
Solutiosn to Quiz # 6 for Dr. Z.’s Number Theory

1. ( 5 points) Illustrate the proof of Wilson’s theorem for p = 19.

Sol. to 1: We have to “pair up” all the 16 integers in

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}

into pairs that multiply together to 1 modulo 19. Let’s find 2 a room-mate

[2−1]19 = 10 ,

So 2 · 10 ≡ 1 (mod 19) so {2, 10} are happy roomates. But this implies immediatedly that

{−2,−10}, alias {17, 9} are roomates too! We cross these four integers out, leaving the 12 integers

{3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16}

Let’s find 3 a room-mate

[3−1]19 = 13 ,

So 3 · 13 ≡ 1 (mod 19), so {3, 13} are happy roomates. But this implies immediatedly that

{−3,−13}, alias {16, 6} are also roomates! We cross them out, leaving the 8 integers

{4, 5, 7, 8, 11, 12, 14, 15}

Let’s find 4 a room-mate

[4−1]19 = 5 ,

So 4 · 5 ≡ 1 (mod 19), so {4, 5} are happy roomates. But this implies immediatedly that

{−4,−5}, alias {15, 14} are also roomates! We cross these four integers out, leaving the 4 integers

{7, 8, 11, 12}

Let’s find 7 a room-mate

[7−1]19 = 11 ,

So 7 · 11 ≡ 1 (mod 19), so {7, 11} are happy roomates. But this implies immediatedly that

{−7,−11}, alias {12, 8} are also roomates! And we are done with the room assignments! Of course

1(18) = −1 (mod 19). So using the commutativity of multiplication

18! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 · 16 · 17 · 18

= (1 · 18)(2 · 10)(17 · 9)(3 · 13)(16 · 6)(4 · 5)(15 · 14)(7 · 11)(12 · 8)

≡ (−1)(1)8 (mod 19) ≡ −1 (mod 19) .

2. (5 points) State (2 points) and prove (3 points) Fermat’s little theorem.



Sol. of 2(a): If p is prime and a is an integer then

ap ≡ a (mod p)

Sol. of 2(b): First proof:

Induction on a.

Base case: if a = 0 then of course it is true.

Inductive step: If it is true for a then it is true for a + 1.

By the binomial theorem

(a + 1)p = ap + pap−1 +
p(p− 1)

2
ap−2 + . . . + pap + 1 .

All the terms on the right side, except the first (i.e. ap) and the last (i.e. 1) are divisible by p,

hence

(a + 1)p ≡ ap + 1 (mod p) .

By the inductive hypothesis ap ≡ a (mod p), hence

(a + 1)p ≡ ap + 1 (mod p) ≡ a + 1 (mod p) .

qed.

Second proof: We prove that if 1 ≤ a ≤ p− 1 then ap−1 ≡ 1 (modp). The p− 1 numbers

a, 2a, . . . , (p− 1)a ,

are all distinct modulo p , since if ai ≡ aj (mod p) then a(i− j) is divisible by p, but this means

that i− j is divisible p by p is prime and i− j is between 1 and p− 2 so it can’t happen.

So the set of integers a, 2a, . . . , (p−1)a modulo p is a rearangement of the set of integers {1, . . . , p−1}
and since multiplication is commutative, the products are the same

(a)(2a) · · · , ((p− 1)a) = (1)(2) · · · (p− 1)

So

ap−1(p− 1)! = (p− 1)! (mod p) .

Since (p− 1)! is not 0 mod p, we can cancel it out and get ap−1 ≡ 1 (modp). qed,


