Dr. Z.'s Number Theory Lecture 1 Handout

By Doron Zeilberger

Natural Numbers

The most **natural** way to represent *natural numbers* is in *unary* notation

$$1 = 1$$
 , $2 = 11$, $3 = 111$, $4 = 1111$, ...

How to add two natural numbers?

To find a + b, simply write-down a (in unary!) followed by b (in unary!).

How to multiply two natural numbers?

The **definition** of the product P(a, b) is:

$$P(a,0) = 0$$
 , $P(a,b+1) = P(a,b) + a$.

To find $a \times b$, write a and b, given in unary, and then copy-and-paste a, each time deleting one dot from b, until there are no more dots in the b section.

Problem 1.1: Using *unary* (no credit for other methods!) Find

111 + 11111

Ans. to Problem 1.1: 11111111 .

Problem 1.2: Using unary (no credit for other methods!) Find

 $111\,\times\,1111$

Sol. to Problem 1.2:

Step 1: Write down

a = 111

b' = 1111

Step 2a: Since b' is not yet empty, write down a, and remove one 1 from b'

Ans = 111

b' = 111

Step 2b: Since b' is not yet empty, add a to Ans and remove one dot from b'

$$Ans = 111111$$

 $b' = 11$

Step 2c: Since b' is not yet empty, add a to Ans and remove one dot from b'

$$Ans = 1111111111$$

b' = 1

Step 2d: Since b' is not yet empty, add a to Ans and remove one dot from b'

b' =

Step 2e: Since b' is now empty, Ans' is the **final answer**.

Ans. to 1.2: 11111111111

von Neumann's representation of Natural Numbers in terms of sets

Some people believe that sets are more fundamental than (even natural!) numbers.

Here is how John von Neumann defines them

$$S(0) := \{\}$$

(the **empty set**)

$$S(1) = \{ \{ \} \} \quad ,$$

$$S(2) := \{ S(0), S(1) \} = \{ \{ \}, \{ \{ \} \} \}$$

and in general, if S(n) is the set representing n

$$S(n) := \{S(0), S(1), S(2), \dots, S(n-1)\}\$$

Note: The number of elements of S(n) is n

Problem 1.3: Write 4 in von-Neumann notation.

Ans. to 1.3:

$$\begin{split} 0 &:= \{\} \\ 1 &:= \{\{\}\} \quad , \\ 2 &:= \{\{\}, \{\{\}\}\} \quad , \\ 3 &:= \{\{\}, \{\{\}\}, \{\{\}\}, \{\{\}\}\}\} \\ 4 &:= \{\{\}, \{\{\}\}, \{\{\}\}, \{\{\}\}\}, \{\{\}\}, \{\{\}\}, \{\{\}\}\}\} \} \end{split}$$

Ans. to Problem 1.3: The natural number 4 is written, in von-Neumann notation, is

 $\{\{\},\{\{\}\},\{\{\}\}\},\{\{\}\},\{\{\}\},\{\{\}\},\{\{\}\}\}\}\}.$

Frege's (VERY ABSTRACT) definition of Natural Number

Two sets are *equivalent* if there is a **bijection** between them, i.e. one-to-one correspondence.

For example, if you have a club that only admits married couples, there is a bijection between the set of men and women called "wife of" and "husband of"

An equivalence class is the class of all sets that are equivalent to each other

Definition: A Natural number is an equivalence class of sets under the equivalence relation "being in bijection".

So the number 5 is, according to Frege, "the class of all sets with five elements".

For example, *three* is the class

 $\{\{a, b, c\}, The Three Stoogers, The Trinity, \{Yes, No, May Be\}, \ldots\}$.

Problem 1.4: List some natural members of Frege's class representing two

Sol. to Problem 1.4: There are, of course, infinitely many answers. Here are two

 $\{Male, Female\}, \{Odd, Even\}, \{Ying, Yang\}$.

Peano's Axioms

- 1. Zero is a number.
- 2. If a is a number, the successor of a is a number.
- 3. zero is not the successor of a number.

4. Two numbers of which the successors are equal are themselves equal.

5. (induction axiom.) If a set S of numbers contains zero and also the successor of every number in S, then every number is in S.