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“The theory of correspondence
reaches far deeper than that of
mere numerical congruity with
which it is associated as the sub-
stance with the shadow™

James joseph Sylvester

Introduction

To most contemporary mathematicians matrices and linear transformations are
practically interchangeable notions. Indeed, the mainstream ‘Bourbakian’ estab-
lishment, with its profound disdain of the concrete, goes as far as to frown at the
mere mention of the word ‘matrix’.

To me, however, (as well as to a growing number of mathematical dissidents
called ‘combinatorialists’) a matrix has nothing whatsoever to do with that
intimidating abstract concept called ‘a linear transformation between linear vector
spaces’’. Instead, an n X n matrix is the ‘blueprint’ of all the possible edges one
can draw on n given vertices, a determinant is the ‘weight’ of all permutation
graphs and matrix-products represent paths (details later).

The purpose of this paper is to give a survey of this combinatorial interpretation
of matrix algebra and to present elegant and illuminating proofs of five classical
matrix identities.

In 1965, Dominque Foata [4,2] gave a beautiful combinatorial proof of the
celebrated MacMahon master theorem, thus setting the stage for combinatorial
matrix algebra. Recently, two other elegant proofs have appeared: Straubing’s
proof of Cayley-Hamilton [9], and Orlin [8], Garsia [6] and Temperley [10]
independently found a combinatorial proof of the matrix tree theorem.

I am going to present here new renditions of these three pearls, making them
purely bijective and as succinct as possible. To them I am going to add two rubies
of my own: a proof of det(AB)=(det A)(det B) and a new combinatorial proof
(quite shorter than Foata’s [S5]) of Jacobi’s det(e®)=e™".

* This research was partly supported by a summer research grant donated by my wife Jane.
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1. The set-up

For us, the entries of matrices A = (a;) are not numbers but rather com "
indeterminates. We have n labeled vertices {1, ..., n} and the weight of th.
i — j is a;. A (directed) graph is a collection of edges and the weight of a g
the product of the weights of its edges. For example,

2

A

weight(l\ >4) = 412013024034-
3

Whenever we have a set of objects possessing weights, we define the weight |
set to be the sum of all the individual weights. For example

/2 23 1
weight( 1\ 4, / ‘4, 354 )=a12a13+a23a31+a34.
3 1 2

A cycle is a directed graph whose edges are i, — iy, I —> 13, ..., .
some subset of the vertices {iy, ..., i.}. The weight of a cycle is —a,,,
(that is the negative of its weight qua graph). The weight of a disjoint uni:
cycles is defined as the product of the weights of all constituent cycle:
particular, it is readily seen that the weight of a permutation graph, whose |
are i—>7w(i) (i=1,...,n) for some permutation 7 is equal to

Gy,

ialy

(_1)#Cyd&‘ H i, = (Sgn ’IT) ]-_I (_ai-(n)'
i=1 i=1

(This is so since the sign of an even cycle is —1 and the sign of an odd cycle ::
thus the sign of o is (—=1)**'***" 9 taking (—a;) rather than (a;) gives 1
credit’ to each odd cycle, making the total contribution to the left hand side
(=19 as it should.)

We have thus obtained the following combinatorial interpretation o
determinant;

det(—a,-j) = Weight(@er(n))’

where Per(n) is the set of permutation graphs on the n vertices {1,..
Similarly, the principal minors of (—a;;) corresponding to any subset of verti::
the weight of the set of disjoint unions of cycles covering these vertices. '|
det(3; — a;) (where §;; is the identity matrix) is the weight of the set of all dixe:
graphs that consist of disjoint union of cycles. For example, if n =2

1- —a
det(sﬁ- e ai,-) = dn 12

—a21 1_a22

= weight(i 2) + weight(? 2)
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. f)) . (0 f))
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weight i 5 weight i 3
+wei ht(.©.>.
weig i3
If A =(a;) describes one kind of edges (called A-edges) and B = (b;) describes
another kind of edges (called B-edges) then, for every pair (i, ), the (i)
component of AB is the weight of the set of paths of length 2 from i to j such that
the first edge is an A-edge and the second edge is a B-edge. This follows
immediately from the definition of matrix multiplication. In particular the (i, j)
entry of A* is the weight of the set of paths of length k from i to j, where, of

course,

weight(i = i, iy — - - - > iy = )= a;,a0, " * * Aiye

2. Foata’s proof of the MacMahon master theorem [2,4]

Let A(m,,...,m,)=coeflicient of xT:--x7~ in (a;x;+  ~+a.x)™ -
(an1xy+- * - +a,,x,)"™. The MacMahon master theorem says that
(Z Almy,...,m)x--- x:"‘)det(aij _aijxj) =1. (2)

Consider the collection o of all pairs (G, H) such that
(I) G is a directed graph, multiple edges and loops allowed such that
(i) For every vertex i, the number of outgoing edges equals the number of
incoming edges,
(1) for every vertex i, its outgoing edges are ordered from top to bottom
(what computer folks would call a stack);
(II) H is a disjoint union of cycles (not necessarily covering all vertices).
For example, the following (G, H) is such a pair:

G:outof 1: 1—-3 H:(13) (je.,1>3-1)
1-2
1->1
1—-1

outof 2: 23
2—>1
22
outof 3: 353
3-3
3—>1
32
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The weight of an edge i — j is a;x; and let

weight(G, H) = (—1)# @9*°"H. product of all edge-weights of 7 :
For example, for the above (G, H)
weight(G, H) = (—1)(a sx3)(a2x2)(aq x)(axy)
“(a23%3)(a21 %1 )(A22%5)
" (@33X3)(a33x3)(a31x1)(@32%2)
< (aq3x3)(azxy)
=—a3,a1,3305102,0233103,a33X3x3x3.

We will prove (2) by showing that both the sides of (2) are equal to th:
thing, namely to

def
weight(sd) = Y, weight(G, H).

Let 4 be the set of all directed graphs satisfying (I) and ¥ the set of all ¢.i"
graphs satisfying (I). Clearly of = G X% and

weight(of) = weight(%) - weight(¥).
By the remarks in Section 1,
weight() = det(8; — a;x;).

In order to show that the left-hand side of (2) is equal to weight () we wi |
to prove that

weight(9)=Y A(m,, ..., m)xTr -+ xM.

Indeed, for every (m,, ..., m,) consider the subset of ¥4 consisting of :
such that: for i=1,...,n, i has m; outgoing edges (and therefore m; ir. ¢
edges). Now for every i, you have m; choices of choosing its outgoing ed :
the total weight of each choice is (a;yx,+- - -+a,x,), implying that th::
weight of all m; choices outgoing edges of i is (a;,x,+- - - +a,x,)™. Dcin
same thing for every single vertex shows that the weight of the set of o
having (for i=1,...,n) m; edges out of i is (@ X, 4+ +a,Xx)™ -, .
- - -+a,.x,)™. But we also have to take care of the fact that there are exacil,
edges coming into i (i=1, ..., n) and therefore weight(¥4) = the xT"- - - x)I" =
in the above product= A(m,,...,m)xT---xm. Summing over
(my,...,m,) yields (5), which together with (4) and (3) yields

weight(sf) = left-hand side of (2).

We will now prove that weight(sd) =1, and thus complete the proof. Let’s defir
mapping from & to o as follows.
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Given a pair (G, H), start at vertex 1 and walk along G in such a way that you
always choose the top edge. Keep walking until either

Case 1. You have encountered a previously visited vertex of G, or

Case 11. You have come across a vertex of H.

In Case I we have transversed a complete cycle of G that is completely disjoint
to the vertices of H. We remove this cycle from G and put it in H.

In Case II, we take the cycle of H to which that vertex belongs and move it
from H to G. Also, we do it in such a way that these newcomer edges of G are
placed on the top of the old edges.

For example, if

G=1-2 H =empty
1—1
2-3
21
32
33

then the walk on G is 1 -2 — 3 — 2, and Case I holds; thus the new (G, H), call
it (G, H'), is
G=1-2 H' =(2,3)
1—-1
2—>1
33

Now let’s apply the mapping to (G’, H'). The walk is 1 — 2, since vertex 2 is an
H' vertex, belonging to (2, 3). We remove (2, 3) from H’ and put its edges 2 — 3
and 3— 2 in G’ in their respective places on the top of the outgoing edges of 2
and 3 respectively. We get (G, H) back. Of course this is no coincidence, and it is
readily seen that applying the mapping twice on any pair (G, H) reproduces it. In
short, our mapping is an involution and therefore, of course, a bijection. Since
there is ‘conservation of edges’ in (G, H) the absolute value of the weight remains
the same, but since the parity of the number of cycles of H changes, the sign
changes. Thus all the terms of weight(sf) =) weight(G, H) can be arranged in
mutually cancelling pairs, except to the only element of & on which the involution
cannot be defined, namely the ‘trivial’ pair (empty, empty) whose weight is 1.
Thus

weight(&f) = 1 = right-hand side of (2).

This completes the proof.



66 D. Zeilberger
3. Straubing’s proof of the Cayley—Hamilton theorem [9]

Let A be an n X n matrix and let P(A)=det(A] — A) then the Cayley-Han
theorem says that the n X n matrix P(A) is the zero matrix. Spelled out in {
says that

A+ (—ay—axn— "~ dn, AnT!
+ (sum of all 2 x?2 principal minors, of —A)A"?
++- -+ (sum of all k X k principal minors of —A)A" ¥
+- - -+det(—A)=0.

We have to prove that every entry of the matrix on the left hand side of
equal to zero.
Fix i and j and let o = (i, j) be the set of pairs (P, C) such that
(i) P is a path from i to |,
(i1) C is a disjoint union of cycles,
(iii) The total number of edges of P and C combined equals n.
The weight of an edge k — m is a,, and

weight(P, C) = (—1)* ' “[product of all edge-weights of C and |

For example, if i=1,j=2,n=35, (1—->3—-2, (1)(3,5)) is an element 0l
whose weight is (—=1D*(a13a3r)[(ar1)(assass)].
Now we claim that

weight(s (i, j)) = (i, j) entry of the left-hand side of (*).

Indeed, the path P may be of any length n —k for Q=< k <n. The weight of th:
of paths of length n—k from i to j is exactly the (i, j) entry of A" ™. Now |
have k edges left to form disjoint cycles, and you have the freedom to chooss i |
k-element subset of {1, ..., n} for your vertices. The weight of the set of all th -
is (by the remarks of Section 1) equal to the sum of all k X k principal minot:
—~A. Summing over all 0k =n gives (7).

The proof will be completed once we show that for every i,

weight(£(i, j)) = 0.

To this end we will introduce the following mapping from (i, j) to itself. G v
(P, C) start at i and walk along the path P until you either

Case 1. Come to a previously visited vertex of P, or

Case 11. come to a vertex. that belongs to one of the cycles of C.

In Case I you have transversed a cycle of P whose vertices are disjoint to all 1l
cycles of C. You remove that cycle from P and join it to C.

In Case II you remove that cycle from C and insert it (at that vertex) in .
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Example. n=5,i=1, j=3
(1-2-3-52-3;(5)e1—>2-3;(23),(5)
(1-3-3;3,4,5)(1>23-4->5->3->3,0).

It is readily seen that this mapping is an involution defined on every element
(P,C) of f. (Let the number of vertices (= number of edges) of C be k, and
suppose that the vertices of P are disjoint from those of C. Then P has as many
vertices as edges (n—k of them) and therefore must contain a cycle.) By
‘conservation of edges’ the absolute value of the weight stays the same, but since
the parity of the number of cycles of C changes, the sign of the weight is reversed.
Thus, all the elements of weight(sf) can be arranged in mutually cancelling pairs
and their sum is therefore zero.

4. A combinatorial proof of the matrix tree theorem [6, 8, 10]

Consider directed graphs on the n vertices {1,..., n}. A tree rooted at n is a
directed graph without cycles such that every vertex has exactly one outgoing
edge except to the root n that has no outgoing edges. Let 7 = J(n) be the set of
trees rooted at n. The weight of an edge k — m is a,,, and the weight of a tree (or
for that matter any directed graph) is the product of the edge-weights.

The matrix-tree theorem says that weight(7 (n)) equals the determinant

apt---tay, —Qy —Qy -y
—asy a,t---tas, —az 1
9)
~an-y, —Qn_12 ot Quoga et Qg
Let B be the set of pairs (B, C) such that
(i) B is a directed graph such that for a certain subset Vz of [1,...,n~1}

there is exactly one edge going out of every vertex of V. The end vertex of each
edge may be any vertex of {1,..., n} except its origin (i.e., no slings allowed);
(ii) C is a collection of disjoint cycles, of length =2, on the set of vertices
V¢, Ve being the complement of Vj with respect to {1,...,n~—1}.
The weight of a pair (B, C) is defined by

weight(B, C) = (—1)* @@=t C[product of all edge-weights of B and C].
For example (n =5)
weight(l — 5,3 —-5;(2,4))= (‘1)1‘115‘135‘124“42-

It is readily seen that (9) = weight(%).
Define the following mapping on 3. Given (B, C) look at all cycles, both of B (if
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any) and of C. Pick the cycle that contains the lowest vertex and change
affiliation (if it belonged to B put it in C and vice versa). For example (n = ¢t

(1-2,2-1,4—6;(35) < (4—6,(12)35)
(1-6,2-6;345)«>(1—6,2—26,3-4,4—55—3;0).

It is not hard to see that we have a sign reversing involution that is defined -
all elements of @ that have cycles. The only survivors are those elements of %
the form (B, ) where B has no cycles, i.e., is a tree! Thus weight(f) = weight!:
and this completes the proof that weight(J) equals (9).

5. det(AB) = (det A)(det B)

The matrix AB represents compound edges i 2k 25 j with weight au b, whe
k can be any vertex. Let weight ()= (sgn m)a .y " * Aum) Weightg(r
(sgn b -1y * * * Buneny- Let Per(n) denote the set of permutations on {1,...,
then det A = weight ,(Per(n)), det B = weightg(Per(n)). What is det (AB)?

Let Z(n) be the set of pairs (f, w) where f is any mapping {1,...,n}
{1,...,n} and 7 is a permutation. Let

weight(f, 7) = (sgn m)(@1;mbramm)” * * (@i Priyn®) * * (Angeybrimymin)-
A moment’s reflection would convince you that
det(AB) = weight(Z(n)).
An element of Z(n) is a good guy if f is a permutation. Then of course f™' « .
is a permutation and weight(f, 7) = weight, (f/weightg(f~* ° 7). Thus

Y. weight(f, m) = (det A)(det B). (1
(f. =) good
In order to prove that det(AB), which we said was equal to weight(Z(n)), i
equal to (det A)(det B), we have to show only, thanks to (10), that
Z weight(f, =) =0. (1
(f.w) bad
Once again we have to find a killer involution. If (f, 7) is a bad guy, all it mea. |
is that f is not a permutation, i.e, there exist b, i and i’ such that f(i)=b a
f(i)=b, or in a more picturesque notation there exist A-edges i 2> b and i’ % |
Pick the smallest such b, and for that b, the smallest such i and i'.
Case I: i and i’ belong to the same cycle of n. The cycle to which both i and
belong looks as follows:

i% b5 (i) D whatever- - - B i’ S b B> (i) > blablabla - - - —i.
What you have to do is break this long cycle into two cycles:

i 2 b 85 5(i") — blablabla — i
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and
(i) & whatever B i' & b B 7(i).

(Note that the underlying permutation changed from 7 to 7 times the transposi-
tion (i, i").)
Case II: i and i’ belong to different cycles of 7. Let these cycles be
i b B (i) A blablabla- - - B i
and

i'% b B (i) & whatever - - - B> i,

In this case what you have to do is to combine them into one cycle:

i% b5 (i) 2 whatever - - - B> i' & b B> (i) — blablabla - + - — i.

(Note that the underlying permutation changed from « to 7 times the transposi-
tion (i,i").)

Example. n =6
(154824758,54,358,64,358,34,)8,44,985,)
(=
(1545282584495, 1)(255438,64,35,34,79)
It is readily seen that what we have here is a sign reversing involution defined
on all the bad guys and thus the sum of the weights of all the bad guys is 0. This

proves (11) which together with (10) completes the proof of det(AB)=
(det A)(det B).

6. A new combinatorial proof of Jacobi’s det(e*)=e"*

The first to realize that Jacobi’s identity has anything to do with combinatorics
was Jackson [7] who gave it a combinatorial interpretation. Foata [5] then went on
to give an elegant combinatorial proof. We are now going to give another
combinatorial proof that is shorter and more direct.

e* =Y A¥k! is the exponential generating function of paths of all length.
Namely, writing B =e”, B = (b;) we have

1
E—‘weight[set of all paths from i to j of length k]

=the sum of all terms in b; of total degree k.

Now for m=0,1,2,..., let 3,, be the set of objects of the form (m, P...q),
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i=1,...,n) where
(1) 7 is a permutation of {1,...,n};
(2) Fori=1,...,n, P, is a path from i to =(i);

(3) The total number of edges of all paths is m;

(4) The edges are labeled by distinct labels from {1, ..., m} in such a way tha
they are increasing along every path.

The weight of such an object is sgn 7 times the product of all edge-weights, th
product of an edge k — [ being ay.

For example if n=4, m=15

m=1—2,2—>1,3—>3,4—4
Py 1152252350

Py 2-%51-651-2 541151

P33I 3_2_)4 8 1 10 2 14 3
P 4154 "> 12542254
is one member of B,5 whose weight is

(+1)(212022,025)(821211814841)(334841012023)(A 44041 A 140 29).

By general properties of exponential generating functions we have

o

1
det(e®) = Z Twewht(@m)

m={

We are now going to define an involution 8,, — %, (for every m) that is going
get rid of most of the terms in weight(%,,).

Let j—>i be the edge of highest label s for which j#i. This edge mu
necessarily belong to P,_-.;); which has the form

— first path:

P i w (i) —>whatever -+ - —> j— > iS55 5... .0

where s =5, and r=0.
Now consider P, -y,

-~ second path:
P,y i (j)—>blablabla - - - —»ji5j 2 5. .. S si (120).

Let 0=<a=x! be the only a such that t, <s< t.+1- The involution consists.

s . s

swapping the portion i—>i « - -~ j of the first path and (the possil:
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empty) portion R SO v——l'—»j of the second path, getting for the
transformed object

— first path:

P,,-l(m:w"‘(i)———»whatever----——>j-':2->,‘__,..._‘l_,j
- second path:

P,y (j)—> blablabla - -+ = j-Ss i Ss i s s
Example. n =3

1 2 3 1 2 3

T2 031 20103
Py1-152-3,2.6,213,9 Py1-1s2-3,2.6,7.13,9
Py:2-251-753-8,3 2,3 19,3 - Py:2-251-14,1.12,49
Py:3251-251-10,112, Pyy3-451-351-7>3-8,3.2,3.10,3

Since we have ‘conservation of edges’, the absolute value of the weight is retained,
but the sign changes, since the underlying permutation has been multiplied by the
transposition (i, j). Thus the involution gets rid of all the terms in weight(%,,)
corresponding to elements of %, on which the involution makes sense. The only
survivors of weight(%,,) are weights of elements on which the involution cannot
be defined, call these elements %,,. Thus weight(8,,) = weight(%,,.), where €,, are
those objects all of whose edges are slings, that is, edges from a vertex to itself
i — i. The underlying permutation for all the members of €,, must necessarily be
the identity permutation and all paths have the form

Pyl-1-1->-->1

P,:n—>n—---—>n

with appropriate edge labels. Since the exponential generating function for paths
of the form i > i — --- — i is e it follows that

= 1
Z — weight(4,,)=¢e* e% - - - e% =",
m=0 m '
Thus
A 1 : 1 5 trA
det(e®) = Z o weight(®,,) = Z - weight(€,.)=e

This completes the proof.
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7. Exercises

The difficulty rating of these exercises follows the famous Knu'h
ranges from O (outright trivial) to 50 (impossible).

1. (10) Starting from the combinatorial definition of the determin: at
the determinant vanishes if two rows are identical.

2. (12) Give a combinatorial interpretation to an arbitrary minor /nc
ily principal) obtained by choosing rows i,,..., § and columns j,,...

3. (20) Using Exercise 2, prove the Laplace expansion of the deter

4. (39) Go through Aitken’s book [1] and try to prove combinatoriai
results as possible.

5. (28) Using a proof similar to Straubing’s, prove the following ider -
be any integer then if A is an nXn matrix (tr A™)+(sum of 1x v
minors of —A) (trA™ 1)+ .--+(sum of kxk principal minor ¢l
(tr A™*®)+ - - - + (sum of m X m principal minors of —A) m=0.

Note that for m =n it is a trivial consequence of the Cayley-Hamilto 1 12
and that for A diagonal these are Newton’s identitities.

6. (45) Another way of stating the matrix tree theorem is to say that the
of the set of trees rooted at n equals the (n, n) minor of the determin:.r1
matrix (A;) defined by A; =Y, a;, A = —a; (i# ). Find what is enwira
an arbitrary (not necessarily principal) minor and prove the so-called "ll
matrix tree theorem”. (For a proof see Chaiken’s [3] interesting paper )
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