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An algorithm for de6nite hypergeometric summation is given. It is based, in a non-obvious 
way, on Gosper's algorithm for definite hypergeometric summation, and its theoretical 
justification relies on Bernstein's theory of holonomic systems. 

1. Introduction 

In Zeilberger (preprint) it was shown that Joseph N. Bernstein's theory of holonomic 
systems (Bernstein, 1971; Bjork, 1979) forms a natural framework for proving a very large 
class of special function identities. A very general, albeit slow, algorithm for proving any 
such identity was given. In Zeilberger (to appear) a much faster algorithm was given for 
the important special case of hypergeometric sums 

where the summand F(n,  k )  is hypergeometric in both n and k, (i.e. both F ( n +  
1, k)/F(n,  k) and F(n, k + 1)/  F(n, k) are rational functions of n and k.) 

In the present paper this fast algorithm is described in much more detail and several 
I 

applications to combinatorics, probability, computation, logic and orthogonal poly- 
1 

nomials are given. A listing of a MAPLE program implementing the algorithm is available 
from the author, and will appear elsewhere (Zeilberger, submitted). 

Suppose we are given a certain discrete function of two variables F(n, k), and it is 
I 

required to prove that the sequence a(n) ,  defined by 

I a(n):= F(n,  k), 
k 

I satisfies a certain homogeneous linear recurrence equation: 

s0(n)a(n) + s,(n)a(n + 1) +. . .+s,(n)a(n + L) = 0. (1) 
I b 

The method of creative telescoping proceeds by "cleverly constructing" another discrete 
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function G(n,  k) that satisfies 

so(n) F(n ,  k) + s l (n)  F ( n  + 1, k) + . . + s,(n) F ( n  + L, k) = G(n, k) - G(n, k + I) ,  (2) 

and then (1) follows upon summing (2) w.r.t. to k. 
The term "creative telescoping" was coined, as far as I know, by A. van der Poorten 

(1979) in his delightful account of Apery's proof of the irrationality of c(3). There it was 
required to show that 

satisfies the recurrence 

( n + 1 ) 3 a ( n + 1 ) - ( 3 4 n 3 + 5 1 n 2 + 2 7 n + 5 ) a ( n ) + n 3 a ( n - l ) = 0 ,  

where, 

For a general F(n,  k)  there is no reason to expect that a ( n )  := C k  F(n,  k), should satisfy 
any linear recurrence equation with "nice" coefficients. Furthermore when it does, there 
is no guarantee that such a miraculous G(n, k)  that satisfies (2) exists. However, if F(n ,  k)  
is holonomic (see below), then, as was proved in Zeilberger (preprint), a ( n )  always 
satisfies a linear recurrence equation of the form (I ) ,  where the coefficients si are 
polynomials in n. The general "slow" algorithm of Zeilberger yields the recurrence, and 
in principle it also enables one to find G(n, k). However, in the general holonomic case, 
since F(n ,  k)  is not "nice" (i.e. not hypergeometric), G(n, k) is not nice either, and it is 
very cumbersome to present G(n, k). On the other hand, if F(n ,  k) is "nice" so is G(n, k)!  
We will show later that if F(n ,  k) is hypergeometric, so is G(n, k), and the fast algorithm 
that we will describe inputs F(n,  k) and outputs the recurrence and its proof at the same 
time. The proof consist of presenting the "certificate" G(n, k) by which the readers (or 
their computers) proceed to verify the purely routine identity (2). 

2. The Theoretical Foundation 

It was proved in Zeilberger (preprint) that whenever F(n ,  k) is holonomic, (in particular 
if both F(n ,  -) and F(-, k) satisfy linear recurrences with polynomial coefficients that 
are "independent" in a certain technical sense) we are guaranteed that a ( n )  is holonomic 
in n, i.e. satisfies a homogeneous linear recurrence equation of the form (I) ,  with polynomial 
coefficients. Let us now recall this algorithm. 

Let N and K be the shift operators in n and k respectively: N(A(n,  k)) := A(n +- 1, k), 
K (A(n, k)) := A(n, k + 1), for any discrete function A(n, k). Of course N 'K 'A(~,  k) = 
A(n+i ,  k+ j ) .  Suppose you know that F(n,  k) is annihilated by two linear partial 
difference operators P (N,  K, n, k) and Q(N, K, n, k) with polynomial coefficients. 
(F(n ,  k) is annihilated by an operator R(N, K, n, k) if R(N, K, n, k)F(n, k ) = 0 ,  for 
example the Fibonacci sequence is annihilated by the operator N' - N - I.) It was shown 
in Zeilberger (preprint), following Bernstein (1971), that if {P, Q) generate a holonomic 
system (i.e. are "independent") there exist operators P,(N, K, n, k )  and Ql(N, K, n, k) 
and R(N,  K, n, k) such that 
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does not involve k and K. The algorithm given in Zeilberger did in fact produce an 
R(N,  K, n, k) that did not involve k, and thus gave us more than we needed, which partly 
explains why it was so slow. Now let 

G(n, k):= R(N,  K, n, k)F(n, k). 

By applying (3) on F(n, k)  we get 

S(N,  n)F(n,  k)  = ( K  - l )G(n,  k). ( 5 )  

It follows that 

i 
satisfies the linear recurrence equation with polynomial coefficients S(N,  n )a (n )  = 0. 
Indeed 

= 1 ( K  - l )G(n,  k) = 1 [G(n, k + 1) - G(n, k)] = 0. 
k k 

I 3. Gosper's Missed Opportunity 

In his celebrated essay, Freeman Dyson (1972) describes several historical missed 
opportunities that were caused by the reluctance of mathematicians and physicists to 
communicate. As an extreme case of a missed opportunity, from "his own trivial 
experience", Dyson narrates how he missed discovering the Macdonald-Weyl identities 
because "Dyson the amateur number theorist failed to talk to Dyson the physicist". (As 

I 
it turned out, the identities that Dyson discovered, generalizing Jacobi's triple product 
identity to more products, had their number of products equal to dimensions of simple 
Lie algebras. Dyson as a physicist was very familiar with Lie algebras, but he missed 
seeing the connection.) 

Something similar happened to Bill Gosper. Gosper was interested both in indefinite 
summation and definite summation, but apparently Gosper the "definite summer" failed 

/ to talk to Gosper the "indefinite summer", or else he would have discovered how to 

I extend his algorithm for indefinite hypergeometric summation to that of definite hyper- 
geometric summation. If the two Gospers would have talked to each other they (or rather 

1 he) would have reasoned as follows. 
In  Gosper (1978) (see also Lafron (1983) and Graham et al. (1989)), Gosper gives a 

I decision procedure that given a hypergeometric sequence a ( n )  (meaning that a ( n +  
I 

l ) / a ( n )  is a rational function), decides whether I:=, a ( i )  is also hypergeometric (up to 
an additive constant.) In other words Gosper's algorithm decides whether there exists a 

1 hypergeometric sequence A(n) such that 

and actually produces the A(n)  in the affirmative case. 
i 

On the other hand Gosper the definite summer had developed amazing heuristic 
techniques for discovering "strange" hypergeometric identities of the form 
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where both F(n, k) and R(n)  are of "closed form" (i.e. hypergeometric). For the most 
part he was unable to give rigorous proofs and labelled them by "TFAPP" (True For All 
Practical Purposes). Most of these identities were subsequently proved by Gessel & 
Stanton (1982) by a variety of interesting techniques, most notably Lagrange inversion. 

Superficially, nice definite sums have nothing whatsoever to do with nice indefinite 
sums. Indeed for most definite sums (6), for which R(n)  is "nice", the corresponding 
indefinite sum 

does not evaluate in closed form, and therefore if we try to apply Gosper's algorithm to 
F(n, k), w.r.t. the variable k, we would get that there is no closed form anit-difference. 
In fact, whenever (7) is indefinitely summable one may consider the implied definite 
identity (6) as "trivial". 

However Gosper could have proceeded as follows. For any conjectured identity (6), 
with R(n)  of closed form let 

where we know that p(n)  and q(n) are polynomials. Let L(n) be the left side of (6). We 
have to prove that L(n) = R(n),  and since it is easy to check that L(0) = R(0) we have 
to prove 

or equivalently that 

It is easy to see that if F(n, k) is hypergeometric in n and k so is p(n)  F(n, k)  - 
q(n)F(n + 1, k), so considering the latter as a function of k we can apply Gosper's 
algorithm to find a function G(n, k) such that 

p(n)F(n,  k)  - q(n)F(n + 1, k) = G(n, k +  1) - G(n, k). 

If such a function G(n, k) indeed exists, then the proof of (6) would follow by summing 
w.r.t. k. 

EXAMPLE. For Dixon's classical identity (Knuth, 1973, ex. 1.2.6.62), 

I 

Hence q(n)  = (n + I) ,  p(n)  = (n + b + c + I),  and the G(n, k) that does the job is ((k +- b) x 
(k + c)/2(n - k + 1)) F(n, k). 

It turns out that all Gosper's conjectured hypergeometric identities (and all those in 
Bailey (1935)) can be proved by the above method. Bat WHY? This will be explained I 

in the next section, where we continue where we left off at section 2, and where we show 
that a suitable modification of the above method is always guaranteed to work. The reason I 

it did not occur to Gosper to apply the above simple method is that a priori there is no 
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reason to believe that such a closed form G(n, k) exists. It occurred to me because it 
followed naturally from the general theory of Zeilberger (preprint). This is another 
example of the importance of a general theory. In addition to supplying formal proofs 
of validity for algorithms that seem to work, it, even more importantly, inspires and 
.suggests new algorithms. 

4. Why? 

Thanks to the general theory of Zeilberger (preprint), we got that for any holonomic 
F(n ,  k) wehave a function G(n,  k) that is given by (4), such that 

S (N,  n)F(n ,  k) = G(n, k +  1) - G(n, k). (3) 

Because of (4) it also follows that G(n, k) is holonomic as well. What happens if F(n,  k)  
is not only holonomic but in fact closed form? The crucial observation is 

LEMMA. If F(n,  k) is of closed form and R(N,  K, n, k) is any linear partial difference 
operator with polynomial coeficients, then G(n, k) := R(N,  K,  n, k)F(n,  k)  is also of closed 
form, and in fact is a multiple of F(n ,  k) by a certain rational function. 

PROOF. Since F ( n  + 1, k)/ F(n ,  k) and F(n,  k + l ) /  F(n,  k) are both rational functions in 
(n, k), it follows by induction that for any integers r and s, F ( n  + r, k + s ) /  F(n,  k) is also 
a rational function. But (R(N, K, n, k)F(n,  k) ) /F(n ,  k) is a linear combination of terms 
of the form p,,(n, k) F ( n  + r, k + s ) /  F(n,  k), where the p , ,  are polynomials. Since the sum 
of rational functions is again rational, it follows that indeed G(n, k)/ F(n,  k) is a rational 
function. Since any rational function is ipso facto of closed form, and the product of 
closed form functions is again closed form, it follows that G(n, k) is of closed form. 

Because of the above lemma, we now know that there exists a linear recurrence operator 
S (N,  n )  and a closed form G(n,  k) such that (2) is true. If we knew S ( N ,  n) beforehand 
then Gosper's algorithm, (w.r.t. k) can be used to find G(n, k). The problem is that many 
times we do not know S(N,  n )  beforehand. Now that we have the theoretical confidence 
that such an  S(N, n )  exists, we can try and conjecture it empirically, by trying a generic 
equation, plugging in values and solving the resulting equations. However, we do not 
need to d o  it! Gosper's algorithm can be extended to find S(N,  n) as described in the 

, next section. 

5. An Algorithm for Definite Hypergeometric Summation using Gosper's Algorithm 
for Indefinite Hypergeometric Summation 

Suppose you know, or expect, that S(N, n)  has order L. Write S(N,  n)  in generic form 
L 

S(N,  n) := C s , (n)Ni .  
i = O  

Now express S(N, n)F(n ,  k)  in terms of these generic s i (n)  and carry Gosper's algorithm 
(Gosper, 1978) w.r.t. k. The "ground field" is no longer the field of rational numbers, 

I but rather the field of rational functions in n. Now another miracle happens. All the s, 
occur linearly in the polynomial p ( k )  in Gosper's algorithm! In Gosper's algorithm, 
everything boils down to trying to find a polynomial f ( k )  such that ([8] in Gosper, 1978) 

I 
p(k):= q ( k + l ) f ( k )  - r (k ) f (k -  I ) ,  (8) 
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where p(k),  q(k),  and r (k)  are certain polynomials obtained from the input. Gosper then 
easily finds an upper bound for the degree of f(k) ,  obtained from the "input" polynomials 
p, q, r, writes f (k)  in generic form, substitutes in (8), compares coefficients of powers of 
k, gets a system of linear equations in the unknown coefficients of f(k) ,  and solves them. 
If he obtains a solution, then it means that indeed (8) can be solved, and from the f ( k )  
he gets the anti-difference. 

If we knew S(N, n), i.e. the s i (n)  beforehand, then we just apply Gosper's algorithm. 
But the trouble is that we do not know the s i (n)  to begin with, and they are parts of our 
unknowns. In fact we want to find si(n)  such that S(N, n)F(n,  k)  is indefinitely summable 
w.r.t. k. Following Gosper's algorithm with the generic, as yet unknown, s,(n), it is easy 
to see that the expression for p(k),  that features in (8), is a linear combination of the 
si(n), with coefficients that are polynomials in k (whose coefficients, in turn, are rational 
functions of n). We are looking for those si(n)  for which the system produced by Gosper's 
algorithm will be solvable. The resulting system is thus a system of equations bbth in the 
coefficients of f (k)  and the s,(n). If there is a solution, this means that with the given L 
there is indeed an operator S(N, n) of order L, and a G(n, k) of closed form such that 
( 3 )  holds, and the algorithm gives both of them. If there is no solution, this means that 
no such L exists, and we have to try L+ I.. By the general theory, we know that eventually 
we will succeed. Furthermore, it is easy to get an a priori upper bound for L. 

6. Implementation 

The most time- and space-consuming part of Gosper's algorithm is the first step. Recall 
that the first step in Gosper's algorithm is writing the summand ak /ak- ,  in the form 

where p(k) ,  q(k),  r(k)  are polynomials in k subject to the following condition: 

GCD(q(k), r (k+ j ) )  = 1, for all non-negative integers j. 

This is the same as finding the polynomial of the largest possible degree, p(k),  such 
that a, can be written as 

such that b, is a hypergeometric sequence that is "simpler" in the sense that bk/bk-, is 
simpler than ak/ak-, . 

When Gosper's algorithm is used as a subroutine in the present algorithm, the "a," 
of Gosper is already given in the form p,(k)b,, for some polynomial p,(k). It is therefore 
wise to leave this polynomial part alone, and try to find the representation (9) for b, alone. 

and then p(k)  =p,(k)p2(k).  
Another nice feature is that when we enter Gosper's subroutine, initially the "non- 

polynomial part" of a,, is given as a quotient of products of factorials. Thus the initial 
polynomials q(k), r(k), when we enter the first step, are already factorized into linear 
factors. We should be very careful to keep everything in factored form, ahd never expand 
the polynomials until the very end. To achieve this, it is better to store such a polynomial 
as a list of its linear factors, and to operate on lists whenever possible. 
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A listing of a MAPLE program implementing the algorithm is given in Zeilberger 
(submitted). There we assume that the input F(n,  k)  is given in the form 

where ai, P i ,  cu :. , Pi . ,  are specific integers, while c,, cj , x are any expressions that do not 
depend on n and-k. 

The ak that is inputted into Gosper's algorithm is 
L 

S(N,  n)F(n,  k) = 1 s,(n)F(n + i, k). 
i = o  

We write it as 

Each term in the above sum is found in factored form, and when adding, the numerator 
has to be expanded, but the denominator can be still kept in factored form. The numerator 
of the above sum is part of the "initial p,(k)" discussed above, and does not have to be 
considered in the first step of Gosper's subroutine any more. Since everything else is 
given in factored form, getting the final decomposition (9) can be carried very fast. 

7. Applications 

7.1. PROVlNC IDENTITIES 

If the outputted recurrence S(N,  n) turns out to be first order, i.e. L = 1 already works, 
I then we have discovered an identity, slnce a first order recurrence ao(n)R(n)+  

a , (n )  R(n  + 1) = 0 can always be solved in closed form. In very rare cases R(n) has closed 
form although S(N,  n) obtained by the algorithm is of higher order. Even in this case it 
is possible to prove the conjectured identity. Simply check if R(n)  is indeed a solution 
of S(N, n)R(n)  = 0, and check the required number of initial conditions. 

Example 1 of Zeilberger (submitted) shows how the program proved the venerable 
Dougall identity (Bailey, 1935). It can equally well prove all other terminating hyper- 

I 
geometric sum identitles in Bailey's classic book, as well as all of Gosper's "strange" 
identities considered in Gessel & Stanton (1982). 

Since most non-terminating hypergeometric identities follow from terminating ones 
either by using Carlson's theorem (Bailey, 1935), or as limiting cases, the algorithm is 
also useful in this case. 

Ira Gessel pointed out to me how my algorithm can be used to discover (and of course, 
prove at the same time) new identities. Start with an F(n,  k) with a certain number of 
free parameters (the c,, c:, ,  and x of (10)). Let the program output the ( L +  1)-term 
recurrence, and then equate L- 1 of these coefficients to 0, solving the resulting equation 
in the c,, c:, and x, thus finding sets of values of the parameters for which the ( L +  1)-term 
recurrence reduces to a two-term recurrence. 

Computer-generated proofs, combined with human ingenuity and insight, sometimes 
lead to interesting theoretical advances. In Wilf & Zeilberger (to appear) (two papers) 
Herbert Wilf and I show how the computer-generated proofs that were obtained by the 

I 

present program lead to the natural concepts of W Z p a ~ r  and dual identity. 
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The format of a transformation formula is 

where both F,(n, k)  and F2(n, k) are hypergeometric in (n, k), and we assume that both 
series are terminating. The algorithm can be used to find the recurrences satisfied by 
either side, and then one checks whether these are the same, or at any rate "equivalent" 
(see Zeilberger, preprint; to appear). It then follows that the identity is true provided it 
is true for the first few initial values of n. 

Example 2 of Zeilberger (submitted) contains the input that yields the computer- 
generated proof of the important Whipple transformation (Bailey, 1935, p. 25). 

7.3. A TOOL FOR T H E  ORTHOGONAL POLYNOMIALS HUNTER 

Hitherto, given a set of polynomials of hypergeometric type, it took considerable human 
ingenuity and stamina to prove that these indeed constitute a set of orthogonal poly- 
nomials. This can now be done with the present program. If the recurrence obtained by 
the program has the form 

then, as is well known, (e.g. Chihara, 1978) the {pn(x))  do indeed form a set of orthogonal 
polynomials. Example 3 of Zeilberger (submitted) gives the input with which the program 
proved that the celebrated Wilson polynomials ( ~ i l s o n ,  1980), that contain all the classical 
families of orthogonal polynomials as special or limiting cases, are indeed orthogonal. 

7.4. PROVING T H A T  A N  IMPORTANT SEQUENCE SATISFIES A N  IMPORTANT RECURRENCE 

I have already mentioned Apery's proof of the irrationality of 5(3) that required that 

satisfies the recurrence 

Van der Poorten (1979, p. 200) writes: "Neither Cohen nor I had been able to prove [the 
recurrence] in the ensuing 2 months". Equipped with my program, it would have taken 
them a few seconds. 

7.5. YOU NEVER K N O W  W H E N  YOU WILL ENCOUNTER A BINOMIAL 

COEFFICIENTS S U M  

Although sums of products of binomial coefficients (alias terminating hypergeometric 
sums) "are not quite everywhere dense in combinatorial problems".(Askey, 1975, p. 94, 
lines 8 and 7 from the bottom), they do occur in the most unexpected places, even outside 
of combinatorics proper. 
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Gregory Chaitin (1987), in his celebrated concretization of Godel's incompleteness 
proof and Hilbert's 10th problem, needed the number of so-called (LISP) S-expressions. 
He easily found an expression for it in terms of a certain binomial coefficients sum, but 
then used ad hoc methods to find a recurrence (Chaitin, 1987, pp. 171-174). The present 
program does it in a few seconds. (See example 4 in Zeilberger, submitted.) 

7.6. A CONSIDERABLE SAVING I N  COMPUTATION 

Many times it is required to compile a table of a sequence defined by 

R(n)  := 1 F(n, k). 
k 

If a table of the values for 0 1  n I N is required, and R(n)  is computed straight from 
the definition, then one needs o(N') operations. However, if one has a recurrence, then 

i 
one only needs O ( N )  operations. An example that arose in probability theory is given 

t in Wimp & Zeilberger- (1989). 

7.7. A USEFUL TOOL FOR ASYMPTOTICS 

Knowing the recurrence that a sequence satisfies is also useful for finding the 
asymptotics. The Birkhofl- Trijinski method that was exposited in Wimp & Zeilberger 
(1985), inputs a recurrence and outputs the asymptotics of the dominant solution. Although 
there are standard techniques (see Knuth, 1973b, pp. 66-67) for positive sums of products 
of binomial coefficients, these fail completely for alternating sums. With the present 
method, it is a routine matter to find the recurrence, and by using the Birkhoff-Trijinski 
method it is then possible to find the asymptotics. 

Ira Gessel, in an electronic message, described to me an application he found to Baxter 
permutations. I reproduce his message intact: 

I did find one nice application that might be worth adding to your list. In "The number of Baxter 
permutations" by F. Chung, R. Graham, V. Hoggatt and M. Kleiman, in JCT A 24 (1978) ,  
382-394, they show that the number B ( n  + 1 )  of "Baxter permutations" on 1 , 2 , .  . . , n + 1 is 
3 F 2 ( - n ,  - n  - 1, - n  - 2 ;  2 , 3 ;  - 1 )  and they give without proof a complicated 4-term recurrence 
which they attribute to Paul Bruckner. When I saw the formula I realized that it could be 
transformed by a quadratic transformation to a 3 F 2 ( 1 ) ,  and therefore a 3-term recurrence had 
to exist. Using the 3 F 2 ( 1 )  contiguous relations given in a paper of Jim Wilson's I computed the 
3-term recurrence, but apparently I made a mistake, since it didn't work. But your program very 
quickly came up with the recurrence 

where S ( n )  = B ( n  + 1 ) .  

8. What's Next? 

A continuous and a q-analog of this paper are given in Almkvist & Zeilberger (1990) 
and Zeilberger (in preparation) respectively. In particular the program of Zeilberger 
succeeded in proving (a generalization of) the famous Rogers-Ramanujan identities 
[Ekhad & Tre (to appear)]. So far we can only handle single sums. The next step would 
be to develop fast algorithms for multisums, in which case the slow algorithms are even 
slower, and in fact, intractable. 
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I wish to thank Gert Almkvist, Richard Askey, Dominique Foata, George Gasper, Ira Gessel, 
Don Knuth, Dennis Stanton, Herb Wilf, and Jet Wimp, for many stimulating conversations and/or 
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The brilliant observation that, in (3), R ( N ,  K, n, k )  may depend on k, was made by Gert Almkvist. 
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