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"The theory of correspondence 
reaches far deeper than that of 
mere numerical congruity with 
which it is associated as the sub- 
stance with the shadow" 

James Joseph Sylvester 

Introduction 

To most contemporary mathematicians matrices and linear transformations are 
practically interchangeable notions. Indeed, the mainstream 'Bourbakian'  estab- 
lishment, with its profound disdain of the concrete,  goes as far as to frown at the 
mere mention of the word 'matrix'. 

To  me, however, (as well as to a growing number  of mathematical dissidents 
called 'combinatorialists') a matrix has nothing whatsoever to do with that 
intimidating abstract concept called 'a linear transformation between linear vector 
spaces". Instead, an n x n matrix is the 'blueprint '  of all the possible edges one 
can draw on n given vertices, a determinant  is the 'weight' of all permutation 
graphs and matrix-products represent paths (details later). 

The  purpose of this paper is to give a survey of this combinatorial interpretation 
of matrix algebra and to present elegant and illuminating proofs of five classical 
matrix identities. 

In 1965, Dominque Foata [4, 2] gave a beautiful combinatorial proof of the 
celebrated MacMahon master theorem, thus setting the stage for combinatorial 
matrix algebra. Recently, two other  elegant proofs have appeared: Straubing's 
proof of Cayley-Hamil ton [9], and Orlin [8], Garsia [6] and Temper ley  [10] 
independently found a combinatorial proof of the matrix tree theorem. 

I am going to present here new renditions of these three pearls, making them 
purely bijective and as succinct as possible. To them I am going to add two rubies 
of my own: a proof of d e t ( A B ) =  (det A)(det  B) and a new combinatorial proof 
(quite shorter than Foata's [5]) of Jacobi's det(e A) = e ~A. 

* This research was partly supported by a summer research grant donated by my wife Jane. 
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1. T h e  se t -up  

For us, the entries of matrices A = (%) are not numbers but rather corn :~ 
indeterminates. We have n labeled vertices {1 . . . . .  n} and the weight of tl: .: 
i ~ j is %. A (directed) graph is a collection of edges and the weight of a !: ; 
the product of the weights of its edges. For example, 

weight ( 3 ) = 1 ~ 2 / _ ~ 4  a12a13a24a34. 

Whenever  we have a set of objects possessing weights, we define the weigh f 

set to be the sum of all the individual weights. For example 

weight h,, "4, 3--~4 =a12a13+az3a31+a34. 

1 2" 

A cycle is a directed graph whose edges are ix---~ i2, iz---~ i3 . . . . .  ik--~', 
some subset of the vertices {i~ . . . . .  ik}. The weight of a cycle is -aq~2a~2~:. • 

(that is the negative of its weight qua graph). The weight of a disjoint m l i :  
cycles is defined as the product  of the weights of all constituent cyck!  
particular, it is readily seen that the weight of a permutation graph, whose :~, I 
are i ~ 7r(i) (i = 1 . . . . .  n) for some permutation 7r is equal to 

( -1)  # "d~  ~ at.,,, = (sgn 7r) l~I (-at.<,,). 
i = l  i=1  

(This is so since the sign of an even cycle is - 1  and the sign of an odd cycle :~ 
thus the sign of 7r is ( -1 )  #°fe'~"~d~, taking ( - % )  rather than (%) gives ~t 
credit' to each odd cycle, making the total contribution to the left hand side o'  
( -1 )  # ~ ' ~ ,  as it should.) 

We have thus obtained the following combinatorial interpretation o!! 
determinant; 

d e t ( - % )  = we i gh t (~e r (n ) ) ,  

where ~ e r ( n )  is the set of permutation graphs on the n vertices {1 . . . .  
Similarly, the principal minors of ( - % )  corresponding to any subset of verticJ 
the weight of the set of disjoint unions of cycles covering these vertices. 1 
det(~i - a~i) (where 8~ i is the identity matrix) is the weight of the set of all di]r,:'., 
graphs that consist of disjoint union of cycles. For example, if n = 2 

det(~i,i_a,i) = I I - a ~ x  - a , z  I 
I - -0 -21  1 - a z z l  

= w e i g h t ( i  2 ) + w e i g h t ( ~  ~) 
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+weigh t ( i  ~)  + weight(~ ~ )  

+ w e i g h t ( i ¢ ~ ) -  

If A = (a~) describes one kind of edges (called A-edges)  and B = (bij.) describes 
another kind of edges (called B-edges) then, for every pair (i, j), the (i,i) 
component  of A B  is the weight of the set of paths of length 2 from i to i such that 
the first edge is an A-edge  and the second edge is a B-edge. This follows 
immediately from the definition of matrix multiplication. In particular the (i, j) 
entry of A k is the weight of the set of paths of length k from i to ], where, of 
c o u r s e ,  

weight(i --~ i2~--> i3 -->" • • ~ ik ~ ]) = a i i 2 a i 2 i ~ "  • • a N .  

2 .  F o a t a ' s  p r o o f  o f  t h e  M a c M  h o n  m a s t e r  t h e o r e m  [ 2 , 4 ]  

• , . .  m in ( a l l x l + . . . + a l , x . )  "~ . . .  l e t  A ( m l , . .  m,) = coefficient of x T "  x ,  
(a ,  lx~+- -"  + a,,x,) m.. The MacMahon master theorem says that 

(~, A ( m l  . . . . .  m,)x? . . . .  x~'-)det(81j- aiix~)= 1. (2) 

Consider the collection M of all pairs (G, H) such that 
(I) G is a directed graph, multiple edges and loops allowed such that 

(i) For every vertex i, the number of outgoing edges equals the number of 
incoming edges, 

(ii) for every vertex i, its outgoing edges are ordered from top to bottom 
(what computer folks would call a stack); 

(II) H is a disjoint union of cycles (not necessarily covering all vertices). 
For example, the following (G, H)  is such a pair: 

G : o u t o f  1: 1 ~ 3  

1---,2 

1 ---> 1 

1 ---> 1 

out of 2: 2--~3 

2-->1 

2-->2 

out  of 3: 3--~3 

3-->3 

3-->1 

3---,2 

H:  (13) (i.e., 1 ~ 3 ~ 1) 
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The weight of an edge i ~ j is a~ix ~ and let 

weight(G, H ) =  ( - 1 )  #~'m~°fH" product  of all edge-weights of :; 

For  example,  for the above (G, H)  

weight(G, H )  = ( -  1)(a13x3)(a12x2)(allx O ( a l l x l )  

• ( a 2 3 x 3 ) ( a 2 1 x O ( a 2 2 x 2 )  

• ( a 3 3 x 3 ) ( a 3 3 x 3 ) ( a 3 1 x , ) ( a 3 a x 2 )  

• ( a 1 3 x 3 ) ( a 3 1 x l )  

_ 2 2 2 2 5 3 5 
- - a  11a12 a 1 3 a 2 1 a 2 2 a z 3 a 3 1 a 3 2 a 3 3 x  1x2x3 . 

We will prove (2) by showing that both the sides of (2) are equal to ~h: 
thing, namely to 

d e f  r -  

weight(M) = 2. weight(G, H).  

Let  ~3 be the set of all directed graphs satisfying (I) and ~ the set of all c~ 

graphs satisfying (II). Clearly ~g = G × ~ and 

weight(M) = weight(~3) - weight(~') .  

By the remarks  in Section 1, 

weight(~')  = det(Sij - % x i ) .  

In order  to show that the left-hand side of (2) is equal to weight (M) we ~i 
to prove that 

weight(~)  = E A ( m 1 ,  • . . , m . ) x ' ~ ,  . . . x . ' . .  

Indeed,  for every (rnl . . . . .  m . )  consider the subset of ~J consisting of 
such that: for i = 1 . . . . .  n ,  i has mi outgoing edges (and therefore m~ ir,: 

edges)• Now for e v e r y / ,  you have rnl choices of choosing its outgoing ed !i 
the total weight of each choice is ( a n x ~ + . ' - + a ~ x ~ ) ,  implying that  fill 

weight of all m i choices outgoing edges of i is ( a i l x1+-" "  +a~x..) '~.  D ( m  

same thing for every single vertex shows that the weight of the set of ~;: ~, 

having (for i = 1 . . . . .  n) mi edges out of i is ( a n x t + "  • " + a l . x . . )  ~ . . . .  t~:~, 

• • -+  a. .x~) m-. But  we also have to take care of the fact that there are exac~ i, 

edges coming into i (i = 1 . . . .  , n) and therefore weight(~3) = the xT . . . .  x',: '° : ,  
in the above product  = A ( r n  1 . . . . .  m . ) x ' ~  . . . .  x ' ~ . .  Summing over 
(rex . . . . .  m . )  yields (5), which together  with (4) and (3) yields 

weight(M) = left-hand side of (2)• 

We will now prove that weight (M)= 1, and thus complete the proof• Let ' s  defi~ ~: 
mapping f rom M to M as follows• 
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Given a pair (G, H),  start at vertex 1 and walk along G in such a way that you 

always choose the top edge. Keep walking until ei ther 
Case I. You have encountered a previously visited vertex of G, or 
Case II. You have come across a vertex of H. 
In Case I we have transversed a complete cycle of G that is completely disjoint 

to the vertices of H. We remove this cycle from G and put it in H. 
In Case II, we take the cycle of H to which that vertex belongs and move it 

from H to G. Also, we do it in such a way that these newcomer edges of G are 
placed on the top of the old edges. 

For example, if 

G = 1---, 2 

1---~ 1 

2---~ 3 

2---.1 

3---*2 

3---~ 3 

H = empty 

then the walk on G is 1 ~ 2 ~ 3 ~ 2, and Case I holds; thus the new (G, H),  call 
it (G',  H'),  is 

G ' =  1---* 2 H ' =  (2, 3) 

1---~ 1 

2 - - . 1  

3 ----~ 3 

Now let's apply the mapping to (G',  H') .  The walk is 1 --~ 2, since vertex 2 is an 
H '  vertex, belonging to (2, 3). We remove (2, 3) from H '  and put its edges 2 ~ 3 
and 3 ~ 2 in G '  in their respective places on the top of the outgoing edges of 2 
and 3 respectively. We get (G, H)  back. Of course this is no coincidence, and it is 
readily seen that applying the mapping twice on any pair (G, H)  reproduces it. In 
short, our  mapping is an involution and therefore,  of course, a bijection. Since 
there is 'conservation of edges' in (G, H)  the absolute value of the weight remains 
the same, but since the parity of the number  of cycles of H changes, the sign 
changes. Thus all the terms of weight(M)= ~ weight(G, H)  can be arranged in 
mutually cancelling pairs, except to the only element  of M on which the involution 
cannot be defined, namely the 'trivial' pair (empty, empty) whose weight is 1. 
Thus 

weight(M) = 1 = right-hand side of (2). 

This completes the proof. 
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3. Straubing's proof o |  the Cayley-Hamilton theorem I9] 

Let A be an n x n matrix and let P ( A ) = d e t ( A I - A )  then the Cayley-Hm~ 
theorem says that the n x n matrix P ( A )  is the zero matrix. Spelled out in [ 

says that 

A n + ( - a t 1 -  a22 . . . . .  a , , ) A  "-~ 

+ (sum of all 2 x 2 principal minors,  of - A ) A  ~ 2 

+ - - - +  (sum of all k x k principal minors of - A ) A  "-k 

+.  • • + d e t ( - A ) - -  0. 

We have to prove that every entry of the matrix on the left hand side of ,, 

equal to zero. 
Fix i and j and let M = M(i, j) be the set of pairs (P, C) such that 

(i) P is a path f rom i to j, 
(if) C is a disjoint union of cycles, 

(iii) The total number  of edges of P and C combined equals n. 

The weight of an edge k ~ m is ak,~ and 

weight(P, C ) =  ( - 1 )  # ~cl~of C[product of all edge-weights of C and 1: 

For example,  if i = l , j = 2 ,  n = 5 ,  (1---~ 3- - -  2, (1)(3,5)) is an element  ~:,1 

whose weight is (-1)2(a13a32)[(alx)(a35a53)]. 

Now we claim that 

weight(M(/, i ) )=  (i, j) entry of the left-hand side of (*). 

Indeed,  the path P may be of any length n - k for 0<~ k ~< n. The weight of ttl: 
of paths of length n - k  f rom i to j is exactly the (i , j)  entry of A n-k. No~ 

have k edges left to form disjoint cycles, and you have the f reedom to choo~.#. 
k -e lement  subset of  {1 . . . . .  n} for your  vertices. The  weight of the set of all t h  
is (by the remarks  of Section 1) equal to the sum of all k x k principal minot:i 

- A .  Summing over  all 0 ~< k ~ n gives (7). 
The proof  will be completed once we show that for every i, j 

weight(M(/, j)) = O. 

To this end we will introduce the following mapping from M(/, j) to itself. G ,.,~: 
(P, C) start  at i and walk along the path P until you either 

Case I. Come to a previously visited vertex of P, or 
Case II. come to a vertex, that  belongs to one of the cycles of C. 
In Case I you have transversed a cycle of P whose vertices are disjoint to ~dl 1: IIi 

cycles of C. You  remove  that cycle from P and join it to C. 
In Case II  you remove  that  cycle f rom C and insert it (at that vertex) in i!:' 
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E x a m p l e .  n = 5, i = 1, j = 3 

(1 ~ 2 ~ 3 --* 2 --~ 3; (5)) ~ (1 ~ 2 ~ 3; (23), (5)) 

(1 ---~ 3---~ 3; (3, 4, 5)) ~--~ (1 --* 3 --* 4 --~ 5 ---~ 3 --~ 3; ~). 

It is readily seen that this mapping is an involution defined on every element 
(P, C) of s~. (Let the number of vertices (= number of edges) of C be k, and 
suppose that the vertices of P are disjoint from those of C. Then P has as many 
vertices as edges ( n - k  of them) and therefore must contain a cycle.) By 
'conservation of edges' the absolute value of the weight stays the same, but since 
the parity of the number  of cycles of C changes, the sign of the weight is reversed. 
Thus, all the elements of weight(~)  can be arranged in mutually cancelling pairs 

and their sum is therefore zero. 

4.  A combinator ia l  p r o o !  o t  the matr ix  tree  t h e o r e m  [6,  8,  10]  

Consider directed graphs on the n vertices {1 . . . .  , n}. A tree rooted at n is a 
directed graph without cycles such that every vertex has exactly one outgoing 
edge except to the root n that has no outgoing edges. Let  i f  = i f (n)  be the set of 
trees rooted at n. The  weight of an edge k ~ m is ak,, and the weight of a tree (or 
for that matter  any directed graph) is the product of the edge-weights. 

The matrix-tree theorem says that weight(if(n))  equals the determinant 

O-12 + " " " q" a l n  - a 1 2  . . . .  a l . n - I  

- a 2 1  a 2 1  --t- • • • --1- a 2 n  - O , 2 , n _  1 

• (9) 

- - O n - - l ,  1 - - a n - - l . 2  • . . a n _ l ,  1 q- . . . -~- a n _ l ,  n 

Let ~ be the set of pairs (B, C) such that 
(i) B is a directed graph such that for a certain subset VB of [1 . . . . .  n -  1} 

there is exactly one edge going out  of every vertex of V B. The end vertex of each 
edge may be any vertex of {1 . . . . .  n} except  its origin (i.e., no slings allowed); 

(ii) C is a collection of disjoint cycles, of length >~2, on the set of vertices 
V o V c being the complement  of VB with respect to { 1 , . . . ,  n - 1}. 

The weight of a pair (B, C) is defined by 

weight(B, C) = (-1)#~¢l~°tC[product  of all edge-weights of B and C]. 

For example (n = 5) 

weight(1 ~ 5, 3 ~ 5; (2, 4)) = ( -1)~alsa35a24a42.  

It is readily seen that (9)= weight(G). 
Define the following mapping on ~.  Given (B, C) look at all cycles, both of B (if 
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any) and of C. Pick the cycle that  contains  the lowest  ver tex  and chan~c 

affiliation (if it be longed  to B put  it in C and vice versa).  For example  (n ~, 

(1 ~ 2, 2 --* 1, 4 --* 6; (35)) ~ (4 --~ 6; (12)(35)) 

(1--->6,2--->6; (345))*-~ (1---~ 6, 2---~ 6, 3---~ 4, 4--~ 5 5---, 3; ~3). 

It  is not hard  to see that  we have  a sign revers ing  involut ion that  is de f ined ,  

all e lements  of N that  have  cycles. T h e  only survivors  are those e lements  of 
the form (B, ~) where  B has no cycles, i.e., is a t ree!  Thus  weight(~g) = weightl : 

and this comple tes  the p roof  that  weight(0") equals  (9). 

5. det(AB) = (det A)(det B) 

T h e  matr ix  A B  represen t s  c o m p o u n d  edges  i ~  A k ~ j with weight  a~kbki, wh¢ 

k can be any ver tex.  Let  w e i g h t A ( ~ r ) = ( s g n T r ) a l ~ l ) - ' '  a , ~ , ) ,  weightB(~" 

(sgn 7r)bl~tl)" • • b ,~ , ) .  Le t  ~er(n) deno te  the set  of  p e r m u t a t i o n s  on {1 . . . . .  
then det A = weightA(~er(n)), det  B =weighta(~er(n)).  W h a t  is det  ( A B ) ?  

Le t  Z(n)  be the set  of  pairs  (.f, w) whe re  f is any m a p p i n g  {1 . . . . .  n} 

{1 . . . . .  n} and w is a pe rmuta t ion .  Le t  

weight(f ,  ~r) = (sgn 1r)(a lnl~bf~l~=~l))" • "(alt(i~bt(i)=~i))" • • (a,n,)bft,)=~,)). 

A m o m e n t ' s  reflect ion would  convince you tha t  

d e t ( A B )  = weigh t (Z(n) ) .  

An  e l emen t  of  Z(n)  is a good guy if f is a pe rmuta t ion .  T h e n  of  course  f - 1 ,  
is a pe rmu ta t i on  and weight(f ,  7r)= weight ,~,(f)weighta(f  -1 o 7r). Thus  

~. weight(f ,  7r) = (det  A ) ( d e t  B).  (~f 
ft. ~r) good  

In o rde r  to p rove  that  d e t ( A B ) ,  which we said was equal  to we igh t (Z(n) ) ,  
equal  to (det  A ) ( d e t  B),  we have  to show only,  thanks  to (10), that  

weight(f ,  lr) = 0. ((1 
(f.'a') b a d  

Once  again we have  to find a killer involut ion.  If (f, rr) is a bad  guy, all it me~  i 
is tha t  f is not a pe rmuta t ion ,  i.e, there  exist  b, i and i '  such tha t  f ( i )= b a~t 

f ( i3  = b, or  in a m o r e  p ic turesque  nota t ion  the re  exist  A - e d g e s  i a_. b and i' ~.  ! 
Pick the smal les t  such b, and for  that  b, the smal les t  such i and i'. 

Case  I: i and i' be long  to the same cycle of  ~r. T h e  cycle to which bo th  i and 

be long  looks  as follows: 

i A__> b a__.> ~r(i) ~ ,  w h a t e v e r .  - • a_. i '  ~ b a_~ ~r(i') ~ b lab lab la  • • • --> i. 

W h a t  you have  to do  is b r e a k  this long  cycle into two cycles: 

i A__> b a__> w(i ' )  --> b lablabla  --> i 
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and 

~r(i) ~ ,  wha t eve r  B_~ i '  A_~ b ~ 7r(i). 

(Note  tha t  the under ly ing  p e r m u t a t i o n  changed  f rom 7r to ~r t imes the t ranspos i -  
t ion (i, i ').) 

Case  II: i and  i' be long  to  different cycles of  7r. L e t  these  cycles be  

i ~ b ~ lr(i)  ~ b lab lab la -  • • ~ i 

and 

i' A_~ b ~ ~r(i') ~ ,  w h a t e v e r -  • • B_% i'. 

In this case wha t  you have  to do is to comb ine  t h e m  into one cycle: 

i ~-> b ~ ~r(i') ~-> w h a t e v e r -  • • ~-~ i' ~ ,  b a_~ ~r(i) ~ b lablabla  • • • --~ i. 

(Note  tha t  the under ly ing  p e r m u t a t i o n  changed  f r o m  ~r to 7r t imes the t ransposi -  
t ion (i, i ').) 

E x a m p l e .  n = 6 

(1 ~ '  4 B-~ 2 ~"  2 ~-~ 5 ~ ,  3 B-~ 6 ~ ,  3 B-~ 3 ~h, 2 B-~ 4 ~ 2 B-g-> 1) 

(1 ~ ,  4 B-~ 2 ~ ,  2 ~-~, 4 ~ 2 ~-~, 1) (2 ~-~ 5 ~ ,  3 ~-~-~ 6 A-~ 3 ~-~ 3 ~ 2). 

I t  is readi ly  seen  tha t  wha t  we have  he re  is a sign revers ing  involut ion def ined 

on all the bad  guys and  thus the  sum of the weights  of  all the bad  guys is 0. This  
p roves  (11) which toge the r  with (10) comple t e s  the p roof  of d e t ( A B ) =  

(det A ) ( d e t  B).  

6.  A new combinator ia l  proof  of  Jacobi's  de t (e  A) = e ~A 

T h e  first to realize tha t  Jacob i ' s  ident i ty has anyth ing  to do with combina to r ics  

was Jackson  [7] who  gave  it a combina to r ia l  interpretation. Foa ta  [5] then  went  on 

to give an e legant  combina to r ia l  p roof .  We  are  now going to give ano the r  
combina tor ia l  p r o o f  tha t  is shor te r  and m o r e  direct .  

e A = ~  Ak/k !  is the exponential genera t ing  funct ion of  paths  of  all length.  
Namely ,  wri t ing B = e A, B = (bii) we have  

1 
~ .  weight[set  of  all paths  f rom i to ] of  length k] 

= the sum of  all t e rms  in bii of  to ta l  de g ree  k. 

Now for  m = 0, 1, 2 . . . . .  let ~ , ,  be  the set  of  ob jec t s  of  the f o r m  (~r, P~,~,  
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i = 1 , . . . ,  n) where  

(1) ~r is a pe rmuta t ion  of  { 1 , . . . ,  n}; 

(2) For  i =  1 . . . . .  n, P~(~) is a path  f rom i to w(i); 

(3) The  total n u m b e r  of  edges of all paths is m;  

(4) The  edges are labeled by distinct labels f rom {1 . . . .  , m} in such a way tl':a 

they are increasing along every  path.  

The  weight  of  such an ob jec t  is sgn xr times the p roduc t  of  all edge-weights ,  lb 

p roduc t  of an edge k ~ l being ak~- 

For  example  if n = 4, m = 15 

" r r = l  > 2 , 2  > 1 , 3  > 3 , 4  

PI2:1 1 >2 3 >2 S >2 

>4 

1°21:2 4 >1 6 >1 9 >4 11 > I  

P33:3 2 >4 8 • I  xo • 2  14 •3  

P 4 4 : 4  7 > 4  12 13 15 ~1 >4 ~4 

is one  m e m b e r  of 9~1s whose  weight  is 

(+ l)(a~2az~a2~)(a21allax4a40(a~a41a12a23)(a,~a,,lal,a,~). 

By general  proper t ies  of  exponent ia l  genera t ing functions we have 

A = 1 
det(e ) =  ~ -:S, tweight(~, , , ) .  

r e = t )  t } l  . 

W e  are now going to define an involut ion ~ , ,  ---> 98,, (for every  m) that  is going 

get  rid of  mos t  of  the terms in weight(~m).  

Le t  j . '  >i be the edge of  highest  label s for  which ]:~ i. This ~ edge hal 

necessarily be long  to P~-~t~)~ which has the fo rm 

- first pa th:  

P~,-,(,~,: lr- l( i )  > 

where  s = So and r >I 0. 

Now consider  P=-'(i)i 

- second  path:  

e~_,~)j: ~-1( / )  

whatever  . . . .  • 

> blablabla • • • 

j s $! , S 
>i >i ~ > i  > . . . . . . .  

,o, i  ,1 , i  , 2 , . . .  ~ , j  (1t>0). 

Let  0<~a<~/  be the only  a such that  t , < s < t ~ + l .  The  involut ion cons~t~ , 

swapping  the po r t i on  " ~ i s~ , i > ~, . . . .  ~ i of  the first pa th  and (the po.~;sil~ 
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| a + l  . [a+2 II 
empty)  por t ion  ' ~ 1 ~ J >" • " 

t ransformed objec t  

- first pa th:  

¢t 
P,~-'ti)j: *r-X(/) ~whatever  • -" ~ J "÷' > i ~" " " ' J 

- second path:  

• S • $1 Sr 
P,,-'(i~i: *r-l(j)  ~ b lablabla-  • • : > ! > z ~ i > • • • > i 
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) j of  the second path,  gett ing for  the 

E x a m p l e .  n = 3 

~r=2 3 1 1 3 
P12:1 ' , 2  3 , 2  6 , 2  t 3 , 2  | ] e t 2 : l  I , 2  ~ ' ' 2  6 , 2  t 3 , 2  

P23:2 2 , 1  7 , 3  s , 3  9 , 3  ' ° , 3 1  1p2, :2  2 , 1  H , I  ' 2 , 1  
/ / 

P3a:3 ,i ~1 5 ~1 U ~ l  12~1 j 1p33:3 4.,  1 s -~1 7 ' 3  s ~3 9 -~3 1°~3. 

Since we have ' conserva t ion  of  edges ' ,  the absolute  value of  the weight  is retained,  

but  the sign changes,  since the under ly ing pe rmuta t ion  has been  mult ipl ied by the 

t ransposi t ion (i, i). Thus  the involution gets rid of  all the terms in we igh t (S , . )  

co r respond ing  to e lements  of  S,~ on  which the involution makes  sense• T h e  on ly  

survivors of  we igh t (S . , )  are weights of  e lements  on which the involution canno t  

be defined, call these e lements  qg,.. Thus  w e i g h t ( S . , ) =  weight(qg.J,  where  ~ . ,  are  

those objects  all of  whose  edges are  slings, that  is, edges f rom a vertex to itself 

i --* i, The  under ly ing permuta t ion  for  all the members  of  ~ , .  must  necessarily be 

the identity pe rmuta t ion  and all paths have the fo rm 

P u :  1---> 1--* 1 ---~ " "  ---> 1 

with appropr ia te  edge labels. Since the exponent ia l  generat ing funct ion for  paths  

of  the form i ---> i ---> - - -  ---) i is e a, it follows that  

1 
~--o weight(C~') = e'~' e°~" " " e~" = e~rA" 

Thus  

1 1 
det(e A) = ~ ~ .  weight(Sin) = ~ ~ .  weight(R. , )  = e ~A 

This comple tes  the proof .  
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7.  Exercises 

T h e  dilticulty ra t ing of these exercises follows the f amous  Knt~ l-t 

r anges  f rom 0 (outr ight  trivial) to 50 (impossible).  

1. (10) Star t ing f rom the combina to r i a l  definit ion of the de te rmi  n~ n t 

the d e t e r m i n a n t  vanishes  if two rows are identical.  
2. (12) Give  a combina to r i a l  in te rpre ta t ion  to an a rb i t ra ry  minor  ',no 

ily pr incipal)  ob t a ined  by  choosing rows i] . . . . .  ik and columns  i~ . . . .  
3. (20) Us ing  Exerc ise  2, p rove  the Laplace  expans ion  of the dele~ 

4. (39) G o  th rough  A i tken ' s  b o o k  [ 1] and try to p rove  combina tor ia i  
results  as possible .  

5. (28) Us ing  a p roo f  s imilar  to St raubing 's ,  p rove  the fol lowing ide~ I .  
be  any  in teger  then  if A is an n x n  matr ix  ( t r A " ) + ( s u m  of  Ix: I:'F 
minors  of  - A )  ( t r A m - X ) + . . . + ( s u m  of k x k  principal  minor :  ~iI 
(tr A re+k) + • • • + (sum of rn x m principal  minors  of  - A )  m --=- 0. 

No te  that  for  m/>  n it is a trivial consequence  of the C a y l e y - H a m i l t o  ~ t:.,, 

and that  for  A diagonal  these are  N e w t o n ' s  identiti t ies.  

6. (45) A n o t h e r  way  of  s tat ing the matr ix  t ree  t h e o r e m  is to say that  t!~: 

of  the set  of t rees  roo ted  at n equals  the (n, n) m ino r  of  the determit~: e I 

mat r ix  (Aij) def ined by  Aii = ~ i e i  aij, Aij = - %  ( i ~  ]). Find wha t  is enu::l: :.;::a 
an a rb i t r a ry  (not  necessari ly  principal)  m i n o r  and p rove  the so-cal led "~all 
mat r ix  t ree t h e o r e m " .  (For  a p roof  see Cha iken ' s  [3] interest ing paper  ) 
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