NAME: (print!) Hristo MOLNAR						
E-Mail address:						
MATH 356, Dr. Z., Make Up Final Exam, Mon., Jan. 27, 2025, 3:00-6:00pm Hill 704						
Do not write below this line (office use only)						
 1.	(out of 10)					
2.	(out of 10)					
3.	(out of 10)					
4.	(out of 10)					
5.	(out of 10)					
6.	(out of 10)					
7.	(out of 10)					
8.	(out of 10)					
9.	(out of 10)					
10.	(out of 10)					
11.	(out of 10)					
12.	(out of 10)					
13.	(out of 10)					
14.	(out of 10)					
15.	(out of 10)					
16.	(out of 10)					
17.	(out of 10)					
18.	(out of 10)					
19.	(out of 10)					
20.	(out of 10)					

tot.: (out of 200)

1. Find the unique x between 0 and 1019 such the
--

$$x \equiv 5 \pmod{20}$$
 , $x \equiv 5 \pmod{51}$.

Ans.: x =

2. (10 pts.) Prove that if you take any 3-digit positive integer written in decimal positional notation (as usual!)

$$i_2 i_1 i_0$$
 , $(1 \le i_2 \le 9$, $0 \le i_1 \le 9$, $0 \le i_0 \le 9$).

then the 6-digit decimal integer obtained by repeating it (for example, if you take 395 you make 395395), namely

$$i_2 i_1 i_0 i_2 i_1 i_0$$
 ,

is divisible by 7.

3. (10 pts.) State Wilson's theorem, and verify it empirically for p=17.

4. (10 pts.) Use the Fermat primality test to investigate whether 13 is prime or composite by picking two random <i>a</i> 's between 2 and 12

5. (10 pts.) Compute $\phi(10^{10})$. You can leave the answer in facored form. Explain!

Ans.: $\phi(10^{10}) =$

6. (10 pts.) Suppose Alice used RSA to send you the encrypted message c, using the public key e that you gave her. Check that this is an OK message (coprime to n = pq). Also check that the key is a valid key. If they are both OK, find her original message?, m.

$$p=11 \quad , \quad q=13 \quad , \quad e=7 \quad , \quad c=3 \quad .$$

Ans.: m =

7. (10 pts.) Prove that for every positive integers n and k , the number of partitions of n with exactly k parts equals the number of partitions of n with largest part k .					

8. (10 pts.) State and prove Fermat's Little Theorem.

KA 9 .	(10 pts.)	What is $\mu(2002)$?	$(\mu(n))$ is the	famous	${\rm M\ddot{o}bius}$	function).

Ans.: $\mu(2002) =$

 ${f 10}.~(10~{
m pts.})$ Decide whether 121 is a quadratic residue modulo 1001. Explain.

Ans.: 121 is/ is not a quadratic residue mod 1001

11. (10 pts) Apply the famous Bressoud-Zeilberger map to the pair

$$\lambda = (7,5,3,2,2,2,1,1,1) \quad , \quad j=2 \quad .$$

Call the output (λ', j') . Then apply it to the output, and show that you get (λ, j) back.

Ans.: $\lambda' = j' = j'$

Reminder: Let $\lambda=(\lambda(1),\ldots,\lambda(t))$, where t is the number of parts. If $t+3j\geq \lambda(1)$ then $\lambda'=(t+3j-1,\lambda(1)-1,\ldots,\lambda(t)-1)$ (erasing all zeros at the end, of course), and j'=j-1. Otherwise $\lambda'=(\lambda(2)+1,\ldots,\lambda(t)+1,1^{\lambda(1)-3j-t-1})$, and j'=j+1.

12. (10 pts.) Apply Franklin's bijection to the distinct partition $\lambda = (15, 14, 13)$, if it is applicable. If it is indeed applicable, call the output λ' , and apply Franklin's bijection to λ' and show that you get λ back.

Ans.: $\lambda' =$

 ${\bf 13.}\ (10\ \mathrm{pts.})$ What is the day of the week on Jan. 27, 9025 . Explain!

14. (10 pts.) Convert $\frac{11}{77}$ into a simple continued fraction.

Ans.: $\frac{11}{77} =$

15. (10 pts.) Evaluate the infinite continued fraction $x = [5, 1, 1, 1, 1, 1, \ldots]$ (i.e. $x = [5, (1)^{\infty}]$ that starts with 5 followed by 1 repeated an infinite number of times) as a quadratic irrationality.

Ans.: x =

16. (10 pts.) In Planet Z there are 10 days in the week, and the year-length is always the same (no leap years!), consisting of 100 days.

If today is 3-Day, what day of the week would it be (on planet Z) at the same date as today, but exactly 1000 years later? Explain!

 $\mathbf{Ans.}$: It would be $\mathbf{-}$ Day.

17. (10 pts.) Using the Extended Euclidean algorithm (no credit for other methods!), find out whether it is possible to express 1 as a linear combination

$$1 = m \cdot 13 + n \cdot 17 \quad ,$$

for some integers m and n, and if it is possible, find m and n.

Ans.: m = n = ...

18. (10 pts.) Express the integer 32 (written in our usual (base 10) notation) in base 3, in (i) sparse notation (4 pts) (ii) dense notation (3 pts) (iii) base-seven positional notation (3 pts)
Ans. : (i)
Alls (1)
(ii)
(iii)

19. (10 pts.) Let T_n be the Tribonacci numbers, defined by

$$T_1 = 1$$
 , $T_2 = 1$, $T_3 = 1$,

and for $n \geq 4$,

$$T_n = T_{n-1} + T_{n-2} + T_{n-3} \quad .$$

Give a Zeilberger-style proof of the following identity,

$$T_{n+2} = 4T_{n-1} + 3T_{n-2} + 2T_{n-3}$$
.

by checking it empirically for n=4,5,6,7 .

20. (10 pts.) Use the Fundamental Theorem of Discrete Calculus to prove the identity

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2 \quad .$$