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Thus the number of n-tone rows is
Hn—=1)'+(n-1)(n-3)---(2)] if n is odd;
Hn=1)'+(n—=2)(n—4)---(2)(1 + n/2)] if niseven.

For example, there are 9985920 twelve tone rows, a fact which does not seem to be in the
literature.

Appendix. Computation of numbers of fixed elements.

1. 10, a,,...,a,)= (0, —a,,...,—a,) ~ (0,a,,...,a,) implies a, = —a; (modn) for i =
2,...,n since no transposition is allowed because the first element 0 is fixed. There is at most one
nonzero solution to x = — x (mod #n), but that is not enough to fill out the permutation.

2. R(ay,...,a,)=(a,,...,a;) ~ (ay,...,a,) implies that a ¢ exists such that q; = a, + ¢,
a,=a, ,+t,... (modn). If n is odd, the middle element is fixed and no transposition is
allowed: ¢ = 0. But then a, = a,, a contradiction. If » is even, the first and last congruences
imply that 2¢ = 0; hence, ¢ = 0 or ¢ = n/2. The first is impossible just as when » is odd, but the
other gives fixed permutations. Since @, = 0, a, = n/2. For a,, we can choose any of n — 2
elements, and this determines a,_,. For a;, we have n — 4 choices, etc.

3. IR(ay,...,a,)=(—a,,..., —a;) ~ (ay,...,a,) implies that a ¢ exists such that a;, + a, =
t, ay +a,_; =t,.... The last congruence for n odd is 24, ,, =t (mod n). Clearly it is not
important that we fix the first element as 0; we could fix a,, ), as 0 and obtain the same count.
Thus we may assume that ¢ =0, a(,.,,, = 0. This allows n — 1 choices for a;, with a, thus
determined, n — 3 choices for a,, etc. For n even, we fix a; = 0, a, # ¢t # 0. A little thought
shows that ¢ must be odd in order for us to complete the permutation. If ¢ = 2k, then there is no
mate for k in the permutation. There are thus n/2 choices for ¢ = a,. For a,, there are n — 2
choices, with a,_,; determined thereby, etc.

The author thanks Dennis White for helpful comments.
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BIJECTING EULER’S PARTITIONS-RECURRENCE
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A partition of an integer » is a nonincreasing sequence of positive integers A(1) > A(2) > - -
> A(2) > 0, such that A(1) + -+ - +A(¢) = n. The set of partitions of » is denoted Par(n) and its
cardinality |Par(n)| is written p(n). For example,

Par(5) = {5;4,1;3,2;3,1,1;2,2,1; 2,1,1,1;1,1,1,1,1} and p(5)=7.
There is no closed form formula for p(n) but Euler ([1], p. 12) gave a very efficient way for
compiling a table of p(n) by proving the recurrence
(1) L p(n—a(j)) = X p(n—a())), wherea())=(3/>+j)/2.
Jj even Jjodd

Euler used generating functions to prove this formula. Garsia and Milne [2] gave a very nice
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bijective proof of (1), utilizing their Involution Principle. We are going to give another bijective
proof which does not require any iterations and is very simple. Indeed,

¢: U Par(n — a(j)) ejgdPar(n - a())),

Jjeven
given below does the job.
Let (A) = (A(),...,A(?)) € Par(n — a(jj)). Then define ¢ by
(t+3j-1,A1) =1,...,A(t) = 1) € Par(n — a(j — 1)), ifz+3j>A(1),
o((N) ={ (A2 +1,...,A(t) +1,1,1,...,1) € Par(n — a(j + 1)), if ¢+ 3j < A(1),
where there are (1) — 3j — £ — 1 1’s at the end.

Note that applying ¢ twice yields the identity mapping, thus ¢ = ¢~ ! and ¢ is invertible.

EXAMPLE. n = 21.
¢(5,5,4,3,2) = (7,4,4,3,2,1).

Here (5,5,4,3,2,) € Par(19) = Par(n — a(1)) so j = 1. The number of parts ¢, is 5 and we have
t+ 3j > A1), since 5 + 3 > 5. Now consider ¢(7,4,4,3,2,1); here j =0, t = 6, A(1) = 7 and
6+0<7AlsoA(1)—3j—t—1=7-0-6—1=0s0wedonot add any 1’s at the end and
$(7,4,4,3,2,1) = (5,5,4,3,2).
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ON THE CONVOLUTION OF CAUCHY DISTRIBUTIONS

MEYER Dwass
Department of Mathematics, Northwestern University, Evanston, IL 60201

The characteristic function of a probability distribution is usually too advanced a topic for a
first undergraduate course in mathematical statistics and the more limited moment generating
function is often used instead. In teaching the distribution of sums of independent random
variables such as normal, gamma, or uniform, I supplement the use of the moment generating
function with the convolution formula,

(1 fea(w) = [ f(x)g(u~x) dx.

For sums of independent Cauchy random variables the moment generating function does not
apply and the use of the convolution formula is difficult. Undoubtedly, it is generally understood
that if f and g are Cauchy densities, a partial fraction decomposition of the integrand in (1)
should lead to an explicit evaluation of the convolution integral but I do not find the details
worked out anywhere. (See comment in Feller, [1], p. 51.) The purpose of this note is to outline





