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1. Find the unique x between 0 and 1019 such that

x ≡ 5 (mod 20) , x ≡ 5 (mod 51) .

Ans.: x =



2. (10 pts.) Prove that if you take any 3-digit positive integer written in decimal positional
notation (as usual!)

i2 i1 i0 , (1 ≤ i2 ≤ 9 , 0 ≤ i1 ≤ 9 , 0 ≤ i0 ≤ 9 ).

then the 6-digit decimal integer obtained by repeating it (for example, if you take 395 you
make 395395), namely

i2 i1 i0 i2 i1 i0 ,

is divisible by 7.



3. (10 pts.) State Wilson’s theorem, and verify it empirically for p = 17.



4. (10 pts.) Use the Fermat primality test to investigate whether 13 is prime or composite
by picking two random a’s between 2 and 12



5. (10 pts.) Compute φ(1010) . You can leave the answer in facored form. Explain!

Ans.: φ(1010) =



6. (10 pts.) Suppose Alice used RSA to send you the encrypted message c, using the
public key e that you gave her. Check that this is an OK message (coprime to n = pq).
Also check that the key is a valid key. If they are both OK, find her original message?, m.

p = 11 , q = 13 , e = 7 , c = 3 .

Ans.: m =



7. (10 pts.) Prove that for every positive integers n and k, the number of partitions of n
with exactly k parts equals the number of partitions of n with largest part k.



8. (10 pts.) State and prove Fermat’s Little Theorem.



KA 9. (10 pts.) What is µ(2002)? (µ(n) is the famous Möbius function).

Ans.: µ(2002) =



10. (10 pts.) Decide whether 121 is a quadratic residue modulo 1001. Explain.

Ans.: 121 is/ is not a quadratic residue mod 1001



11. (10 pts) Apply the famous Bressoud-Zeilberger map to the pair

λ = (7, 5, 3, 2, 2, 2, 1, 1, 1) , j = 2 .

Call the output (λ′, j′). Then apply it to the output, and show that you get (λ, j) back.

Ans.: λ′ = j′ =

Reminder: Let λ = (λ(1), . . . , λ(t)), where t is the number of parts. If t + 3j ≥ λ(1) then

λ′ = (t + 3j − 1, λ(1) − 1, . . . , λ(t) − 1) (erasing all zeros at the end, of course), and j′ = j − 1.
Otherwise λ′ = (λ(2) + 1, . . . , λ(t) + 1, 1λ(1)−3j−t−1), and j′ = j + 1.



12. (10 pts.) Apply Franklin’s bijection to the distinct partition λ = (15, 14, 13), if it is
applicable. If it is indeed applicable, call the output λ′, and apply Franklin’s bijection to
λ′ and show that you get λ back.

Ans.: λ′ =



13. (10 pts.) What is the day of the week on Jan. 27, 9025 . Explain!



14. (10 pts.) Convert 11
77 into a simple continued fraction.

Ans.: 11
77 =



15. (10 pts.) Evaluate the infinite continued fraction x = [5, 1, 1, 1, 1, , . . .] (i.e. x =
[5, (1)∞] that starts with 5 followed by 1 repeated an infinite number of times) as a
quadratic irrationality.

Ans.: x =



16. (10 pts.) In Planet Z there are 10 days in the week, and the year-length is always the
same (no leap years!), consisting of 100 days.
If today is 3-Day, what day of the week would it be (on planet Z) at the same date as
today, but exactly 1000 years later? Explain!

Ans.: It would be -Day .



17. (10 pts.) Using the Extended Euclidean algorithm (no credit for other methods!), find
out whether it is possible to express 1 as a linear combination

1 = m · 13 + n · 17 ,

for some integers m and n, and if it is possible, find m and n.

Ans.: m = n = .



18. (10 pts.) Express the integer 32 (written in our usual (base 10) notation) in base 3,
in (i) sparse notation (4 pts) (ii) dense notation (3 pts) (iii) base-seven positional notation
(3 pts)

Ans.: (i)

(ii)

(iii)



19. (10 pts.) Let Tn be the Tribonacci numbers, defined by

T1 = 1 , T2 = 1 , T3 = 1 ,

and for n ≥ 4,
Tn = Tn−1 + Tn−2 + Tn−3 .

Give a Zeilberger-style proof of the following identity,

Tn+2 = 4Tn−1 + 3Tn−2 + 2Tn−3 .

by checking it empirically for n = 4, 5, 6, 7 .



20. (10 pts.) Use the Fundamental Theorem of Discrete Calculus to prove the identity

n∑
i=1

i3 =

(
n(n+ 1)

2

)2

.


