a\ 2*b1*b2^3+337*a2^2*b1*b2^3-159*a1*a2^2*b1*b2^3+14*a1^2*a2^2*b1*b2^3-75*a2^3*b1*b\ 2^3+16*a1*a2^3*b1*b2^3+6*a2^4*b1*b2^3-48*b1^2*b2^3+52*a1*b1^2*b2^3-15*a1^2*b1^2*\ b2^3+a1^3*b1^2*b2^3+52*a2*b1^2*b2^3-36*a1*a2*b1^2*b2^3+5*a1^2*a2*b1^2*b2^3-21*a2\ ^2*b1^2*b2^3+7*a1*a2^2*b1^2*b2^3+3*a2^3*b1^2*b2^3+252*b2^4-267*a1*b2^4+88*a1^2*b\ 2^4-9*a1^3*b2^4-327*a2*b2^4+241*a1*a2*b2^4-48*a1^2*a2*b2^4+2*a1^3*a2*b2^4+153*a2\ ^2*b2^4-69*a1*a2^2*b2^4+6*a1^2*a2^2*b2^4-30*a2^3*b2^4+6*a1*a2^3*b2^4+2*a2^4*b2^4\ -60*b1*b2^4+65*a1*b1*b2^4-21*a1^2*b1*b2^4+2*a1^3*b1*b2^4+65*a2*b1*b2^4-45*a1*a2*\ b1*b2^4+7*a1^2*a2*b1*b2^4-24*a2^2*b1*b2^4+8*a1*a2^2*b1*b2^4+3*a2^3*b1*b2^4-24*b2\ ^5+26*a1*b2^5-9*a1^2*b2^5+a1^3*b2^5+26*a2*b2^5-18*a1*a2*b2^5+3*a1^2*a2*b2^5-9*a2\ ^2*b2^5+3*a1*a2^2*b2^5+a2^3*b2^5-1164*c+1106*a1*c-300*a1^2*c+22*a1^3*c+2212*a2*c\ -1584*a1*a2*c+296*a1^2*a2*c-12*a1^3*a2*c-1584*a2^2*c+756*a1*a2^2*c-72*a1^2*a2^2*\ c+504*a2^3*c-120*a1*a2^3*c-60*a2^4*c+1106*b1*c-984*a1*b1*c+230*a1^2*b1*c-12*a1^3\ *b1*c-2145*a2*b1*c+1392*a1*a2*b1*c-192*a1^2*a2*b1*c-a1^3*a2*b1*c+1580*a2^2*b1*c-\ 651*a1*a2^2*b1*c+28*a1^2*a2^2*b1*c+3*a1^3*a2^2*b1*c-522*a2^3*b1*c+94*a1*a2^3*b1*\ c+6*a1^2*a2^3*b1*c+65*a2^4*b1*c+3*a1*a2^4*b1*c-300*b1^2*c+230*a1*b1^2*c-36*a1^2*\ b1^2*c+648*a2*b1^2*c-375*a1*a2*b1^2*c+31*a1^2*a2*b1^2*c+3*a1^3*a2*b1^2*c-513*a2^\ 2*b1^2*c+192*a1*a2^2*b1^2*c-3*a1^2*a2^2*b1^2*c-a1^3*a2^2*b1^2*c+181*a2^3*b1^2*c-\ 30*a1*a2^3*b1^2*c-2*a1^2*a2^3*b1^2*c-24*a2^4*b1^2*c-a1*a2^4*b1^2*c+22*b1^3*c-12*\ a1*b1^3*c-63*a2*b1^3*c+35*a1*a2*b1^3*c-3*a1^2*a2*b1^3*c+55*a2^2*b1^3*c-21*a1*a2^\ 2*b1^3*c+a1^2*a2^2*b1^3*c-21*a2^3*b1^3*c+4*a1*a2^3*b1^3*c+3*a2^4*b1^3*c+2212*b2*\ c-2145*a1*b2*c+648*a1^2*b2*c-63*a1^3*b2*c-3729*a2*b2*c+2688*a1*a2*b2*c-564*a1^2*\ a2*b2*c+35*a1^3*a2*b2*c+2336*a2^2*b2*c-1131*a1*a2^2*b2*c+136*a1^2*a2^2*b2*c-3*a1\ ^3*a2^2*b2*c-642*a2^3*b2*c+166*a1*a2^3*b2*c-6*a1^2*a2^3*b2*c+65*a2^4*b2*c-3*a1*a\ 2^4*b2*c-1584*b1*b2*c+1392*a1*b1*b2*c-375*a1^2*b1*b2*c+35*a1^3*b1*b2*c+2688*a2*b\ 1*b2*c-1680*a1*a2*b1*b2*c+276*a1^2*a2*b1*b2*c-12*a1^3*a2*b1*b2*c-1677*a2^2*b1*b2\ *c+661*a1*a2^2*b1*b2*c-51*a1^2*a2^2*b1*b2*c+456*a2^3*b1*b2*c-84*a1*a2^3*b1*b2*c-\ 45*a2^4*b1*b2*c+296*b1^2*b2*c-192*a1*b1^2*b2*c+31*a1^2*b1^2*b2*c-3*a1^3*b1^2*b2*\ c-564*a2*b1^2*b2*c+276*a1*a2*b1^2*b2*c-24*a1^2*a2*b1^2*b2*c+357*a2^2*b1^2*b2*c-1\ 08*a1*a2^2*b1^2*b2*c+4*a1^2*a2^2*b1^2*b2*c-93*a2^3*b1^2*b2*c+12*a1*a2^3*b1^2*b2*\ c+8*a2^4*b1^2*b2*c-12*b1^3*b2*c-a1*b1^3*b2*c+3*a1^2*b1^3*b2*c+35*a2*b1^3*b2*c-12\ *a1*a2*b1^3*b2*c-21*a2^2*b1^3*b2*c+4*a1*a2^2*b1^3*b2*c+4*a2^3*b1^3*b2*c-1584*b2^\ 2*c+1580*a1*b2^2*c-513*a1^2*b2^2*c+55*a1^3*b2^2*c+2336*a2*b2^2*c-1677*a1*a2*b2^2\ *c+357*a1^2*a2*b2^2*c-21*a1^3*a2*b2^2*c-1236*a2^2*b2^2*c+577*a1*a2^2*b2^2*c-66*a\ 1^2*a2^2*b2^2*c+a1^3*a2^2*b2^2*c+275*a2^3*b2^2*c-66*a1*a2^3*b2^2*c+2*a1^2*a2^3*b\ 2^2*c-21*a2^4*b2^2*c+a1*a2^4*b2^2*c+756*b1*b2^2*c-651*a1*b1*b2^2*c+192*a1^2*b1*b\ 2^2*c-21*a1^3*b1*b2^2*c-1131*a2*b1*b2^2*c+661*a1*a2*b1*b2^2*c-108*a1^2*a2*b1*b2^\ 2*c+4*a1^3*a2*b1*b2^2*c+577*a2^2*b1*b2^2*c-198*a1*a2^2*b1*b2^2*c+13*a1^2*a2^2*b1\ *b2^2*c-117*a2^3*b1*b2^2*c+16*a1*a2^3*b1*b2^2*c+7*a2^4*b1*b2^2*c-72*b1^2*b2^2*c+\ 28*a1*b1^2*b2^2*c-3*a1^2*b1^2*b2^2*c+a1^3*b1^2*b2^2*c+136*a2*b1^2*b2^2*c-51*a1*a\ 2*b1^2*b2^2*c+4*a1^2*a2*b1^2*b2^2*c-66*a2^2*b1^2*b2^2*c+13*a1*a2^2*b1^2*b2^2*c+1\ 0*a2^3*b1^2*b2^2*c+3*a1*b1^3*b2^2*c-a1^2*b1^3*b2^2*c-3*a2*b1^3*b2^2*c+a2^2*b1^3*\ b2^2*c+504*b2^3*c-522*a1*b2^3*c+181*a1^2*b2^3*c-21*a1^3*b2^3*c-642*a2*b2^3*c+456\ *a1*a2*b2^3*c-93*a1^2*a2*b2^3*c+4*a1^3*a2*b2^3*c+275*a2^2*b2^3*c-117*a1*a2^2*b2^\ 3*c+10*a1^2*a2^2*b2^3*c-45*a2^3*b2^3*c+8*a1*a2^3*b2^3*c+2*a2^4*b2^3*c-120*b1*b2^\ 3*c+94*a1*b1*b2^3*c-30*a1^2*b1*b2^3*c+4*a1^3*b1*b2^3*c+166*a2*b1*b2^3*c-84*a1*a2\ *b1*b2^3*c+12*a1^2*a2*b1*b2^3*c-66*a2^2*b1*b2^3*c+16*a1*a2^2*b1*b2^3*c+8*a2^3*b1\ *b2^3*c+6*a1*b1^2*b2^3*c-2*a1^2*b1^2*b2^3*c-6*a2*b1^2*b2^3*c+2*a2^2*b1^2*b2^3*c-\ 60*b2^4*c+65*a1*b2^4*c-24*a1^2*b2^4*c+3*a1^3*b2^4*c+65*a2*b2^4*c-45*a1*a2*b2^4*c\ +8*a1^2*a2*b2^4*c-21*a2^2*b2^4*c+7*a1*a2^2*b2^4*c+2*a2^3*b2^4*c+3*a1*b1*b2^4*c-a\ 1^2*b1*b2^4*c-3*a2*b1*b2^4*c+a2^2*b1*b2^4*c+392*c^2-300*a1*c^2+88*a1^2*c^2-12*a1\ ^3*c^2-600*a2*c^2+296*a1*a2*c^2-48*a1^2*a2*c^2+4*a1^3*a2*c^2+296*a2^2*c^2-72*a1*\ a2^2*c^2+4*a1^2*a2^2*c^2-48*a2^3*c^2-300*b1*c^2+120*a1*b1*c^2-12*a1^2*b1*c^2+4*a\ 1^3*b1*c^2+538*a2*b1*c^2-132*a1*a2*b1*c^2-8*a1^2*a2*b1*c^2-294*a2^2*b1*c^2+20*a1\ *a2^2*b1*c^2+6*a1^2*a2^2*b1*c^2+52*a2^3*b1*c^2+6*a1*a2^3*b1*c^2+88*b1^2*c^2-12*a\ 1*b1^2*c^2-8*a1^2*b1^2*c^2-186*a2*b1^2*c^2+32*a1*a2*b1^2*c^2+6*a1^2*a2*b1^2*c^2+\ 111*a2^2*b1^2*c^2-6*a1*a2^2*b1^2*c^2-2*a1^2*a2^2*b1^2*c^2-21*a2^3*b1^2*c^2-2*a1*\ a2^3*b1^2*c^2-12*b1^3*c^2+4*a1*b1^3*c^2+24*a2*b1^3*c^2-6*a1*a2*b1^3*c^2-15*a2^2*\ b1^3*c^2+2*a1*a2^2*b1^3*c^2+3*a2^3*b1^3*c^2-600*b2*c^2+538*a1*b2*c^2-186*a1^2*b2\ *c^2+24*a1^3*b2*c^2+834*a2*b2*c^2-504*a1*a2*b2*c^2+104*a1^2*a2*b2*c^2-6*a1^3*a2*\ b2*c^2-366*a2^2*b2*c^2+128*a1*a2^2*b2*c^2-12*a1^2*a2^2*b2*c^2+52*a2^3*b2*c^2-6*a\ 1*a2^3*b2*c^2+296*b1*b2*c^2-132*a1*b1*b2*c^2+32*a1^2*b1*b2*c^2-6*a1^3*b1*b2*c^2-\ 504*a2*b1*b2*c^2+162*a1*a2*b1*b2*c^2-15*a1^2*a2*b1*b2*c^2+242*a2^2*b1*b2*c^2-39*\ a1*a2^2*b1*b2*c^2-36*a2^3*b1*b2*c^2-48*b1^2*b2*c^2-8*a1*b1^2*b2*c^2+6*a1^2*b1^2*\ b2*c^2+104*a2*b1^2*b2*c^2-15*a1*a2*b1^2*b2*c^2-51*a2^2*b1^2*b2*c^2+5*a1*a2^2*b1^\ 2*b2*c^2+7*a2^3*b1^2*b2*c^2+4*b1^3*b2*c^2-6*a2*b1^3*b2*c^2+2*a2^2*b1^3*b2*c^2+29\ 6*b2^2*c^2-294*a1*b2^2*c^2+111*a1^2*b2^2*c^2-15*a1^3*b2^2*c^2-366*a2*b2^2*c^2+24\ 2*a1*a2*b2^2*c^2-51*a1^2*a2*b2^2*c^2+2*a1^3*a2*b2^2*c^2+135*a2^2*b2^2*c^2-51*a1*\ a2^2*b2^2*c^2+4*a1^2*a2^2*b2^2*c^2-15*a2^3*b2^2*c^2+2*a1*a2^3*b2^2*c^2-72*b1*b2^\ 2*c^2+20*a1*b1*b2^2*c^2-6*a1^2*b1*b2^2*c^2+2*a1^3*b1*b2^2*c^2+128*a2*b1*b2^2*c^2\ -39*a1*a2*b1*b2^2*c^2+5*a1^2*a2*b1*b2^2*c^2-51*a2^2*b1*b2^2*c^2+8*a1*a2^2*b1*b2^\ 2*c^2+5*a2^3*b1*b2^2*c^2+4*b1^2*b2^2*c^2+6*a1*b1^2*b2^2*c^2-2*a1^2*b1^2*b2^2*c^2\ -12*a2*b1^2*b2^2*c^2+4*a2^2*b1^2*b2^2*c^2-48*b2^3*c^2+52*a1*b2^3*c^2-21*a1^2*b2^\ 3*c^2+3*a1^3*b2^3*c^2+52*a2*b2^3*c^2-36*a1*a2*b2^3*c^2+7*a1^2*a2*b2^3*c^2-15*a2^\ 2*b2^3*c^2+5*a1*a2^2*b2^3*c^2+a2^3*b2^3*c^2+6*a1*b1*b2^3*c^2-2*a1^2*b1*b2^3*c^2-\ 6*a2*b1*b2^3*c^2+2*a2^2*b1*b2^3*c^2-36*c^3+22*a1*c^3-12*a1^2*c^3+2*a1^3*c^3+44*a\ 2*c^3-12*a1*a2*c^3+4*a1^2*a2*c^3-12*a2^2*c^3+22*b1*c^3+12*a1*b1*c^3-2*a1^2*b1*c^\ 3-39*a2*b1*c^3-9*a1*a2*b1*c^3+13*a2^2*b1*c^3+3*a1*a2^2*b1*c^3-12*b1^2*c^3-2*a1*b\ 1^2*c^3+18*a2*b1^2*c^3+3*a1*a2*b1^2*c^3-6*a2^2*b1^2*c^3-a1*a2^2*b1^2*c^3+2*b1^3*\ c^3-3*a2*b1^3*c^3+a2^2*b1^3*c^3+44*b2*c^3-39*a1*b2*c^3+18*a1^2*b2*c^3-3*a1^3*b2*\ c^3-51*a2*b2*c^3+27*a1*a2*b2*c^3-6*a1^2*a2*b2*c^3+13*a2^2*b2*c^3-3*a1*a2^2*b2*c^\ 3-12*b1*b2*c^3-9*a1*b1*b2*c^3+3*a1^2*b1*b2*c^3+27*a2*b1*b2*c^3-9*a2^2*b1*b2*c^3+\ 4*b1^2*b2*c^3-6*a2*b1^2*b2*c^3+2*a2^2*b1^2*b2*c^3-12*b2^2*c^3+13*a1*b2^2*c^3-6*a\ 1^2*b2^2*c^3+a1^3*b2^2*c^3+13*a2*b2^2*c^3-9*a1*a2*b2^2*c^3+2*a1^2*a2*b2^2*c^3-3*\ a2^2*b2^2*c^3+a1*a2^2*b2^2*c^3+3*a1*b1*b2^2*c^3-a1^2*b1*b2^2*c^3-3*a2*b1*b2^2*c^\ 3+a2^2*b1*b2^2*c^3+5820*n-5852*a1*n+1692*a1^2*n-132*a1^3*n-11704*a2*n+9426*a1*a2\ *n-2128*a1^2*a2*n+126*a1^3*a2*n+9426*a2^2*n-5592*a1*a2^2*n+840*a1^2*a2^2*n-26*a1\ ^3*a2^2*n-3728*a2^3*n+1428*a1*a2^3*n-104*a1^2*a2^3*n+714*a2^4*n-130*a1*a2^4*n-52\ *a2^5*n-5852*b1*n+6042*a1*b1*n-1732*a1^2*b1*n+126*a1^3*b1*n+10755*a2*b1*n-8796*a\ 1*a2*b1*n+1941*a1^2*a2*b1*n-106*a1^3*a2*b1*n-8128*a2^2*b1*n+4794*a1*a2^2*b1*n-67\ 9*a1^2*a2^2*b1*n+18*a1^3*a2^2*b1*n+3042*a2^3*b1*n-1120*a1*a2^3*b1*n+72*a1^2*a2^3\ *b1*n-547*a2^4*b1*n+90*a1*a2^4*b1*n+36*a2^5*b1*n+1692*b1^2*n-1732*a1*b1^2*n+462*\ a1^2*b1^2*n-26*a1^3*b1^2*n-2796*a2*b1^2*n+2214*a1*a2*b1^2*n-439*a1^2*a2*b1^2*n+1\ 8*a1^3*a2*b1^2*n+1998*a2^2*b1^2*n-1098*a1*a2^2*b1^2*n+129*a1^2*a2^2*b1^2*n-2*a1^\ 3*a2^2*b1^2*n-711*a2^3*b1^2*n+228*a1*a2^3*b1^2*n-10*a1^2*a2^3*b1^2*n+117*a2^4*b1\ ^2*n-14*a1*a2^4*b1^2*n-6*a2^5*b1^2*n-132*b1^3*n+126*a1*b1^3*n-26*a1^2*b1^3*n+189\ *a2*b1^3*n-132*a1*a2*b1^3*n+18*a1^2*a2*b1^3*n-132*a2^2*b1^3*n+60*a1*a2^2*b1^3*n-\ 4*a1^2*a2^2*b1^3*n+45*a2^3*b1^3*n-10*a1*a2^3*b1^3*n-6*a2^4*b1^3*n-11704*b2*n+107\ 55*a1*b2*n-2796*a1^2*b2*n+189*a1^3*b2*n+20181*a2*b2*n-14388*a1*a2*b2*n+2781*a1^2\ *a2*b2*n-132*a1^3*a2*b2*n-13720*a2^2*b2*n+6936*a1*a2^2*b2*n-835*a1^2*a2^2*b2*n+1\ 8*a1^3*a2^2*b2*n+4470*a2^3*b2*n-1380*a1*a2^3*b2*n+72*a1^2*a2^3*b2*n-677*a2^4*b2*\ n+90*a1*a2^4*b2*n+36*a2^5*b2*n+9426*b1*b2*n-8796*a1*b1*b2*n+2214*a1^2*b1*b2*n-13\ 2*a1^3*b1*b2*n-14388*a2*b1*b2*n+10164*a1*a2*b1*b2*n-1829*a1^2*a2*b1*b2*n+72*a1^3\ *a2*b1*b2*n+8790*a2^2*b1*b2*n-4213*a1*a2^2*b1*b2*n+432*a1^2*a2^2*b1*b2*n-6*a1^3*\ a2^2*b1*b2*n-2542*a2^3*b1*b2*n+684*a1*a2^3*b1*b2*n-24*a1^2*a2^3*b1*b2*n+324*a2^4\ *b1*b2*n-30*a1*a2^4*b1*b2*n-12*a2^5*b1*b2*n-2128*b1^2*b2*n+1941*a1*b1^2*b2*n-439\ *a1^2*b1^2*b2*n+18*a1^3*b1^2*b2*n+2781*a2*b1^2*b2*n-1829*a1*a2*b1^2*b2*n+270*a1^\ 2*a2*b1^2*b2*n-6*a1^3*a2*b1^2*b2*n-1494*a2^2*b1^2*b2*n+609*a1*a2^2*b1^2*b2*n-40*\ a1^2*a2^2*b1^2*b2*n+363*a2^3*b1^2*b2*n-66*a1*a2^3*b1^2*b2*n-32*a2^4*b1^2*b2*n+12\ 6*b1^3*b2*n-106*a1*b1^3*b2*n+18*a1^2*b1^3*b2*n-132*a2*b1^3*b2*n+72*a1*a2*b1^3*b2\ *n-6*a1^2*a2*b1^3*b2*n+60*a2^2*b1^3*b2*n-16*a1*a2^2*b1^3*b2*n-10*a2^3*b1^3*b2*n+\ 9426*b2^2*n-8128*a1*b2^2*n+1998*a1^2*b2^2*n-132*a1^3*b2^2*n-13720*a2*b2^2*n+8790\ *a1*a2*b2^2*n-1494*a1^2*a2*b2^2*n+60*a1^3*a2*b2^2*n+7632*a2^2*b2^2*n-3271*a1*a2^\ 2*b2^2*n+309*a1^2*a2^2*b2^2*n-4*a1^3*a2^2*b2^2*n-1935*a2^3*b2^2*n+456*a1*a2^3*b2\ ^2*n-14*a1^2*a2^3*b2^2*n+207*a2^4*b2^2*n-16*a1*a2^4*b2^2*n-6*a2^5*b2^2*n-5592*b1\ *b2^2*n+4794*a1*b1*b2^2*n-1098*a1^2*b1*b2^2*n+60*a1^3*b1*b2^2*n+6936*a2*b1*b2^2*\ n-4213*a1*a2*b1*b2^2*n+609*a1^2*a2*b1*b2^2*n-16*a1^3*a2*b1*b2^2*n-3271*a2^2*b1*b\ 2^2*n+1212*a1*a2^2*b1*b2^2*n-76*a1^2*a2^2*b1*b2^2*n+663*a2^3*b1*b2^2*n-106*a1*a2\ ^3*b1*b2^2*n-46*a2^4*b1*b2^2*n+840*b1^2*b2^2*n-679*a1*b1^2*b2^2*n+129*a1^2*b1^2*\ b2^2*n-4*a1^3*b1^2*b2^2*n-835*a2*b1^2*b2^2*n+432*a1*a2*b1^2*b2^2*n-40*a1^2*a2*b1\ ^2*b2^2*n+309*a2^2*b1^2*b2^2*n-76*a1*a2^2*b1^2*b2^2*n-40*a2^3*b1^2*b2^2*n-26*b1^\ 3*b2^2*n+18*a1*b1^3*b2^2*n-2*a1^2*b1^3*b2^2*n+18*a2*b1^3*b2^2*n-6*a1*a2*b1^3*b2^\ 2*n-4*a2^2*b1^3*b2^2*n-3728*b2^3*n+3042*a1*b2^3*n-711*a1^2*b2^3*n+45*a1^3*b2^3*n\ +4470*a2*b2^3*n-2542*a1*a2*b2^3*n+363*a1^2*a2*b2^3*n-10*a1^3*a2*b2^3*n-1935*a2^2\ *b2^3*n+663*a1*a2^2*b2^3*n-40*a1^2*a2^2*b2^3*n+345*a2^3*b2^3*n-50*a1*a2^3*b2^3*n\ -20*a2^4*b2^3*n+1428*b1*b2^3*n-1120*a1*b1*b2^3*n+228*a1^2*b1*b2^3*n-10*a1^3*b1*b\ 2^3*n-1380*a2*b1*b2^3*n+684*a1*a2*b1*b2^3*n-66*a1^2*a2*b1*b2^3*n+456*a2^2*b1*b2^\ 3*n-106*a1*a2^2*b1*b2^3*n-50*a2^3*b1*b2^3*n-104*b1^2*b2^3*n+72*a1*b1^2*b2^3*n-10\ *a1^2*b1^2*b2^3*n+72*a2*b1^2*b2^3*n-24*a1*a2*b1^2*b2^3*n-14*a2^2*b1^2*b2^3*n+714\ *b2^4*n-547*a1*b2^4*n+117*a1^2*b2^4*n-6*a1^3*b2^4*n-677*a2*b2^4*n+324*a1*a2*b2^4\ *n-32*a1^2*a2*b2^4*n+207*a2^2*b2^4*n-46*a1*a2^2*b2^4*n-20*a2^3*b2^4*n-130*b1*b2^\ 4*n+90*a1*b1*b2^4*n-14*a1^2*b1*b2^4*n+90*a2*b1*b2^4*n-30*a1*a2*b1*b2^4*n-16*a2^2\ *b1*b2^4*n-52*b2^5*n+36*a1*b2^5*n-6*a1^2*b2^5*n+36*a2*b2^5*n-12*a1*a2*b2^5*n-6*a\ 2^2*b2^5*n-5852*c*n+4713*a1*c*n-1064*a1^2*c*n+63*a1^3*c*n+9426*a2*c*n-5592*a1*a2\ *c*n+840*a1^2*a2*c*n-26*a1^3*a2*c*n-5592*a2^2*c*n+2142*a1*a2^2*c*n-156*a1^2*a2^2\ *c*n+1428*a2^3*c*n-260*a1*a2^3*c*n-130*a2^4*c*n+4713*b1*c*n-3464*a1*b1*c*n+651*a\ 1^2*b1*c*n-26*a1^3*b1*c*n-7460*a2*b1*c*n+3852*a1*a2*b1*c*n-407*a1^2*a2*b1*c*n+43\ 32*a2^2*b1*c*n-1343*a1*a2^2*b1*c*n+42*a1^2*a2^2*b1*c*n+2*a1^3*a2^2*b1*c*n-1068*a\ 2^3*b1*c*n+132*a1*a2^3*b1*c*n+4*a1^2*a2^3*b1*c*n+90*a2^4*b1*c*n+2*a1*a2^4*b1*c*n\ -1064*b1^2*c*n+651*a1*b1^2*c*n-78*a1^2*b1^2*c*n+1782*a2*b1^2*c*n-763*a1*a2*b1^2*\ c*n+42*a1^2*a2*b1^2*c*n+2*a1^3*a2*b1^2*c*n-1035*a2^2*b1^2*c*n+255*a1*a2^2*b1^2*c\ *n-2*a1^2*a2^2*b1^2*c*n+240*a2^3*b1^2*c*n-20*a1*a2^3*b1^2*c*n-16*a2^4*b1^2*c*n+6\ 3*b1^3*c*n-26*a1*b1^3*c*n-132*a2*b1^3*c*n+48*a1*a2*b1^3*c*n-2*a1^2*a2*b1^3*c*n+7\ 5*a2^2*b1^3*c*n-14*a1*a2^2*b1^3*c*n-14*a2^3*b1^3*c*n+9426*b2*c*n-7460*a1*b2*c*n+\ 1782*a1^2*b2*c*n-132*a1^3*b2*c*n-13052*a2*b2*c*n+7416*a1*a2*b2*c*n-1159*a1^2*a2*\ b2*c*n+48*a1^3*a2*b2*c*n+6474*a2^2*b2*c*n-2329*a1*a2^2*b2*c*n+186*a1^2*a2^2*b2*c\ *n-2*a1^3*a2^2*b2*c*n-1328*a2^3*b2*c*n+228*a1*a2^3*b2*c*n-4*a1^2*a2^3*b2*c*n+90*\ a2^4*b2*c*n-2*a1*a2^4*b2*c*n-5592*b1*b2*c*n+3852*a1*b1*b2*c*n-763*a1^2*b1*b2*c*n\ +48*a1^3*b1*b2*c*n+7416*a2*b1*b2*c*n-3424*a1*a2*b1*b2*c*n+372*a1^2*a2*b1*b2*c*n-\ 8*a1^3*a2*b1*b2*c*n-3413*a2^2*b1*b2*c*n+888*a1*a2^2*b1*b2*c*n-34*a1^2*a2^2*b1*b2\ *c*n+612*a2^3*b1*b2*c*n-56*a1*a2^3*b1*b2*c*n-30*a2^4*b1*b2*c*n+840*b1^2*b2*c*n-4\ 07*a1*b1^2*b2*c*n+42*a1^2*b1^2*b2*c*n-2*a1^3*b1^2*b2*c*n-1159*a2*b1^2*b2*c*n+372\ *a1*a2*b1^2*b2*c*n-16*a1^2*a2*b1^2*b2*c*n+480*a2^2*b1^2*b2*c*n-72*a1*a2^2*b1^2*b\ 2*c*n-62*a2^3*b1^2*b2*c*n-26*b1^3*b2*c*n+2*a1^2*b1^3*b2*c*n+48*a2*b1^3*b2*c*n-8*\ a1*a2*b1^3*b2*c*n-14*a2^2*b1^3*b2*c*n-5592*b2^2*c*n+4332*a1*b2^2*c*n-1035*a1^2*b\ 2^2*c*n+75*a1^3*b2^2*c*n+6474*a2*b2^2*c*n-3413*a1*a2*b2^2*c*n+480*a1^2*a2*b2^2*c\ *n-14*a1^3*a2*b2^2*c*n-2534*a2^2*b2^2*c*n+777*a1*a2^2*b2^2*c*n-44*a1^2*a2^2*b2^2\ *c*n+372*a2^3*b2^2*c*n-44*a1*a2^3*b2^2*c*n-14*a2^4*b2^2*c*n+2142*b1*b2^2*c*n-134\ 3*a1*b1*b2^2*c*n+255*a1^2*b1*b2^2*c*n-14*a1^3*b1*b2^2*c*n-2329*a2*b1*b2^2*c*n+88\ 8*a1*a2*b1*b2^2*c*n-72*a1^2*a2*b1*b2^2*c*n+777*a2^2*b1*b2^2*c*n-132*a1*a2^2*b1*b\ 2^2*c*n-78*a2^3*b1*b2^2*c*n-156*b1^2*b2^2*c*n+42*a1*b1^2*b2^2*c*n-2*a1^2*b1^2*b2\ ^2*c*n+186*a2*b1^2*b2^2*c*n-34*a1*a2*b1^2*b2^2*c*n-44*a2^2*b1^2*b2^2*c*n+2*a1*b1\ ^3*b2^2*c*n-2*a2*b1^3*b2^2*c*n+1428*b2^3*c*n-1068*a1*b2^3*c*n+240*a1^2*b2^3*c*n-\ 14*a1^3*b2^3*c*n-1328*a2*b2^3*c*n+612*a1*a2*b2^3*c*n-62*a1^2*a2*b2^3*c*n+372*a2^\ 2*b2^3*c*n-78*a1*a2^2*b2^3*c*n-30*a2^3*b2^3*c*n-260*b1*b2^3*c*n+132*a1*b1*b2^3*c\ *n-20*a1^2*b1*b2^3*c*n+228*a2*b1*b2^3*c*n-56*a1*a2*b1*b2^3*c*n-44*a2^2*b1*b2^3*c\ *n+4*a1*b1^2*b2^3*c*n-4*a2*b1^2*b2^3*c*n-130*b2^4*c*n+90*a1*b2^4*c*n-16*a1^2*b2^\ 4*c*n+90*a2*b2^4*c*n-30*a1*a2*b2^4*c*n-14*a2^2*b2^4*c*n+2*a1*b1*b2^4*c*n-2*a2*b1\ *b2^4*c*n+1692*c^2*n-1064*a1*c^2*n+246*a1^2*c^2*n-26*a1^3*c^2*n-2128*a2*c^2*n+84\ 0*a1*a2*c^2*n-104*a1^2*a2*c^2*n+6*a1^3*a2*c^2*n+840*a2^2*c^2*n-156*a1*a2^2*c^2*n\ +6*a1^2*a2^2*c^2*n-104*a2^3*c^2*n-1064*b1*c^2*n+348*a1*b1*c^2*n-26*a1^2*b1*c^2*n\ +6*a1^3*b1*c^2*n+1479*a2*b1*c^2*n-277*a1*a2*b1*c^2*n-9*a1^2*a2*b1*c^2*n-601*a2^2\ *b1*c^2*n+30*a1*a2^2*b1*c^2*n+4*a1^2*a2^2*b1*c^2*n+72*a2^3*b1*c^2*n+4*a1*a2^3*b1\ *c^2*n+246*b1^2*c^2*n-26*a1*b1^2*c^2*n-12*a1^2*b1^2*c^2*n-376*a2*b1^2*c^2*n+42*a\ 1*a2*b1^2*c^2*n+4*a1^2*a2*b1^2*c^2*n+147*a2^2*b1^2*c^2*n-4*a1*a2^2*b1^2*c^2*n-14\ *a2^3*b1^2*c^2*n-26*b1^3*c^2*n+6*a1*b1^3*c^2*n+33*a2*b1^3*c^2*n-4*a1*a2*b1^3*c^2\ *n-10*a2^2*b1^3*c^2*n-2128*b2*c^2*n+1479*a1*b2*c^2*n-376*a1^2*b2*c^2*n+33*a1^3*b\ 2*c^2*n+2319*a2*b2*c^2*n-1029*a1*a2*b2*c^2*n+141*a1^2*a2*b2*c^2*n-4*a1^3*a2*b2*c\ ^2*n-757*a2^2*b2*c^2*n+174*a1*a2^2*b2*c^2*n-8*a1^2*a2^2*b2*c^2*n+72*a2^3*b2*c^2*\ n-4*a1*a2^3*b2*c^2*n+840*b1*b2*c^2*n-277*a1*b1*b2*c^2*n+42*a1^2*b1*b2*c^2*n-4*a1\ ^3*b1*b2*c^2*n-1029*a2*b1*b2*c^2*n+216*a1*a2*b1*b2*c^2*n-10*a1^2*a2*b1*b2*c^2*n+\ 324*a2^2*b1*b2*c^2*n-26*a1*a2^2*b1*b2*c^2*n-24*a2^3*b1*b2*c^2*n-104*b1^2*b2*c^2*\ n-9*a1*b1^2*b2*c^2*n+4*a1^2*b1^2*b2*c^2*n+141*a2*b1^2*b2*c^2*n-10*a1*a2*b1^2*b2*\ c^2*n-34*a2^2*b1^2*b2*c^2*n+6*b1^3*b2*c^2*n-4*a2*b1^3*b2*c^2*n+840*b2^2*c^2*n-60\ 1*a1*b2^2*c^2*n+147*a1^2*b2^2*c^2*n-10*a1^3*b2^2*c^2*n-757*a2*b2^2*c^2*n+324*a1*\ a2*b2^2*c^2*n-34*a1^2*a2*b2^2*c^2*n+183*a2^2*b2^2*c^2*n-34*a1*a2^2*b2^2*c^2*n-10\ *a2^3*b2^2*c^2*n-156*b1*b2^2*c^2*n+30*a1*b1*b2^2*c^2*n-4*a1^2*b1*b2^2*c^2*n+174*\ a2*b1*b2^2*c^2*n-26*a1*a2*b1*b2^2*c^2*n-34*a2^2*b1*b2^2*c^2*n+6*b1^2*b2^2*c^2*n+\ 4*a1*b1^2*b2^2*c^2*n-8*a2*b1^2*b2^2*c^2*n-104*b2^3*c^2*n+72*a1*b2^3*c^2*n-14*a1^\ 2*b2^3*c^2*n+72*a2*b2^3*c^2*n-24*a1*a2*b2^3*c^2*n-10*a2^2*b2^3*c^2*n+4*a1*b1*b2^\ 3*c^2*n-4*a2*b1*b2^3*c^2*n-132*c^3*n+63*a1*c^3*n-26*a1^2*c^3*n+3*a1^3*c^3*n+126*\ a2*c^3*n-26*a1*a2*c^3*n+6*a1^2*a2*c^3*n-26*a2^2*c^3*n+63*b1*c^3*n+26*a1*b1*c^3*n\ -3*a1^2*b1*c^3*n-80*a2*b1*c^3*n-12*a1*a2*b1*c^3*n+18*a2^2*b1*c^3*n+2*a1*a2^2*b1*\ c^3*n-26*b1^2*c^3*n-3*a1*b1^2*c^3*n+24*a2*b1^2*c^3*n+2*a1*a2*b1^2*c^3*n-4*a2^2*b\ 1^2*c^3*n+3*b1^3*c^3*n-2*a2*b1^3*c^3*n+126*b2*c^3*n-80*a1*b2*c^3*n+24*a1^2*b2*c^\ 3*n-2*a1^3*b2*c^3*n-106*a2*b2*c^3*n+36*a1*a2*b2*c^3*n-4*a1^2*a2*b2*c^3*n+18*a2^2\ *b2*c^3*n-2*a1*a2^2*b2*c^3*n-26*b1*b2*c^3*n-12*a1*b1*b2*c^3*n+2*a1^2*b1*b2*c^3*n\ +36*a2*b1*b2*c^3*n-6*a2^2*b1*b2*c^3*n+6*b1^2*b2*c^3*n-4*a2*b1^2*b2*c^3*n-26*b2^2\ *c^3*n+18*a1*b2^2*c^3*n-4*a1^2*b2^2*c^3*n+18*a2*b2^2*c^3*n-6*a1*a2*b2^2*c^3*n-2*\ a2^2*b2^2*c^3*n+2*a1*b1*b2^2*c^3*n-2*a2*b1*b2^2*c^3*n+14630*n^2-12447*a1*n^2+299\ 4*a1^2*n^2-189*a1^3*n^2-24894*a2*n^2+16516*a1*a2*n^2-2970*a1^2*a2*n^2+132*a1^3*a\ 2*n^2+16516*a2^2*n^2-7776*a1*a2^2*n^2+874*a1^2*a2^2*n^2-18*a1^3*a2^2*n^2-5184*a2\ ^3*n^2+1484*a1*a2^3*n^2-72*a1^2*a2^3*n^2+742*a2^4*n^2-90*a1*a2^4*n^2-36*a2^5*n^2\ -12447*b1*n^2+10528*a1*b1*n^2-2403*a1^2*b1*n^2+132*a1^3*b1*n^2+18786*a2*b1*n^2-1\ 2105*a1*a2*b1*n^2+1988*a1^2*a2*b1*n^2-72*a1^3*a2*b1*n^2-11187*a2^2*b1*n^2+4892*a\ 1*a2^2*b1*n^2-459*a1^2*a2^2*b1*n^2+6*a1^3*a2^2*b1*n^2+3102*a2^3*b1*n^2-756*a1*a2\ ^3*b1*n^2+24*a1^2*a2^3*b1*n^2-369*a2^4*b1*n^2+30*a1*a2^4*b1*n^2+12*a2^5*b1*n^2+2\ 994*b1^2*n^2-2403*a1*b1^2*n^2+478*a1^2*b1^2*n^2-18*a1^3*b1^2*n^2-3888*a2*b1^2*n^\ 2+2268*a1*a2*b1^2*n^2-297*a1^2*a2*b1^2*n^2+6*a1^3*a2*b1^2*n^2+2043*a2^2*b1^2*n^2\ -738*a1*a2^2*b1^2*n^2+43*a1^2*a2^2*b1^2*n^2-477*a2^3*b1^2*n^2+76*a1*a2^3*b1^2*n^\ 2+39*a2^4*b1^2*n^2-189*b1^3*n^2+132*a1*b1^3*n^2-18*a1^2*b1^3*n^2+198*a2*b1^3*n^2\ -90*a1*a2*b1^3*n^2+6*a1^2*a2*b1^3*n^2-90*a2^2*b1^3*n^2+20*a1*a2^2*b1^3*n^2+15*a2\ ^3*b1^3*n^2-24894*b2*n^2+18786*a1*b2*n^2-3888*a1^2*b2*n^2+198*a1^3*b2*n^2+35302*\ a2*b2*n^2-19881*a1*a2*b2*n^2+2862*a1^2*a2*b2*n^2-90*a1^3*a2*b2*n^2-18963*a2^2*b2\ *n^2+7118*a1*a2^2*b2*n^2-567*a1^2*a2^2*b2*n^2+6*a1^3*a2^2*b2*n^2+4586*a2^3*b2*n^\ 2-936*a1*a2^3*b2*n^2+24*a1^2*a2^3*b2*n^2-459*a2^4*b2*n^2+30*a1*a2^4*b2*n^2+12*a2\ ^5*b2*n^2+16516*b1*b2*n^2-12105*a1*b1*b2*n^2+2268*a1^2*b1*b2*n^2-90*a1^3*b1*b2*n\ ^2-19881*a2*b1*b2*n^2+10372*a1*a2*b1*b2*n^2-1233*a1^2*a2*b1*b2*n^2+24*a1^3*a2*b1\ *b2*n^2+8978*a2^2*b1*b2*n^2-2835*a1*a2^2*b1*b2*n^2+144*a1^2*a2^2*b1*b2*n^2-1710*\ a2^3*b1*b2*n^2+228*a1*a2^3*b1*b2*n^2+108*a2^4*b1*b2*n^2-2970*b1^2*b2*n^2+1988*a1\ *b1^2*b2*n^2-297*a1^2*b1^2*b2*n^2+6*a1^3*b1^2*b2*n^2+2862*a2*b1^2*b2*n^2-1233*a1\ *a2*b1^2*b2*n^2+90*a1^2*a2*b1^2*b2*n^2-1008*a2^2*b1^2*b2*n^2+203*a1*a2^2*b1^2*b2\ *n^2+121*a2^3*b1^2*b2*n^2+132*b1^3*b2*n^2-72*a1*b1^3*b2*n^2+6*a1^2*b1^3*b2*n^2-9\ 0*a2*b1^3*b2*n^2+24*a1*a2*b1^3*b2*n^2+20*a2^2*b1^3*b2*n^2+16516*b2^2*n^2-11187*a\ 1*b2^2*n^2+2043*a1^2*b2^2*n^2-90*a1^3*b2^2*n^2-18963*a2*b2^2*n^2+8978*a1*a2*b2^2\ *n^2-1008*a1^2*a2*b2^2*n^2+20*a1^3*a2*b2^2*n^2+7809*a2^2*b2^2*n^2-2205*a1*a2^2*b\ 2^2*n^2+103*a1^2*a2^2*b2^2*n^2-1305*a2^3*b2^2*n^2+152*a1*a2^3*b2^2*n^2+69*a2^4*b\ 2^2*n^2-7776*b1*b2^2*n^2+4892*a1*b1*b2^2*n^2-738*a1^2*b1*b2^2*n^2+20*a1^3*b1*b2^\ 2*n^2+7118*a2*b1*b2^2*n^2-2835*a1*a2*b1*b2^2*n^2+203*a1^2*a2*b1*b2^2*n^2-2205*a2\ ^2*b1*b2^2*n^2+404*a1*a2^2*b1*b2^2*n^2+221*a2^3*b1*b2^2*n^2+874*b1^2*b2^2*n^2-45\ 9*a1*b1^2*b2^2*n^2+43*a1^2*b1^2*b2^2*n^2-567*a2*b1^2*b2^2*n^2+144*a1*a2*b1^2*b2^\ 2*n^2+103*a2^2*b1^2*b2^2*n^2-18*b1^3*b2^2*n^2+6*a1*b1^3*b2^2*n^2+6*a2*b1^3*b2^2*\ n^2-5184*b2^3*n^2+3102*a1*b2^3*n^2-477*a1^2*b2^3*n^2+15*a1^3*b2^3*n^2+4586*a2*b2\ ^3*n^2-1710*a1*a2*b2^3*n^2+121*a1^2*a2*b2^3*n^2-1305*a2^2*b2^3*n^2+221*a1*a2^2*b\ 2^3*n^2+115*a2^3*b2^3*n^2+1484*b1*b2^3*n^2-756*a1*b1*b2^3*n^2+76*a1^2*b1*b2^3*n^\ 2-936*a2*b1*b2^3*n^2+228*a1*a2*b1*b2^3*n^2+152*a2^2*b1*b2^3*n^2-72*b1^2*b2^3*n^2\ +24*a1*b1^2*b2^3*n^2+24*a2*b1^2*b2^3*n^2+742*b2^4*n^2-369*a1*b2^4*n^2+39*a1^2*b2\ ^4*n^2-459*a2*b2^4*n^2+108*a1*a2*b2^4*n^2+69*a2^2*b2^4*n^2-90*b1*b2^4*n^2+30*a1*\ b1*b2^4*n^2+30*a2*b1*b2^4*n^2-36*b2^5*n^2+12*a1*b2^5*n^2+12*a2*b2^5*n^2-12447*c*\ n^2+8258*a1*c*n^2-1485*a1^2*c*n^2+66*a1^3*c*n^2+16516*a2*c*n^2-7776*a1*a2*c*n^2+\ 874*a1^2*a2*c*n^2-18*a1^3*a2*c*n^2-7776*a2^2*c*n^2+2226*a1*a2^2*c*n^2-108*a1^2*a\ 2^2*c*n^2+1484*a2^3*c*n^2-180*a1*a2^3*c*n^2-90*a2^4*c*n^2+8258*b1*c*n^2-4806*a1*\ b1*c*n^2+676*a1^2*b1*c*n^2-18*a1^3*b1*c*n^2-10269*a2*b1*c*n^2+3948*a1*a2*b1*c*n^\ 2-279*a1^2*a2*b1*c*n^2+4414*a2^2*b1*c*n^2-909*a1*a2^2*b1*c*n^2+14*a1^2*a2^2*b1*c\ *n^2-720*a2^3*b1*c*n^2+44*a1*a2^3*b1*c*n^2+30*a2^4*b1*c*n^2-1485*b1^2*c*n^2+676*\ a1*b1^2*c*n^2-54*a1^2*b1^2*c*n^2+1818*a2*b1^2*c*n^2-513*a1*a2*b1^2*c*n^2+14*a1^2\ *a2*b1^2*c*n^2-693*a2^2*b1^2*c*n^2+85*a1*a2^2*b1^2*c*n^2+80*a2^3*b1^2*c*n^2+66*b\ 1^3*c*n^2-18*a1*b1^3*c*n^2-90*a2*b1^3*c*n^2+16*a1*a2*b1^3*c*n^2+25*a2^2*b1^3*c*n\ ^2+16516*b2*c*n^2-10269*a1*b2*c*n^2+1818*a1^2*b2*c*n^2-90*a1^3*b2*c*n^2-18045*a2\ *b2*c*n^2+7584*a1*a2*b2*c*n^2-783*a1^2*a2*b2*c*n^2+16*a1^3*a2*b2*c*n^2+6640*a2^2\ *b2*c*n^2-1575*a1*a2^2*b2*c*n^2+62*a1^2*a2^2*b2*c*n^2-900*a2^3*b2*c*n^2+76*a1*a2\ ^3*b2*c*n^2+30*a2^4*b2*c*n^2-7776*b1*b2*c*n^2+3948*a1*b1*b2*c*n^2-513*a1^2*b1*b2\ *c*n^2+16*a1^3*b1*b2*c*n^2+7584*a2*b1*b2*c*n^2-2304*a1*a2*b1*b2*c*n^2+124*a1^2*a\ 2*b1*b2*c*n^2-2295*a2^2*b1*b2*c*n^2+296*a1*a2^2*b1*b2*c*n^2+204*a2^3*b1*b2*c*n^2\ +874*b1^2*b2*c*n^2-279*a1*b1^2*b2*c*n^2+14*a1^2*b1^2*b2*c*n^2-783*a2*b1^2*b2*c*n\ ^2+124*a1*a2*b1^2*b2*c*n^2+160*a2^2*b1^2*b2*c*n^2-18*b1^3*b2*c*n^2+16*a2*b1^3*b2\ *c*n^2-7776*b2^2*c*n^2+4414*a1*b2^2*c*n^2-693*a1^2*b2^2*c*n^2+25*a1^3*b2^2*c*n^2\ +6640*a2*b2^2*c*n^2-2295*a1*a2*b2^2*c*n^2+160*a1^2*a2*b2^2*c*n^2-1710*a2^2*b2^2*\ c*n^2+259*a1*a2^2*b2^2*c*n^2+124*a2^3*b2^2*c*n^2+2226*b1*b2^2*c*n^2-909*a1*b1*b2\ ^2*c*n^2+85*a1^2*b1*b2^2*c*n^2-1575*a2*b1*b2^2*c*n^2+296*a1*a2*b1*b2^2*c*n^2+259\ *a2^2*b1*b2^2*c*n^2-108*b1^2*b2^2*c*n^2+14*a1*b1^2*b2^2*c*n^2+62*a2*b1^2*b2^2*c*\ n^2+1484*b2^3*c*n^2-720*a1*b2^3*c*n^2+80*a1^2*b2^3*c*n^2-900*a2*b2^3*c*n^2+204*a\ 1*a2*b2^3*c*n^2+124*a2^2*b2^3*c*n^2-180*b1*b2^3*c*n^2+44*a1*b1*b2^3*c*n^2+76*a2*\ b1*b2^3*c*n^2-90*b2^4*c*n^2+30*a1*b2^4*c*n^2+30*a2*b2^4*c*n^2+2994*c^2*n^2-1485*\ a1*c^2*n^2+253*a1^2*c^2*n^2-18*a1^3*c^2*n^2-2970*a2*c^2*n^2+874*a1*a2*c^2*n^2-72\ *a1^2*a2*c^2*n^2+2*a1^3*a2*c^2*n^2+874*a2^2*c^2*n^2-108*a1*a2^2*c^2*n^2+2*a1^2*a\ 2^2*c^2*n^2-72*a2^3*c^2*n^2-1485*b1*c^2*n^2+368*a1*b1*c^2*n^2-18*a1^2*b1*c^2*n^2\ +2*a1^3*b1*c^2*n^2+1510*a2*b1*c^2*n^2-189*a1*a2*b1*c^2*n^2-3*a1^2*a2*b1*c^2*n^2-\ 405*a2^2*b1*c^2*n^2+10*a1*a2^2*b1*c^2*n^2+24*a2^3*b1*c^2*n^2+253*b1^2*c^2*n^2-18\ *a1*b1^2*c^2*n^2-4*a1^2*b1^2*c^2*n^2-252*a2*b1^2*c^2*n^2+14*a1*a2*b1^2*c^2*n^2+4\ 9*a2^2*b1^2*c^2*n^2-18*b1^3*c^2*n^2+2*a1*b1^3*c^2*n^2+11*a2*b1^3*c^2*n^2-2970*b2\ *c^2*n^2+1510*a1*b2*c^2*n^2-252*a1^2*b2*c^2*n^2+11*a1^3*b2*c^2*n^2+2384*a2*b2*c^\ 2*n^2-693*a1*a2*b2*c^2*n^2+47*a1^2*a2*b2*c^2*n^2-513*a2^2*b2*c^2*n^2+58*a1*a2^2*\ b2*c^2*n^2+24*a2^3*b2*c^2*n^2+874*b1*b2*c^2*n^2-189*a1*b1*b2*c^2*n^2+14*a1^2*b1*\ b2*c^2*n^2-693*a2*b1*b2*c^2*n^2+72*a1*a2*b1*b2*c^2*n^2+108*a2^2*b1*b2*c^2*n^2-72\ *b1^2*b2*c^2*n^2-3*a1*b1^2*b2*c^2*n^2+47*a2*b1^2*b2*c^2*n^2+2*b1^3*b2*c^2*n^2+87\ 4*b2^2*c^2*n^2-405*a1*b2^2*c^2*n^2+49*a1^2*b2^2*c^2*n^2-513*a2*b2^2*c^2*n^2+108*\ a1*a2*b2^2*c^2*n^2+61*a2^2*b2^2*c^2*n^2-108*b1*b2^2*c^2*n^2+10*a1*b1*b2^2*c^2*n^\ 2+58*a2*b1*b2^2*c^2*n^2+2*b1^2*b2^2*c^2*n^2-72*b2^3*c^2*n^2+24*a1*b2^3*c^2*n^2+2\ 4*a2*b2^3*c^2*n^2-189*c^3*n^2+66*a1*c^3*n^2-18*a1^2*c^3*n^2+a1^3*c^3*n^2+132*a2*\ c^3*n^2-18*a1*a2*c^3*n^2+2*a1^2*a2*c^3*n^2-18*a2^2*c^3*n^2+66*b1*c^3*n^2+18*a1*b\ 1*c^3*n^2-a1^2*b1*c^3*n^2-54*a2*b1*c^3*n^2-4*a1*a2*b1*c^3*n^2+6*a2^2*b1*c^3*n^2-\ 18*b1^2*c^3*n^2-a1*b1^2*c^3*n^2+8*a2*b1^2*c^3*n^2+b1^3*c^3*n^2+132*b2*c^3*n^2-54\ *a1*b2*c^3*n^2+8*a1^2*b2*c^3*n^2-72*a2*b2*c^3*n^2+12*a1*a2*b2*c^3*n^2+6*a2^2*b2*\ c^3*n^2-18*b1*b2*c^3*n^2-4*a1*b1*b2*c^3*n^2+12*a2*b1*b2*c^3*n^2+2*b1^2*b2*c^3*n^\ 2-18*b2^2*c^3*n^2+6*a1*b2^2*c^3*n^2+6*a2*b2^2*c^3*n^2+20745*n^3-14520*a1*n^3+278\ 1*a1^2*n^3-132*a1^3*n^3-29040*a2*n^3+15234*a1*a2*n^3-2040*a1^2*a2*n^3+60*a1^3*a2\ *n^3+15234*a2^2*n^3-5328*a1*a2^2*n^3+396*a1^2*a2^2*n^3-4*a1^3*a2^2*n^3-3552*a2^3\ *n^3+672*a1*a2^3*n^3-16*a1^2*a2^3*n^3+336*a2^4*n^3-20*a1*a2^4*n^3-8*a2^5*n^3-145\ 20*b1*n^3+9672*a1*b1*n^3-1644*a1^2*b1*n^3+60*a1^3*b1*n^3+17289*a2*b1*n^3-8240*a1\ *a2*b1*n^3+894*a1^2*a2*b1*n^3-16*a1^3*a2*b1*n^3-7616*a2^2*b1*n^3+2196*a1*a2^2*b1\ *n^3-102*a1^2*a2^2*b1*n^3+1392*a2^3*b1*n^3-168*a1*a2^3*b1*n^3-82*a2^4*b1*n^3+278\ 1*b1^2*n^3-1644*a1*b1^2*n^3+216*a1^2*b1^2*n^3-4*a1^3*b1^2*n^3-2664*a2*b1^2*n^3+1\ 020*a1*a2*b1^2*n^3-66*a1^2*a2*b1^2*n^3+918*a2^2*b1^2*n^3-164*a1*a2^2*b1^2*n^3-10\ 6*a2^3*b1^2*n^3-132*b1^3*n^3+60*a1*b1^3*n^3-4*a1^2*b1^3*n^3+90*a2*b1^3*n^3-20*a1\ *a2*b1^3*n^3-20*a2^2*b1^3*n^3-29040*b2*n^3+17289*a1*b2*n^3-2664*a1^2*b2*n^3+90*a\ 1^3*b2*n^3+32523*a2*b2*n^3-13568*a1*a2*b2*n^3+1290*a1^2*a2*b2*n^3-20*a1^3*a2*b2*\ n^3-12944*a2^2*b2*n^3+3204*a1*a2^2*b2*n^3-126*a1^2*a2^2*b2*n^3+2064*a2^3*b2*n^3-\ 208*a1*a2^3*b2*n^3-102*a2^4*b2*n^3+15234*b1*b2*n^3-8240*a1*b1*b2*n^3+1020*a1^2*b\ 1*b2*n^3-20*a1^3*b1*b2*n^3-13568*a2*b1*b2*n^3+4656*a1*a2*b1*b2*n^3-274*a1^2*a2*b\ 1*b2*n^3+4032*a2^2*b1*b2*n^3-630*a1*a2^2*b1*b2*n^3-380*a2^3*b1*b2*n^3-2040*b1^2*\ b2*n^3+894*a1*b1^2*b2*n^3-66*a1^2*b1^2*b2*n^3+1290*a2*b1^2*b2*n^3-274*a1*a2*b1^2\ *b2*n^3-224*a2^2*b1^2*b2*n^3+60*b1^3*b2*n^3-16*a1*b1^3*b2*n^3-20*a2*b1^3*b2*n^3+\ 15234*b2^2*n^3-7616*a1*b2^2*n^3+918*a1^2*b2^2*n^3-20*a1^3*b2^2*n^3-12944*a2*b2^2\ *n^3+4032*a1*a2*b2^2*n^3-224*a1^2*a2*b2^2*n^3+3510*a2^2*b2^2*n^3-490*a1*a2^2*b2^\ 2*n^3-290*a2^3*b2^2*n^3-5328*b1*b2^2*n^3+2196*a1*b1*b2^2*n^3-164*a1^2*b1*b2^2*n^\ 3+3204*a2*b1*b2^2*n^3-630*a1*a2*b1*b2^2*n^3-490*a2^2*b1*b2^2*n^3+396*b1^2*b2^2*n\ ^3-102*a1*b1^2*b2^2*n^3-126*a2*b1^2*b2^2*n^3-4*b1^3*b2^2*n^3-3552*b2^3*n^3+1392*\ a1*b2^3*n^3-106*a1^2*b2^3*n^3+2064*a2*b2^3*n^3-380*a1*a2*b2^3*n^3-290*a2^2*b2^3*\ n^3+672*b1*b2^3*n^3-168*a1*b1*b2^3*n^3-208*a2*b1*b2^3*n^3-16*b1^2*b2^3*n^3+336*b\ 2^4*n^3-82*a1*b2^4*n^3-102*a2*b2^4*n^3-20*b1*b2^4*n^3-8*b2^5*n^3-14520*c*n^3+761\ 7*a1*c*n^3-1020*a1^2*c*n^3+30*a1^3*c*n^3+15234*a2*c*n^3-5328*a1*a2*c*n^3+396*a1^\ 2*a2*c*n^3-4*a1^3*a2*c*n^3-5328*a2^2*c*n^3+1008*a1*a2^2*c*n^3-24*a1^2*a2^2*c*n^3\ +672*a2^3*c*n^3-40*a1*a2^3*c*n^3-20*a2^4*c*n^3+7617*b1*c*n^3-3288*a1*b1*c*n^3+30\ 6*a1^2*b1*c*n^3-4*a1^3*b1*c*n^3-6992*a2*b1*c*n^3+1776*a1*a2*b1*c*n^3-62*a1^2*a2*\ b1*c*n^3+1980*a2^2*b1*c*n^3-202*a1*a2^2*b1*c*n^3-160*a2^3*b1*c*n^3-1020*b1^2*c*n\ ^3+306*a1*b1^2*c*n^3-12*a1^2*b1^2*c*n^3+816*a2*b1^2*c*n^3-114*a1*a2*b1^2*c*n^3-1\ 54*a2^2*b1^2*c*n^3+30*b1^3*c*n^3-4*a1*b1^3*c*n^3-20*a2*b1^3*c*n^3+15234*b2*c*n^3\ -6992*a1*b2*c*n^3+816*a1^2*b2*c*n^3-20*a1^3*b2*c*n^3-12320*a2*b2*c*n^3+3408*a1*a\ 2*b2*c*n^3-174*a1^2*a2*b2*c*n^3+2988*a2^2*b2*c*n^3-350*a1*a2^2*b2*c*n^3-200*a2^3\ *b2*c*n^3-5328*b1*b2*c*n^3+1776*a1*b1*b2*c*n^3-114*a1^2*b1*b2*c*n^3+3408*a2*b1*b\ 2*c*n^3-512*a1*a2*b1*b2*c*n^3-510*a2^2*b1*b2*c*n^3+396*b1^2*b2*c*n^3-62*a1*b1^2*\ b2*c*n^3-174*a2*b1^2*b2*c*n^3-4*b1^3*b2*c*n^3-5328*b2^2*c*n^3+1980*a1*b2^2*c*n^3\ -154*a1^2*b2^2*c*n^3+2988*a2*b2^2*c*n^3-510*a1*a2*b2^2*c*n^3-380*a2^2*b2^2*c*n^3\ +1008*b1*b2^2*c*n^3-202*a1*b1*b2^2*c*n^3-350*a2*b1*b2^2*c*n^3-24*b1^2*b2^2*c*n^3\ +672*b2^3*c*n^3-160*a1*b2^3*c*n^3-200*a2*b2^3*c*n^3-40*b1*b2^3*c*n^3-20*b2^4*c*n\ ^3+2781*c^2*n^3-1020*a1*c^2*n^3+114*a1^2*c^2*n^3-4*a1^3*c^2*n^3-2040*a2*c^2*n^3+\ 396*a1*a2*c^2*n^3-16*a1^2*a2*c^2*n^3+396*a2^2*c^2*n^3-24*a1*a2^2*c^2*n^3-16*a2^3\ *c^2*n^3-1020*b1*c^2*n^3+168*a1*b1*c^2*n^3-4*a1^2*b1*c^2*n^3+678*a2*b1*c^2*n^3-4\ 2*a1*a2*b1*c^2*n^3-90*a2^2*b1*c^2*n^3+114*b1^2*c^2*n^3-4*a1*b1^2*c^2*n^3-56*a2*b\ 1^2*c^2*n^3-4*b1^3*c^2*n^3-2040*b2*c^2*n^3+678*a1*b2*c^2*n^3-56*a1^2*b2*c^2*n^3+\ 1074*a2*b2*c^2*n^3-154*a1*a2*b2*c^2*n^3-114*a2^2*b2*c^2*n^3+396*b1*b2*c^2*n^3-42\ *a1*b1*b2*c^2*n^3-154*a2*b1*b2*c^2*n^3-16*b1^2*b2*c^2*n^3+396*b2^2*c^2*n^3-90*a1\ *b2^2*c^2*n^3-114*a2*b2^2*c^2*n^3-24*b1*b2^2*c^2*n^3-16*b2^3*c^2*n^3-132*c^3*n^3\ +30*a1*c^3*n^3-4*a1^2*c^3*n^3+60*a2*c^3*n^3-4*a1*a2*c^3*n^3-4*a2^2*c^3*n^3+30*b1\ *c^3*n^3+4*a1*b1*c^3*n^3-12*a2*b1*c^3*n^3-4*b1^2*c^3*n^3+60*b2*c^3*n^3-12*a1*b2*\ c^3*n^3-16*a2*b2*c^3*n^3-4*b1*b2*c^3*n^3-4*b2^2*c^3*n^3+18150*n^4-10035*a1*n^4+1\ 431*a1^2*n^4-45*a1^3*n^4-20070*a2*n^4+7804*a1*a2*n^4-690*a1^2*a2*n^4+10*a1^3*a2*\ n^4+7804*a2^2*n^4-1800*a1*a2^2*n^4+66*a1^2*a2^2*n^4-1200*a2^3*n^4+112*a1*a2^3*n^\ 4+56*a2^4*n^4-10035*b1*n^4+4942*a1*b1*n^4-555*a1^2*b1*n^4+10*a1^3*b1*n^4+8844*a2\ *b1*n^4-2775*a1*a2*b1*n^4+149*a1^2*a2*b1*n^4-2565*a2^2*b1*n^4+366*a1*a2^2*b1*n^4\ +232*a2^3*b1*n^4+1431*b1^2*n^4-555*a1*b1^2*n^4+36*a1^2*b1^2*n^4-900*a2*b1^2*n^4+\ 170*a1*a2*b1^2*n^4+153*a2^2*b1^2*n^4-45*b1^3*n^4+10*a1*b1^3*n^4+15*a2*b1^3*n^4-2\ 0070*b2*n^4+8844*a1*b2*n^4-900*a1^2*b2*n^4+15*a1^3*b2*n^4+16648*a2*b2*n^4-4575*a\ 1*a2*b2*n^4+215*a1^2*a2*b2*n^4-4365*a2^2*b2*n^4+534*a1*a2^2*b2*n^4+344*a2^3*b2*n\ ^4+7804*b1*b2*n^4-2775*a1*b1*b2*n^4+170*a1^2*b1*b2*n^4-4575*a2*b1*b2*n^4+776*a1*\ a2*b1*b2*n^4+672*a2^2*b1*b2*n^4-690*b1^2*b2*n^4+149*a1*b1^2*b2*n^4+215*a2*b1^2*b\ 2*n^4+10*b1^3*b2*n^4+7804*b2^2*n^4-2565*a1*b2^2*n^4+153*a1^2*b2^2*n^4-4365*a2*b2\ ^2*n^4+672*a1*a2*b2^2*n^4+585*a2^2*b2^2*n^4-1800*b1*b2^2*n^4+366*a1*b1*b2^2*n^4+\ 534*a2*b1*b2^2*n^4+66*b1^2*b2^2*n^4-1200*b2^3*n^4+232*a1*b2^3*n^4+344*a2*b2^3*n^\ 4+112*b1*b2^3*n^4+56*b2^4*n^4-10035*c*n^4+3902*a1*c*n^4-345*a1^2*c*n^4+5*a1^3*c*\ n^4+7804*a2*c*n^4-1800*a1*a2*c*n^4+66*a1^2*a2*c*n^4-1800*a2^2*c*n^4+168*a1*a2^2*\ c*n^4+112*a2^3*c*n^4+3902*b1*c*n^4-1110*a1*b1*c*n^4+51*a1^2*b1*c*n^4-2355*a2*b1*\ c*n^4+296*a1*a2*b1*c*n^4+330*a2^2*b1*c*n^4-345*b1^2*c*n^4+51*a1*b1^2*c*n^4+136*a\ 2*b1^2*c*n^4+5*b1^3*c*n^4+7804*b2*c*n^4-2355*a1*b2*c*n^4+136*a1^2*b2*c*n^4-4155*\ a2*b2*c*n^4+568*a1*a2*b2*c*n^4+498*a2^2*b2*c*n^4-1800*b1*b2*c*n^4+296*a1*b1*b2*c\ *n^4+568*a2*b1*b2*c*n^4+66*b1^2*b2*c*n^4-1800*b2^2*c*n^4+330*a1*b2^2*c*n^4+498*a\ 2*b2^2*c*n^4+168*b1*b2^2*c*n^4+112*b2^3*c*n^4+1431*c^2*n^4-345*a1*c^2*n^4+19*a1^\ 2*c^2*n^4-690*a2*c^2*n^4+66*a1*a2*c^2*n^4+66*a2^2*c^2*n^4-345*b1*c^2*n^4+28*a1*b\ 1*c^2*n^4+113*a2*b1*c^2*n^4+19*b1^2*c^2*n^4-690*b2*c^2*n^4+113*a1*b2*c^2*n^4+179\ *a2*b2*c^2*n^4+66*b1*b2*c^2*n^4+66*b2^2*c^2*n^4-45*c^3*n^4+5*a1*c^3*n^4+10*a2*c^\ 3*n^4+5*b1*c^3*n^4+10*b2*c^3*n^4+10035*n^5-4110*a1*n^5+387*a1^2*n^5-6*a1^3*n^5-8\ 220*a2*n^5+2106*a1*a2*n^5-92*a1^2*a2*n^5+2106*a2^2*n^5-240*a1*a2^2*n^5-160*a2^3*\ n^5-4110*b1*n^5+1332*a1*b1*n^5-74*a1^2*b1*n^5+2385*a2*b1*n^5-370*a1*a2*b1*n^5-34\ 2*a2^2*b1*n^5+387*b1^2*n^5-74*a1*b1^2*n^5-120*a2*b1^2*n^5-6*b1^3*n^5-8220*b2*n^5\ +2385*a1*b2*n^5-120*a1^2*b2*n^5+4491*a2*b2*n^5-610*a1*a2*b2*n^5-582*a2^2*b2*n^5+\ 2106*b1*b2*n^5-370*a1*b1*b2*n^5-610*a2*b1*b2*n^5-92*b1^2*b2*n^5+2106*b2^2*n^5-34\ 2*a1*b2^2*n^5-582*a2*b2^2*n^5-240*b1*b2^2*n^5-160*b2^3*n^5-4110*c*n^5+1053*a1*c*\ n^5-46*a1^2*c*n^5+2106*a2*c*n^5-240*a1*a2*c*n^5-240*a2^2*c*n^5+1053*b1*c*n^5-148\ *a1*b1*c*n^5-314*a2*b1*c*n^5-46*b1^2*c*n^5+2106*b2*c*n^5-314*a1*b2*c*n^5-554*a2*\ b2*c*n^5-240*b1*b2*c*n^5-240*b2^2*c*n^5+387*c^2*n^5-46*a1*c^2*n^5-92*a2*c^2*n^5-\ 46*b1*c^2*n^5-92*b2*c^2*n^5-6*c^3*n^5+3425*n^6-924*a1*n^6+43*a1^2*n^6-1848*a2*n^\ 6+234*a1*a2*n^6+234*a2^2*n^6-924*b1*n^6+148*a1*b1*n^6+265*a2*b1*n^6+43*b1^2*n^6-\ 1848*b2*n^6+265*a1*b2*n^6+499*a2*b2*n^6+234*b1*b2*n^6+234*b2^2*n^6-924*c*n^6+117\ *a1*c*n^6+234*a2*c*n^6+117*b1*c*n^6+234*b2*c*n^6+43*c^2*n^6+660*n^7-88*a1*n^7-17\ 6*a2*n^7-88*b1*n^7-176*b2*n^7-88*c*n^7+55*n^8)*N-((-1+a1-n)*(-1+a2-n)*(-1+b1-n)\ *(-1+b2-n)*(-1+a2+b2+c-n)*(-40+12*a1+24*a2-4*a1*a2-4*a2^2+12*b1-4*a1*b1-6*a2*b1+\ a1*a2*b1+a2^2*b1+24*b2-6*a1*b2-10*a2*b2+a1*a2*b2+a2^2*b2-4*b1*b2+a1*b1*b2+a2*b1*\ b2-4*b2^2+a1*b2^2+a2*b2^2+12*c-2*a1*c-4*a2*c-2*b1*c+a2*b1*c-4*b2*c+a1*b2*c+a2*b2\ *c-60*n+12*a1*n+24*a2*n-2*a1*a2*n-2*a2^2*n+12*b1*n-2*a1*b1*n-3*a2*b1*n+24*b2*n-3\ *a1*b2*n-5*a2*b2*n-2*b1*b2*n-2*b2^2*n+12*c*n-a1*c*n-2*a2*c*n-b1*c*n-2*b2*c*n-30*\ n^2+3*a1*n^2+6*a2*n^2+3*b1*n^2+6*b2*n^2+3*c*n^2-5*n^3)): NorOp(ope,N): end proc: ###START GENERAL THEOREM #TheoremZ2g(a1,a2,b1,b2,e,K): Inputs rational numbers a1,a2,b1,b2,c, and a large positive integer K and outputs #a theorem regarding the constant IntGBg(a1,a2,b1,b2,e,0) (q.v.)`): #Either a suggested proof of irrationality or a way to compute it exponentially fast. #Try: #TheoremZ2g(0,0,0,0,0,2000): TheoremZ2g:=proc(a1,a2,b1,b2,e,K) local n,N,gu,x,y,ope,lu,X,A,B,beta,F,c,E,A1,B1,delta,d1,ka: beta:=BC(): gu:=CnDnG(a1,a2,b1,b2,e,K): lu:=AnBnG(a1,a2,b1,b2,e,K): ka:=GBCg(a1,a2,b1,b2,e): ope:=OPEZ2g(a1,a2,b1,b2,e,n,N): print(``): print(`-------------------------------------------------------------------------------`): print(``): if min(op(gu[3]))<0 then print(`Very fast Computation of rational approximations to the constant `): print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(e+1),x=0..1),y=0..1)): print(`divided by `): print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^e,x=0..1),y=0..1)): print(``): print(`By Shalosh B. Ekhad `): print(``): print(`Theorem: , let A(n), B(n), be two sequences of rational numbers that satisfy the second-order recurrence`): print(``): print( add(coeff(ope,N,i)*X(n+i),i=0..degree(ope,N)) =0): print(``): print(`Subject to the initial conditions`): print(``): print(A(0)=lu[1][1],A(1)=lu[1][2]): print(``): print(B(0)=lu[2][1],B(1)=lu[2][2]): print(``): print(`Then`, A(n)/B(n), `approximates the constant`): print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(e+1),x=0..1),y=0..1)): print(`divided by `): print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^e,x=0..1),y=0..1)): print(``): print(`with an error that is OMEGA of`, (1/BC()^2)^n, ` that in floating point is`, evalf((1/BC()^2)^n) ): print(``): if identify(ka)<>ka then print(`Comment: Note that this constant appears to be `, identify(ka) ): print(`Prove it!`): fi: print(`According to Maple, this constant equals `): print(``): print(IntGBg(a1,a2,b1,b2,e,0)): print(``): print(`and in Maple format `): print(``): lprint(IntGBg(a1,a2,b1,b2,e,0)): print(``): print(`Comment: while this sequence does not lead to an irrationality proof, for the record, the delta, happens to be roughly`): print(``): print(min(op(gu[3]))): print(``): print(`Proof, consider the Beukers type-integral `): print(F(n)=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(e+1)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)): print(`normalized by dividing by the following constant, (independent of n) `): print(Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^e,x=0..1),y=0..1)): print(``): print(`Then `, F(0)=B(0)*c-A(0), F(1)=c*B(1)-A(1) ): print(``): print(`and F(n) also satisfies the above recurrence, thanks to the amazing multivariable Almkvist-Zeilberger algorithm `): print(``): print(`Hence`, F(n)=B(n)*c-A(n)): print(``): print(`By a simple bound of the integrand, F(n) is OMEGA of`, 1/beta^n, ` and by the Poincare lemma, B(n) (and for that matter, A(n)) are OMEGA of`, beta^n): print(``): print(`Dividing by B(n) gives that A(n)/B(n)-c is OMEGA of `, 1/beta^(2*n) , `QED. `): else print(`Sketch of an Irrationality Proof of the constant `): print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(e+1),x=0..1),y=0..1)): print(`divided by `): print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^e,x=0..1),y=0..1)): print(``): print(`By Shalosh B. Ekhad `): print(``): print(`Theorem: The constant of the title `): print(`is irrational, with an irrationality measure`, 1+ (log(beta)+nu)/(log(beta)-nu), `for a certain number nu `): print(`that is approximately `, max(op(gu[2])) , ` yielding an irrationality measure that is approximately `, evalf(1+1/min(op(gu[3])),10)): print(``): print(`We hope that the reader can find nu exactly. `): if identify(ka)<>ka then print(`Comment: Note that this constant appears to be `, identify(ka) ): print(`Prove it!`): fi: print(`According to Maple, this constant equals `): print(``): print(IntGBg(a1,a2,b1,b2,e,0)): print(``): print(`and in Maple format `): print(``): lprint(IntGBg(a1,a2,b1,b2,e,0)): print(``): print(`We need two lemmas `): print(``): print(`Lemma: , let A(n), B(n), be two sequences of rational numbers that satisfy the second-order recurrence`): print(``): print( add(coeff(ope,N,i)*X(n+i),i=0..degree(ope,N)) =0): print(``): print(`Subject to the initial conditions`): print(``): print(A(0)=lu[1][1],A(1)=lu[1][2]): print(``): print(B(0)=lu[2][1],B(1)=lu[2][2]): print(``): print(`Then`, A(n)/B(n), `approximates the constant of the title, c`): print(``): print(`with an error that is OMEGA of`, (1/BC()^2)^n, ` that in floating point is`, evalf((1/BC()^2)^n) ): print(``): print(`Proof, consider the Beukers type-integral `): print(F(n)=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(e+1)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)): print(`normalized by dividing by the following constant, (independent of n) `): print(Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^e,x=0..1),y=0..1)): print(``): print(`Then `, F(0)=B(0)*c-A(0), F(1)=c*B(1)-A(1) ): print(``): print(`and F(n) also satisfies the above recurrence, thanks to the amazing multivariable Almkvist-Zeilberger algorithm `): print(``): print(`Hence`, F(n)=B(n)*c-A(n)): print(``): print(`By a simple bound of the integrand, F(n) is OMEGA of`, 1/beta^n, ` and by the Poincare lemma, B(n) (and for that matter, A(n)) are OMEGA of`, beta^n): print(``): print(`Dividing by B(n) gives that A(n)/B(n)-c is OMEGA of `, 1/beta^(2*n) , `QED. `): print(``): print(`we now claim that the sequence of RATIONAL numbers A(n),B(n), can be multiplied by another sequence of rational numbers `): print(`E(n) such that both A(n)E(n) and B(n)E(n) are integers `): print(``): print(`Lemma: There exists a sequence of rational numbers, whose prime factorizations consists of small primes, that hopefully`): print(`can be described (and proved) explicity, that we leave to the expert reader such that `): print(` A1(n):=E(n)A(n), B1(n):=E(n)B(n) are BOTH integers`): print(``): print(`Furthermore there exists a contant, nu, that hopefully the learned reader can determine such that E(n) is OMEGA of `, exp(nu*n) ): print(``): print(`The empircal values of nu for E(n) from`, K+1-nops(gu[2]), `to `, K+1, `are `): print(``): print(gu[2]): print(``): print(`Multiplying F(n) by E(n) we get `): print(``): print( E(n)*F(n)=B1(n)*c-A1(n)): print(``): print(`and this implies that `): print(``): print(abs(c-A1(n)/B1(n)) <= CONSTANT/B1(n)^(1+delta)): print(``): print(` where `, delta= (log(beta)-nu)/(log(beta) + nu) ): print(``): print(`Using the above values of nu for E(n) from`, K+1-nops(gu[3]), `to `, K+1, `the estimated deltas are `): print(``): print(gu[3]): print(``): print(`As you can see, they are all positive `): print(``): print(`We leave it to the reader to fill-in the details.`): print(``): fi: end: #TheoremZ2gnum(a1,a2,b1,b2,e,K,num): Inputs rational numbers a1,a2,b1,b2,c, and a large positive integer K and outputs #a numbered theorem regarding the constant IntGBg(a1,a2,b1,b2,e,0) (q.v.)`): #Either a suggested proof of irrationality or a way to compute it exponentially fast. #Try: #TheoremZ2gnum(0,0,0,0,0,2000,num): TheoremZ2gnum:=proc(a1,a2,b1,b2,e,K,num) local n,N,gu,x,y,ope,lu,X,A,B,beta,F,c,E,A1,B1,delta,d1,ka: beta:=BC(): gu:=CnDnG(a1,a2,b1,b2,e,K): lu:=AnBnG(a1,a2,b1,b2,e,K): ka:=GBCg(a1,a2,b1,b2,e): ope:=OPEZ2g(a1,a2,b1,b2,e,n,N): if min(op(gu[3]))<0 then print(`Theorem Number`, num , `: let A(n), B(n), be two sequences of rational numbers that satisfy the second-order recurrence`): print(``): print( add(coeff(ope,N,i)*X(n+i),i=0..degree(ope,N)) =0): print(``): print(`Subject to the initial conditions`): print(``): print(A(0)=lu[1][1],A(1)=lu[1][2]): print(``): print(B(0)=lu[2][1],B(1)=lu[2][2]): print(``): print(`Then`, A(n)/B(n), `approximates the constant`): print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(e+1),x=0..1),y=0..1)): print(`divided by `): print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^e,x=0..1),y=0..1)): print(``): print(`with an error that is OMEGA of`, (1/BC()^2)^n, ` that in floating point is`, evalf((1/BC()^2)^n) ): print(``): if identify(ka)<>ka then print(`Comment: Note that this constant appears to be `, identify(ka) ): print(`Prove it!`): fi: print(`Proof, consider the Beukers type-integral `): print(F(n)=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(e+1)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)): print(`normalized by dividing by the following constant, (independent of n) `): print(Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^e,x=0..1),y=0..1)): print(``): print(`Then `, F(0)=B(0)*c-A(0), F(1)=c*B(1)-A(1) ): print(``): print(`and F(n) also satisfies the above recurrence, thanks to the amazing multivariable Almkvist-Zeilberger algorithm `): print(``): print(`Hence`, F(n)=B(n)*c-A(n)): print(``): print(`By a simple bound of the integrand, F(n) is OMEGA of`, 1/beta^n, ` and by the Poincare lemma, B(n) (and for that matter, A(n)) are OMEGA of`, beta^n): print(``): print(`Dividing by B(n) gives that A(n)/B(n)-c is OMEGA of `, 1/beta^(2*n) , `QED. `): else print(`Theorem number`, num, `: The following constant c. `): print(``): print( c=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(e+1),x=0..1),y=0..1) ): print(``): print(`divided by `): print( Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^e,x=0..1),y=0..1)): print(``): print(`is irrational, with an irrationality measure`, 1+ (log(beta)+nu)/(log(beta)-nu), `for a certain number nu `): print(`that is approximately `, max(op(gu[2])) , ` yielding an irrationality measure that is approximately `, evalf(1+1/min(op(gu[3])),10)): print(``): print(`We hope that the reader can find nu exactly.`): print(`We hope that the reader can find nu exactly. `): if identify(ka)<>ka then print(`Comment: Note that this constant appears to be `, identify(ka) ): print(`Prove it!`): fi: print(`We need two lemmas `): print(``): print(`Lemma: , let A(n), B(n), be two sequences of rational numbers that satisfy the second-order recurrence`): print(``): print( add(coeff(ope,N,i)*X(n+i),i=0..degree(ope,N)) =0): print(``): print(`Subject to the initial conditions`): print(``): print(A(0)=lu[1][1],A(1)=lu[1][2]): print(``): print(B(0)=lu[2][1],B(1)=lu[2][2]): print(``): print(`Then`, A(n)/B(n), `approximates the constant of the title, c`): print(``): print(`with an error that is OMEGA of`, (1/BC()^2)^n, ` that in floating point is`, evalf((1/BC()^2)^n) ): print(``): print(`Proof, consider the Beukers type-integral `): print(F(n)=Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^(e+1)*(x*(1-x)*y*(1-y)/(1-x*y))^n,x=0..1),y=0..1)): print(`normalized by dividing by the following constant, (independent of n) `): print(Int(Int(x^(-a1)*(1-x)^(-a2)*y^(-b1)*(1-y)^(-b2)/(1-x*y)^e,x=0..1),y=0..1)): print(``): print(`Then `, F(0)=B(0)*c-A(0), F(1)=c*B(1)-A(1) ): print(``): print(`and F(n) also satisfies the above recurrence, thanks to the amazing multivariable Almkvist-Zeilberger algorithm `): print(``): print(`Hence`, F(n)=B(n)*c-A(n)): print(``): print(`By a simple bound of the integrand, F(n) is OMEGA of`, 1/beta^n, ` and by the Poincare lemma, B(n) (and for that matter, A(n)) are OMEGA of`, beta^n): print(``): print(`Dividing by B(n) gives that A(n)/B(n)-c is OMEGA of `, 1/beta^(2*n) , `QED. `): print(``): print(`we now claim that the sequence of RATIONAL numbers A(n),B(n), can be multiplied by another sequence of rational numbers `): print(`E(n) such that both A(n)E(n) and B(n)E(n) are integers `): print(``): print(`Lemma: There exists a sequence of rational numbers, whose prime factorizations consists of small primes, that hopefully`): print(`can be described (and proved) explicity, that we leave to the expert reader such that `): print(` A1(n):=E(n)A(n), B1(n):=E(n)B(n) are BOTH integers`): print(``): print(`Furthermore there exists a contant, nu, that hopefully the learned reader can determine such that E(n) is OMEGA of `, exp(nu*n) ): print(``): print(`The empircal values of nu for E(n) from`, K+1-nops(gu[2]), `to `, K+1, `are `): print(``): print(gu[2]): print(``): print(`Multiplying F(n) by E(n) we get `): print(``): print( E(n)*F(n)=B1(n)*c-A1(n)): print(``): print(`and this implies that `): print(``): print(abs(c-A1(n)/B1(n)) <= CONSTANT/B1(n)^(1+delta)): print(``): print(` where `, delta= (log(beta)-nu)/(log(beta) + nu) ): print(``): print(`Using the above values of nu for E(n) from`, K+1-nops(gu[3]), `to `, K+1, `the estimated deltas are `): print(``): print(gu[3]): print(``): print(`As you can see, they are all positive `): print(``): print(`We leave it to the reader to fill-in the details.`): print(``): fi: end: #PaperZ2g(L,K): Given a list L of pentuples that are believed to be provably irrational and a large positive ineger K (around 2000 is OK) # outputs a paper with sketches #of proof. Try: #PaperZ2g([[0,0,0,0,0],[0,0,0,0,1/2]],2000): PaperZ2g:=proc(L,K) local i,t0: t0:=time(): print(``): print(`Sketches of proofs of the Irrationality of `, nops(L), `Constants given as certain double integrals`): print(``): print(`By Shalosh B. Ekhad `): print(``): for i from 1 to nops(L) do print(``): print(`------------------------------------------------------------`): print(``): TheoremZ2gnum(op(L[i]),K,i): print(``): od: print(``): print(`-----------------------------------------------`): print(``): print(`This ends this paper that took`, time()-t0, `seconds to generate `): print(``): end: #Search(N,K): All the 4-tuples [a,b,c,d]=[a1/N,a2/N,a3/N,a4/N] with the ai's beteen -(N-1) and N-1 such that #the deltas for AnBn(a,b,c,d,e) seems to be positive. Try #Search(2,100); Search:=proc(N,K) local ALD, i,mu,a1,a2,a3,a4,gu1,gu: ALD:={}: gu:=[]: for a1 from -(N-1) to N-1 do for a2 from -(N-1) to N-1 do for a3 from -(N-1) to N-1 do for a4 from -(N-1) to N-1 do gu1:=[a1/N,a2/N,a3/N,a4/N]: if not member(gu1,ALD) then if lcm(seq(denom(gu1[i]),i=1..nops(gu1)))=N then mu:=CnDn(op(gu1),K): if mu<>FAIL then if min(op(mu[3]))>0 then gu:=[op(gu), gu1]: ALD:=ALD union {gu1, [gu1[3],gu1[4],gu1[1],gu1[2]]}: fi: fi: fi: fi: od: od: od: od: gu: end: #MyIDs(C,F,F0,N): Given a constant C in decimals and another constant #let's call it F, whose floating-point if F0 # and a positive integer N #tries to express C as (a*F+b)/(c*F+d) for a,b,c,d from -N to N using PSLQ #MyIDs(evalf((log(2)-2)/(2*log(2)+3)),log(2),evalf(log(2)),100); MyIDs:=proc(C,F,F0,N) local gu,mu,i: gu:=IntegerRelations[PSLQ]([1,evalf(C),evalf(F0),evalf(C*F0)]): if max(seq(abs(gu[i]),i=1..4)) >N then RETURN(FAIL): fi: mu:=-(gu[1]+gu[3]*F)/(gu[2]+gu[4]*F): if abs(evalf(subs(F=F0,mu)-C))>1/10^(Digits-7) then RETURN(FAIL): fi: mu: end: #SortC(L,N,r): Given a list of 4-tuples, L, and a positive integer N, and a symbol r #divides them into classes such that GBC(op(L[i])) are related to #each other (conjecturally) by a fractional-linear transfomation with integers less than N in absolute value #The output is a list of lists such that the first entry is the main pentuple, followed by the symbol r[i], #its decimal approximation, followed by the tuples, and the expression in terms of r[i] #Try: #SortC(Hopefuls5()[2],10000,r); SortC:=proc(L,N,r) local i,S1,Rf,lu1,lu2,co,T,ka: S1:=convert(L,set): co:=0: while S1<>{} do co:=co+1: lu1:=S1[1]: Rf:=GBC(op(lu1)): T[co]:=[]: for lu2 in S1 do ka:=MyIDs(GBC(op(lu2)),r[co],Rf,N): if ka<>FAIL then T[co]:=[op(T[co]),[lu2,ka]]: S1:=S1 minus {lu2}: fi: od: od: [seq(T[i],i=1..co)]: end: ###START PRIMES PROCEDURES #PpG(a,b,n,m1,m2,C,M): Given rational numbers a and b between 0 and 1 and positive integers m1,m2 and n #and a subset C in {1,...M-1} and an integer M #it is the product of p between m1 and m2 such that frac{n/p} is between a and b #and p mod M is in C PpG:=proc(a,b,n,m1,m2,C,M) local p,gu: p:=2: gu:=1: p:=nextprime(m1): while p= a and frac(n/p)=sqrt(n) that show up with exponent i, followed by the list of primes that #did not show up at all. Try: #lu:=op(Hopefuls2()[3][1]): N:=CnDn(op(lu),2000)[1][2][-1],2000): PrimesF(N,2000,6); PrimesF:=proc(N,n,k) local gu,PR,KULAM,T,i,gadol,katan,j,p: gu:=ifactors(N)[2]: if nops(gu)=1 then RETURN(gu): fi: PR:={}: for i from 1 to k do T[i]:=[]: od: for j from 1 to nops(gu) do if gu[j][1]>=evalf(sqrt(n)) then T[gu[j][2]]:=[op(T[gu[j][2]]),gu[j][1]]: PR:=PR union {gu[j][1]}: fi: od: gadol:=max(op(PR)): katan:=min(op(PR)): KULAM:={}: p:=nextprime(katan): KULAM:={p}: while p<=gadol do p:=nextprime(p): KULAM:=KULAM union {p}: od: PR:=KULAM minus PR: [ [seq(T[i],i=1..k)],PR]: end: #Fs(S,n): Given a set S and a positive integer n finds sort([seq(evalf(frac(n/p),10),p in S)]); Fs:=proc(S,n) local p: sort([seq(evalf(frac(n/p),10),p in S)]); end: #Seg1(L,a,b): Given a list L and integers ab then RETURN(FAIL): fi: for i from 1 while L1[i]