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Let (y),=(1—-y)(1—qy)---(1—q*"ly). We prove that the constant term of the Laurent
polynomial [, < ;<n (xi/%),,(a%,/%,),, Where x,, . . ., X,, q are commmuting indeterminates and
a,.-.,a, are non-negative integers, equals (q), +...q /(@) " - (@), . This setfles in the
affirmative a conjecture of George Andrews (in: R.A. Askey, ed., Theory and Applications of
Special Functions, Academic Press, New York, 1975, 191-224].

Introduction
In 1962, Dyson [3] made the following conjecture:

the constant term of [ (1—ﬁ) i

1<istj=n X;

is equal to (a;+- - -+a,)Va,!- - a,!

D)

This conjecture was settled by Gunson [8] and Wilson [14] and in 1970, Good
[7] gave a short and very elegant proof.
In 1975, Andrews [1] conjectured the following g-analog:

let (), =(1—-y)(1—qy)1—-g%y)--- (1-g°""y), Mo=1,
(y)-1=Q1~yg™")7, then

the constant term of H (ﬁ) (gx,ﬁ)
o\ X;

Isi<j=n x;

is equal to (A)
o

(q)a1+---+a,‘/(q)a1 ot (Q)a,.-
Andrews’ conjecture generalizes Dyson’s since the latter is the case q =1 of the
former.
An excellent exposition of Andrews’ conjecture, as well as of some related

conjectures of Macdonald, is given in Morris’ [13] thesis. Morris writes: “Inde-
pendent proofs of Andrews’ conjecture for n>3... would provide many deep
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examples of multiple basic and ordinary hypergeometric identities, a topic about
which little is currently known.”

One natural way to try to prove this conjecture was to try to emulate Good and
find a difference-equation proof. This is essentially the approach taken by Kadell
[9] in his proof of (A) for n = 4. It has not been successful for larger values of n,
but the attempt did lead one of us (D.Z.) to a general theory of hypergeometric
sums [15].

Another line of attack, which led to D.Z.’s combinatorial proof of Dyson’s
conjecture [16], was to try to employ the beautiful ideas of Foata [4]. This
approach failed as well. What finally did work was a synthesis of the Good
(difference-equation) approach and of the Foata (combinatorial) approach. If it
were not for their ideas this proof would never have come to be. We also
benefited from a clever idea of Gessel [6].

We will prove Andrews’ conjecture (A) by proving an equivalent identity,
namely

T k) [ = Baevs L (Z)

Ke¥k 1<i®j<n (Q)ai+k,.,.— (Q)a1 ce (Q)a,. 1si<j<n (q)ai+a,-
where ¥ is the set of all matrices K = (k;);<«; j<n Satisfying k; = —k;; and, for every
i, Y71 k; =0, and f(K) is defined by

F(K) = (= 1)FhagBhete 02,

both summations being over all pairs (i, j) for which 1=<i<j=n.
We shall end the introduction by showing that (A) and (Z) are equivalent.
An immediate consequence of the g-binomial theorem [10, 1.2.6. ex. 58] is the
identity

Ly _y EDGE @0
(Y)a(qy )b % (Q)a+k(Q)b—k

where the summation is taken over all k, —c<k <+, but (q);* is defined to be
zero for negative integral values of a. It follows that for each pair (i, j) such that
1=<i<j=n we have the identity

%\ (49 _ v EDSGSSG)
Qq(x.)a, ‘é ) W

where we have put k; =—k;.
Multiplying all these (3) identities together and looking for the constant term
shows that Andrews’ conjecture is equivalent to

z (— 1)21<i<i‘nkiiqzlﬁ'<i‘h k(e +1)/2 (q)a.‘ s = (q)al+- ~ta.
KeX 1=i<j=n (Q)a, +k,j(q)a, +ky (Q)al et (q)a,‘ ’

where the sum is over all K = (k;) € ¥. Dividing through by [1;<i<j<n (@), +4, yields
2.
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1. Combinatorial preliminaries

A partition p with m parts is a non-increasing sequence of m non-negative
numbers. That is p:p® =+ - =p™ =0. Unlike common usage [2] we allow zeros
so what we call “a partition with m parts” can be trivially identified, by chopping
the zeros, with what is known in common parlance as ““a partition with at most m
parts”. The number of parts of a partition is denoted by #p and the sum of its
elements by |p|. Thus, for example, #(332100) =6, #(32210)=5, #(3321)=4,
|332100| =133210| =|3321|=9.

The weight of a partition p is defined by weight(p) = q'*'. Thus weight(32110) =
q’, weight(00000)=1. Given any set &/ on whose elements there is a weight
defined, we denote by weight(sf) the sum of all the weights of the individual
elements: weight(sf) =) 4 .4 weight(A). It is a known fact [11, 5.1.1 ex. 15] that
the weight of the set of partitions with m parts is 1/(q),.

Given sets o4,..., ¥y if we define a weight on the product &f; X---Xsfy
by weight(A,, ..., Ay)=weight(A,) ...  weight(Ay), then, of course,
weight(sd, X« - - X o) =weight(sf,) - - - weight(sfy).

We will have occasion to consider creatures called partition matrices, which are
matrices P = (p;);<; j<. Whose entries p,; are partitions. The weight is defined by

weightP)=a+s( T Ipyl),
i=i,j=<n
where g ** x denotes g*. Given a numerical matrix (¢;); < j<n it is obvious that the
weight of the set of partition matrices P = (p;);«;;<n having #p; =c¢; is

1

1=sij=n (Q)cﬁ- |

Another important combinatorial species is the word. A word in the alphabet
{1,...,n} of type 1%2%...n% is any sequence containing exactly a, 1’s,
a,2’s,...,a,n’s. We will denote the set of words of type 1% ... n% by
M(a,,..., a,). For example, the members of M(1, 2, 1) are {1223, 1232, 1322,
2123, 2132, 2213, 2231, 2312, 2321, 3122, 3212, 3221}.

Every word W on n letters gives rise to (3) 2-lettered words (W;;);<;<j<n, Where
W; is the word with the letters i and j, of type i%j* obtained by retaining only the
letters i and j. For example if W =41211321133214¢e M(6, 3, 3, 2) then

W,;,=121121121 W;3=111311331 W,,=41111114
W23 =232332 W24 = 42224
W3,=43334.

This paper would have been much harder to write were it not for the useful x
notation, popularized by Adriano Garsia. For any statement A we write
x(A)=1if A is true and x(A)=0 if A is false. For example x(1+1=3)=0,
x2+3=5)=1.
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The major index of a word W=W,... W, is defined as maj(W)=
121 ix(W; > W,,,). This notion was introduced by MacMahon (see [1]) who
proved that

; )
maj(W) — ayte--+ay, . (1.1)
WeM(a,,..., a,,)q (Q)a1 T (Q)a,,

A related notion, which in this paper is only used for permutations, is that of the
number of inversions INV(W)=3} . ,.e<iX(W,>W,). It is immediate that
inviW)=3%,ici<n inv(Wi,-), on the other hand it is grossly wrong that maj(W)=
Y 1<i<j<n Maj(W;). However ., ; <i<, maj(W;) can be used to define a brand-new
statistic, which for lack of a better name, we will call the z-index: z(W)=
Y 1<i<j<n Maj(W;). It is a well-known fact that

invew) __ (Dayre-ra,

WeM(a,.....a,,) (q)a, Tt (Q)a“
and thus
z q=i™ = z q~™.
WeM(a,,...,a,) WeM(a,,-..,a,)

Foata ([5], see also [11, 5.1.1 ex. 19]) gave a beautiful bijective proof of this
identity. One of the cornerstones of the present paper is (Lemma 4.1)

zZ(W) _ (q)a,+---+an
WeM(a,,...,a,) .(q)al Tt (q)a" ’

but our proof is by induction (the kind of proof G.H. Hardy used to call
““essentially verification”). It would be nice to find a Foata-style proof.

The following Bijection M is crucial for Section 3. It occurs in MacMahon’s
(see [11, p. 18]) proof of (1.1).

Bijection M. Let W= W, - - - W, be a prescribed word on the alphabet {1, ..., n}.
There is a bijection between partitions p:p®... p® satisfying p®>p®+V
whenever W, > W, ., and ordinary partitions q:q* ... q® such that

Ip| =lq|+maj(W).

Description. Scan W from left to right. Whenever you encounter a descent, that
is, an i with W.> W,_,, you know that p® > p®*?, change

(p(l) . p(i)p(i+1) L p(l)) — ((p(l)_l) . (p(i)__l)p(i+1) L. p(l));
keep doing it until you have finished scanning W. The final outcome is q.
Example. p:333222111; W=122122112; the third place is a descent so p «

222222111; the next descent is the sixth place so p <~ 111111111 and since there
are no more descents, q=111111111.
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The last notion which we are going to use is that of the tournament. A
tournament on n players {1, ..., n} is a skew-symmetric matrix (t;)1<isj<n & = i
such that t; =i or j. If ; =i we say “i beats j”’ and if t; = j we say “‘j beats i”. A
tournament is called transitive if for 1<i# j# k <n, i beats j”’ and *j beats k”’
implies “i beats k. Otherwise it is non-transitive. For example

t,=1 t3=3 ..
12 13 1S transitive
t23 = 3

while
t12=1 t3=3

iS non-transitive.
1 2

There are altogether 2% tournaments, n! of which are transitive. This is so
because every transitive tournament defines a permutation as follows:

There is a player (1) who beat everybody else, a player m(2) who beat
everybody but 7(1), ... and finally a player w(n) who got beaten by all. Given a
permutation 1, we will denote by (;) the corresponding transitive tournament.
(Warning: it should not be confused with the previous notation W;;). Thus if
T =2143

7T12=2 17'13_—'1 71"14:1

1723=2 1T24=2

M34 = 4.
A cycle in a non-transitive tournament is a sequence (iy, i, ..., i) such that i,
beats i,, i, beats i, ..., i, beats i, and i, beats i,. If there exists a single player

who is contained in every cycle, he is called a spoiler for the tournament. Note
that removing a spoiler from a tournament breaks all cycles and so makes it
transitive. Of course, not every non-transitive tournament has a spoiler, and if it
does then this element is not necessarily unique. For example, in

t1p=1 13=3
t23=2

every element is a spoiler.

The score vector w=(w;,...,w,) for a tournament is a record of how many
games each player wins:

Wy = Z Xty =k)+ Z x(t; =k).

1=i<k k<j=n

NonTrans(n; w; r) denotes the set of non-transitive tournaments with n
players and score vector w and for which r is a spoiler.

We highly recommend that the reader look up Gessel’s paper [6] which inspired
much of this work.
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2. The combinatorial interpretation and outline of the proof

Let ? =%(a,,...,a,) be the set of partition matrices (p;);<i;j<n such that
@) Z;'=1 #Dy = (n—1a; (i=1,...,n),
(i) #py+#pi=a;+a; (1si<j<n),
(iii) #p; =0, that is the diagonal entries are empty.
Every such partition matrix defines uniquely a numerical matrix K = (k;;);<ij<n
belonging to X (defined in the Introduction) where for i#j #p; = a; +k;. For
example the following is a member of (4, 6, 3) with ki, =2, ki3=—2, ky3=2:

* pia=333222 pys=44
(p21 =4310 * P23 = 22210000) .
p31 = 44300 p32 = 0 *

We define a weight on & as follows:
weight(P) = f(K)q *x* [ Z lpij|]9
1<istj<n

where K is the numerical matrix defined by P and f(K) is as defined in the
Introduction. For example, the weight of the partition matrix given above is

(_1)2—2+2 q2-3/2+(—2)(—1)/2+2‘3/2 q Kok [|333222|
+144|+14310]+|22210000]| + [44300] + 0|1 = q°¢.

For any given Ke X let ?¢ denote the subset of # having #p; = a; +k;; for
i# j. By the remarks of Section 1:

weight@) = fK) [] —-

1=<i##j=<n (q)a‘+k“

Since P =UkexPx it follows that weight(P) =Lh.s. of (Z).

In Section 3 we will introduce two sets ¥=%a,,...,a,) and RB=
%B(a,...,a,) which we will name the good guys and the bad guys respectively.
We will introduce appropriate weights on these sets and will prove

Theorem 3. There is a weight preserving bijection between P and B U 6.

From this it follows that weight(®) = weight(%) +weight(%). In Section 4 we
will prove

Theorem 4. weight(9) = r.h.s. of (Z).

In Section 5 we will prove

Theorem 5. weight(%8)=0.
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Combining all these would yield

Lh.s. of (Z) = weight(®) = weight(%) + weight(B)
=r.hss. of (Z)+0=r.hs. of (Z).

3. The good guys and the bad guys

We shall begin by trying to motivate what separates the good guys from the bad
guys. As we have seen in Section 2, the left-hand side of (Z) is the generating
function for certain matrices of partitions. Scrutinizing the right-hand side of (Z)
we see that a piece of it, namely

1-[ 1

I=<i<j=n (q)ai+a,-

is also the generating function for certain matrices of partitions, specifically for
upper triangular matrices

Q= (Qij)lsiq‘sn
where Q;; is a partition with a; + a; parts and the weight of Q is simply given by
q ** [ Z lQij‘] .
I1si<j=<n

This suggest that we want to transform matrices in % into the upper triangular
matrices generated on the right-hand side. When we observe that for i# j:

#pit#pi=atk;ta+k;=a+a;
it is natural to transform a matrix P of # by dropping the empty partitions on the

diagonal and then for each pair (i, j), 1 <i<j=n, combining the parts of p; with
those of p; to form Q;. Thus

* 531 320
P=|32 =« 41
21 20 *

would become
* 53321 32210
Q =( + 4210 )
*

Of course, under this transformation there are many different matrices P which
give rise to the same Q. What we shall do is to accompany Q with a code which
tells us how to decompose Q back to the appropriate P. This code will be a word
WeM(a,,...,a,) which is read as follows: for each pair (i, j), 1si<j=<n and
for each k, 1<k=<a;+a, the kth part of Q,, namely Q¥, comes from the
partition p;; if and only if the kth letter of W is i.
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For the example given above, the word 1123231 is the code for decomposing
Q to get back P. For example, W,;=2323; Q,;=4210 and thus p,; =41 while
ps2=20.

It should be obvious from the definition of the decomposition procedure that P
can be decomposed from a Q using a code word only if Pe P, where K is the
zero matrix (i.e. #p;=a; for all 1<i#j=<n). As we shall see, this is not a
sufficient condition. If P is in P, K the zero matrix, then we attempt to construct
the code word W as follows:

Algorithm 3.1

Step 1. Initialize W to be the empty word, (B;) = (p;)-

Step 2. If any of the partitions, say By, i# j, is empty, then all partitions in the
ith row are empty. Delete the ith row and column.

Step 3. Define a tournament T = (¢;);»; by setting for i <j:

t; =ix(Bi’=Bi")+ix(Bi’<B"), =t

Step 4. If T is non-transitive, then STOP. The code word cannot be created.

Step 5. If T is transitive then it has a winner, say k. Replace W by Wk and
delete the largest part from each partition in row k.

Step 6. If (B;) consists only of empty partitions, then STOP. The code word has
been found. Otherwise, return to Step 2.

It is important to observe here that because of the way the tournament is
defined in Step 3, the matrix Q is restricted by the code word W which
accompanies it in the following manner: for 1<i<j=n, if the kth letter of Wj; is
strictly larger than the (k+1)st letter, then QJ° must be strictly larger than
Q%Y. Thus, in our example, W,; = 2323 and since the second part of Q,3 = 4210
came from p;, and beat the third part which came from p,s, it has to be strictly
larger (as indeed it is: 2> 1). The conditions of Bijection M are thus satisfied and
we can use it on each partition in Q. Our pair

* 53321 32210
=( * 4210) W=1123231

Q

%

becomes
* 42211 21100
Q=( * 3110) W =1123231.

%k

K is the zero matrix which implies that
f(K) = (— 1)2i<ikﬁq2i<ikii(kii+1)/2 =1,

and so the weight of P is

Weight(P)=q**[ ) lpiil]'—'Q**[ ) |éii|]

1=igjsn 1=si<j=n



A proof of Andrews’ q-Dyson conjecture 209

—qw| T 10+ T maiwy)]

1=<i<j=n 1<i<j=n

— qZ(W) - q ** [ z lQijl]'

I=si<j<n

We are now prepared to define a good guy.

Definition. Let $=%(a,, ..., a,) be the set of pairs (W; Q) where W is a word
in M(a,, ..., a,) and Q =(Q;);1<i<j<» i an upper triangular matrix of partitions
satisfying #Q;; = a; + a;. The weight of an element in ¥ is given by

weight(W; Q) = CIZ(W) + g ** [ Z ‘Qij‘]'

1<i<j=n

The elements of ? which do not correspond to good guys will be the bad guys.
This includes all elements of & for which K is not the zero matrix as well as those
with K equal to the zero matrix which are interrupted at Step 4 of Algorithm 3.1.
The following algorithm transforms our bad guys into a set of objects over which
we can sum the weights, and has the desirable feature that if we start with an
element of  which corresponds to a good guy, this algorithm produces the pair
(W; Q).

Algorithm 3.2

Step 1. [Initialize] Let W = empty word; Q =(Q;;) = upper triangular matrix of
empty partitions; ¢, =0 for 1<i<n; B=(B;)=(p;); r; = a; + k;.

Throughout this algorithm the parameters ¢; and r; will be related to W and B
as follows:

WeM(c,...,c.), #B;; =r;.

Until we reach Step 5, the number of parts in Q; will be ¢; +¢; and r; will equal
a; + k; — ¢;. Since for each i there is always some j# i such that k; <0, and since
r; =0, the last equality implies that ¢; is always less than or equal to a;.

Step 2. [Define tournament] We define a tournament S = (s;;);»; only on those
values of i for which row i of the matrix B contains at least one non-empty
partition. Let B{” be the largest part of the partition B;; if By is empty then
define B to be —x. We define S by setting for i <j

§ij = iX(ngl)'*' k;; >B§i1))+jX(B§1‘D+ ks <B§il)), Sii = 8.

If S is non-transitive, go to Step S. If S is transitive, continue with Step 3.

An important observation at this point is that if s; = i for any pair i# j, then B
is non-empty. To see why this is so, let us assume that s; =i and Bj; is empty. It
follows from the definition of s;; that i is less than j and B;; is also empty. Thus,

O=ry=a+k;—c, O=r=a+k;—c.



210 D. Zeilberger, D.M. Bressoud

Summing these equalities and using the fact that k; = —k; yields
0=a;+a,—(¢;+¢)

which implies that a; =¢;, a,=¢; since 0=¢;=<gq;, 0=¢;=a,.
Since there is a non-empty partition in row i of B, there is an m such that
k;. > 0. Since

Z kii = 03
J

there is a p such that k;, <0. But then
#B = _a1+kv.p G= kzp<0

a contradiction since no partition can have a strictly negative number of parts.
Step 3. [Find winner and transfer his ‘best players’ from B to Q] Since S is
transitive, it has a winner i (1<i<n).
(a) For 1=m <, delete BY from B;,, and add it as a new part to Q,,;; that is

'3 @)
B,;,. becomes B;; ... By,

Q) A, +e) R
Q,: becomes Qr; ... Q. "By,

and r,, is decreased by one.

(b) For i <m<n, delete BY from B;,, and add a new part B{) +k;,, to Q,,; that
is

B,, becomes B® ... B{%,
Q.. becomes QL ... QP (B + Kim)s
and r,, is decreased by one.

We now increase ¢; by one and replace W by Wi. Note that the
conditions at the end of Step 1 are still satisfied.

We observe that if i is the winner B{Y)+ k;,, cannot be strictly negative for if it
were then by the definition of s,,,, B, is empty which implies that

Ozkmi'__kim

which implies that B is strictly negative.

Step 4. [Do we have an element of ¢?] If B contains any non-empty partitions,
we return to Step 2. Otherwise, we have combined all the partitions of B into the
partitions of Q and coded this with W. It remains only to invoke Bijection M on
each pair (W, Q;) as described above to yield an element (W, Q) %.

Step 5. [Start finalizing an element of B ] Let T = (t;);»; be a partial tournament
on {1, ..., n} defined as follows:

(D) if i and j are vertices of S, then t; =gy,
(i) if i is a vertex of S and j is not, then t; =¢; =1,
(iii) if neither i nor j is a vertex of S then t; is undefined.
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Recall that Q; = QY ... Q§*<, B, =B’ ... B{«. For each pair (i, j) such
that t; is defined, i <j,
(a) If t; =i, then delete B’ from B; and adjoin a new part B{"+k; to Q,,

Q, becomes Qf ... QF+(BP +ky),
B; becomes By ... B{.

Decrease r; by one.
(b) If t; = j, then delete B{" from B; and adjoin a new part B{® to Qj;, that is

- _ I
Q, becomes QY ... Q§*'B{Y,
B;; becomes B? ... B{».

Decrease r; by one.
Observe that we now have that,

#Qy=c +c;+x(t; exists), ry=a;+k;—c—x(t;=1i),

where x(t; =i)=0 if t; does not exist.
Step 6. [Finalize element of %#] For each partmon Q,,, the information on
whether a given part came from p; or p; is encoded by the word W,t; where
W;t; = W, if t; does not exist. As in the case of good guys, if the kth letter of
Wt is stnctly larger than the (k+1)st letter, then Q> Q%Y. We apply
Bijection M to each pair (W;;, Q;) to obtain (W;t,, Q;) satisfying

‘én" =|Q;| +maj(Wjt;).

We have thus transformed our matrix P into a quadruple (W, T; Q, B) of a
word, a non-transitive tournament and two matrices of partitions. We can recover
our original matrix P because:

(i) the a; are known constants,
(i) the ¢; can be recovered from the fact that #Q; = c; +¢; + x(t; exists), T
non-transitive implies that n=3,

(iii) the k; can be found using the last relationship of Step 5:

ki =#B;;—a; + ¢+ x(t; =1i),

(iv) W and T provide the code for reconstructing Q and apportioning the parts
in Q to recreate P.

A bad guy will be such a quadruple which corresponds to an element P e 2.
Specifically, we make the following definition.

Definition. Let B =%(a,, ..., a,) be the set of quadruples (W, T; Q, B) such
that for some numbers c,, ..., c, with 0<<¢, <a; we have

(i) W is word in M(c4,...,¢,);

(i) T = (t;);ix; is a non-transitive partial tournament on {1, 2, . . ., n} for which
the incomplete vertices (those vertices i for which ¢; does not exist for some j)
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lose all games and if both i and j are incomplete then t; does not exist. If W is
non-empty then the last letter of W is a spoiler for T. (This follows from the fact
that if W is non-empty, then T was formed by taking a transitive tournament and
reversing some of the edges to the winner, the last letter of W.)

(iii) Q= (Qy)1<i<j<n IS an upper triangular matrix of partitions such that
#Qy; =i+ ¢+ x(t; exists);

(iv) B=(B;)1<ij<n is a matrix of partitions with empty partitions on the
diagonal;

(v) Setting k; =0, k;=#B;—a;+c;+x(t;=1i) for i#j, we must have that
k; =—k; and ¥, k; =0 for each i. Note that this last condition implies that

0= (#By—a;+c+x(t;=1i)

j#i
- (T #B,)-(n-D@-a)+ T xty =
i i
and thus the score vector for T is completely determined by B and Q;
(vi) If i is an incomplete vertex of T then ¢; =a; and k; =0 for all j;

(vii) For 1=<i<j=<n, the smallest part in Q; is at least as large as the larger of
B +k;+x(t;=i) and BJ.

For example,
tip=1 t;3=3
W=132 T=(t21=1 t23=2)
t33=3 ;=2
* 444 333
Q =( * 555)
L

* 33 3
4 * 4)
33 5 =

is a member of #(3, 3, 3) and we invite the reader to go ahead and check that all
the conditions are satisfied and that this corresponds to the matrix

* 4333 43
P=| 54 * 4444)

3333 65 *

B

The weight of a bad guy is the weight of the original P to which it corresponds
which is easily checked to be

weight(W, T; Q, B)

= £(K)q = | T 1Byl+ T 1041+ T mai(Wyty) — T ka4 =) |-

i<j i<j i<j



A proof of Andrews’ q-Dyson conjecture 213

We now make T into a complete tournament on {1,..., n} by defining ¢; =j
whenever i and j are incomplete vertices and i is less than j. Note that this does
not change the weight of (W, T; Q, B) because if i or j is an incomplete vertex
then k; equals zero.

4. Enumerating the good guys
Theorem 4.

weight(9) = 0z ] (@),

Proof. Recall that ¥=%(a,,..., a,) consists of pairs (W, Q) where W is a
member of M(a,,...,a,) and Q=(Qj);<i<j<n iS an upper triangular partition
matrix such that #Q; = a; + a;. The weight is defined by

weight(W, Q) = q ** [ z maj(W;)+ Z |Qi'|]

Il=si<j=n I<i<j=n

= (q ** [z(W)](q ok [ ) |Qi"‘]>°

1=si<j=n

Thus
weight(%) = Z z ¢® - g=al

- (é qz<W>) (g qznq,-l) - ( y qz<W’) I1 @l

WeM(a,,...,a,) I1si<j=n

by the general remarks in Section 1.
Thus Theorem 4 would be proved once the following lemma is proved.

Lemma 4.1.

z qz(w) — (Q)a,+-~~+q.n
WeM(ai,....an) (‘])a1 "t (q)a,,

(recall that z(W) =Y« <j<n maj(W)).

Proof. A venerable principle of mathematics in general and of combinatorics in
particular is that of ‘structuration’ (see Melzak’s classic [11, p. 377]), that is,
introducing extra structure in order to have more things to hold on to. Every
WeM(a,,...,a,) defines a clear-cut permutation 7 € S,, as follows. Let = (1) be
the last letter of W. Let 7(2) be the last letter which is not 7 (1). Let 7(3) be the
last letter that is neither (1) nor 7(2).... Let w(n) be the last letter that is
neither 7w (1) ... nor w(n—1).

For example if W=122144334414 w(1)=4, w(2)=1, w(3)=3, w(4)=2, so
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= 4132. An alternative definition, which we will find useful later on, is the
following: Let S;=i or j, be the last letter of W;;. This defines a transitive
tournament corresponding to a certain permutation = such that S;=m; (see
Section 1 for notation). Thus for the above word

Wi,=12211 W3=11331 W,,=1444414
W,o3=2233 W,,=2244444

W, = 33444
Sp=1 Si=1 S;,=4
S;s=3 S,,=4
Si.=4

and indeed the winner #w(1) is 4, #(2)=1, w(3)=3, w(4)=2 so m=4132. For
every we S, let M, (a,, ..., a,) be the set of words in M(a,, . .., a,) that yield =.
If a,., is zero then M, (a,, ..., a,) is equal to the set M, (a;,...,rpny - - -> Qn).
If a., is not zero but g; is zero for some i# w(n), then M, (a,,...,a,) is the

empty set. Set

F(ala LIRS ] an) = Z qZ(W)a F—rr(ala LR ] an) = Z QZ(W)-
wWeM(a,....,a,) WeM.(a,...,a,)

Let us prove

Sublemma 4.1.1. Let

cima)=c(may,...,a,)= 2 ax (w7 ()<7(j))

I<i<j=n

and
E(w) =[] [1-q%o" ],
1=2
then

F'n'(ala cees an) = qc("’a)E('n') . (q)(q)a1+'+(a.‘.51 )
a;—1 a,—1

Note that if a,, is zero then F,(a,, ..., a,) equals F,(ay, ..., Grm) .-, @) If
Q. 1S NOt Zero but a; is zero for some i# w(n), then F_(a,,...,a,)=0.

Proof of 4.1.1. For any we S, and for l=1,...,n let
m=a=m)n2)... w(n)
m=m(2m(D)7@3)... m(n)

’n.', =x7Q2)...7D7Vw(+1) ... w(n)

1;',, =a(2)... w(n)w(1).
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The sublemma is trivially true for n = 1. If it is true for n—1 it is true for the
‘boundary’ a’s at n, that is, for (a,,...,a,) for which a; =0 for at least one i.
We claim that F, satisfy the following recurrences:

n

1

1

qu(als DRI a1r(1)+ 1) LI an) = 2 qZ'D2X("( )<1r(r))[an<1)+a"(')]Fm(al, ety an)
1=1

This is so because every WeM.,(a,,..., a0+ 1,...,a,¢) ends with the
letter 7(1) and writing W= W'n(1) leaves us with W' e M, (a,, . .., a,) for some
| between 1 and n.

Since

2(W)=2(Wa(D)=2(W)+ L (@ + Gue)x(m(D) <7(r))

the recurrences are explained.
Now we need

Observation 4.1.1.1.
clma)= Y  auex(@@)<w()).

Proof of 4.1.1.1.
cma)= 2 ax(@@)<w()

i<i<j=sn

=Y a.ox(i<w(j) and 7 () <))

ii

Y a.ox(@@<w(@). O

i<i<jsn

l

Observation 4.1.1.2.

c(m; a)=c(m; a)— apox(m(1) <7 (2))
—_— i — awa)x(qr(l) < 11'(1)) + a.,,(l)x('rr(2) < 77(1))
+- o agx () <aw(1)).

Proof of 4.1.1.2. Recall that m=7(2)7w(3) ... 7(DwxQ)w(1+1) ... w(n), that is,
r; is obtained from 7 by moving w(1) [ steps to the right. In so doing, you lose
Yr 2 GrX(m(1) <ar(r)) but you gain ¥, _; a,qyx(w(r)<=(1). O

Observation 4.1.1.3. c(m;a,,...,8, )+ 1, ..., a)=c(m;a,,...,a,).

Proof of 4.1.1.3. Immediate from 4.1.1.1. [
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In order to complete the proof of Sublemma 4.1.1 we will show that its r.h.s.
satisfies the recurrences established above for the F,.. Namely, we must show that

c(ar;a) (q)a1+--.+a"

q E() @a1 @y~ @as
Y H (q)a1+ —eta,—1 .
g E(ﬂ'l ( )a1 . (q)a,‘-l ( )

where
1
H=c(m;a,,...,a.)+ Z_‘: (@rqyt Are)x (7w (D) <m(r)).
We need

Observation 4.1.1.4. Forl=1,...,n
H, = c(m; a)+(I—1)a,q.

Proof of 4.1.1.4.

1
H=c(m;ay, ..., a0)+ L, (@na+ Gro)X(m(D)<m(r)

1
(4112 (r;a)— Y. anmx(w@)<m(r)

r=2

1 1
+ z a.,,(l)X(‘_lT(r) < 77(1)) + Z (a1'r(1) + a-rr(r))X(Tr(l) < 17('))

r=2 r=2

1
=c(m;a)+ 2, ap=clm; a)+(-Da,q. O
r=2

Dividing both sides of (*) by q“”;“)(q)aﬁ...+a"_1/((q)al_1 -+ (q),.-1) We get that
we have to prove

(1 a,+-- +a")E(7T) “
‘zl*q (1) ,Z q“" DawE(m).

Now, for convenience, set x; =q*®, [=1,...,n and note that

1

E(qu)=E(7T)=(1_x2. X1 xs e x,) s (1-x)

and for [=3

1

Em) = o e xm)A=x)

We are left with the task of proving the purely algebraic identity

=X %, 1
1-x, (1=-x---x,)A=x3--- %) - (1—x,)
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1 X4
= +
(A-x-+ %) - (A-x,) (I—-xx3---%x,)---(1-x,)
2 n—1
X1 X1

A xxke %) (=% '+(1~x3 e xxy) e (L=xp)

This will be proved by induction on n:

rhs.= 1 + X1
T A xxs e xy) o c(1mx,)  (B—xyxsc e xy,)
[ : ]
. 4ot
(1=x3- %) - (1~x,) (1=x4%s -+ xpxq) =+ - (1= xy)
induclive 1
hypoalesis (1=x3x3° %) (1—x,)

+ X1 [(1—x1x3 T xn)] . 1
(1—x4x3---x,) (1—xy) (1=x3---x) - (1-x,)

___[ 1 ! ] 1
A-x-++x,) 1-x0 (A=x3---x,)---(1—x,)

=(1_x1“'xn)_ 1
(1-xy) (1-x2”.xn)...(1_xn).

O

We can now go on to complete the proof of Lemma 4.1. Since F=} s F, we
must show that

(q)a1+-~~+a,. - c(mrsa) (Q)a1+~-~+a,‘—1 E
@D LT D B

Dividing by (q)a,+.-+a.-1/((@)a, - - - (@)a,) We must show that

(1—g** %) =(1—-q%) - - 1-q*) L ¢°"“E(n).

Letting x;=q%, i=1,...,n, we are left with proving the purely algebraic
identity.

Sublemma 4.1.2. Let
d(w)= n J‘;“xr(o'n;ar)(i)<ar(j))

I<i<j=n

then

— e o o pad — > o . —— d(w)
A=x;- - %) =A=x) - - A =x,) ngs“ A=Xe@y* " Xamy) - (1= X))



218 D. Zeilberger, D.M. Bressoud
Proof of 4.1.2. If w(1)=r, that is, = =rx’ then d(w)=x,,, - - - x,d(7"). Now

3 d
rhs.=(1-x) - (1-%x) ) 2 ()

r=1 xeS, (l—x-xr(Z) ._' ) x-rr(n)) Tt (l_x'n'(n))

w(D=r
=(1-x) - (1-x,) 21 Xes1 ™" " Xp
2 d(ﬂ")

eSS, (l*x.,.r(z) e x'tr(n)) Tt (1—x‘n'(n))

5 d(m)1=x) - (1=x%) - (1-%,)
7'€Sp (-1—x‘rr(2) o x-tr(n)) e (l—xfr(n)) .

=Y (A=%)%sr """ X
r=1

Now the inner sum, which ranges over all permutations on {1,...,#...,n}is
by the inductive hypothesis equal to 1, and we are thus left with

telescoping

Z(l—xr)xrﬂ'“xn = 1-x,---x,. OO0
r=1

5. Getting rid of the bad guys

Theorem 5. weight(®)=0.

Proof. Recall that

weight(W, T; Q, B) = (—1)E1si<iwnkuq sk [ Y maj(Wt)

1=i<j=n

+ Z |Qyl+ ) |B;|+ > ki (ki +1)/2

I1si<j=<n 1<isktj=n I1=si<j=sn
- Z kii(c; + x(t; = l))]
1ssi<j=<n

where k; = ¢; + x(t; = i)+ r; — a;. From now on let GAR(B, Q) denote any expres-
sion which depends only on B and Q. Since the a;’s are known constants and the
¢;’s are uniquely determined by Q, anything depending only on the a;’s or ¢;’s is
also included in GAR(B, Q).
Write b; = ¢; +r; —a; then k; = b; +x(t; =i) and
Y [2)kyky+1) — ke +x(t =)

1=i<j=<n

= L [+ xt = Dby + X =)+ D)
—(b; +x(t; = ))c; + x(t; = i))]
=GAR- Y cx(=)=GAR+ Y cx(t=j).

1lsi<j=n 1=i<j=n
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Thus
weight(W, T; Q, B) = (—1) %A%+ Ziaanx®=D
av[GAR+ T axy=i+ T mai(Wis)]
i<i<j<n I<i<j=n
= GAR . (-—1)21‘i<i<nx“ii=i)
-q**[ Y ex(ty=i+ Y maj(Wi,-ti,-)].
I<i<j=n 1=i<j=<n
Now

weight(B) = z Z weight(W, T; Q, B)

QBW,T
=Y (-1)GARGOAR § (—1)FrmamX®=D
QB W, T

ae| T exty=D+ T maiWs)|
1=si<j=n I<i<j=n
The theorem would be proven if we can show that the inner sum is always zero,
that is, for every n; c,,...,c, and score vector w we must show

Z (_1)21<i<j<“x(tii=j) . q ** [ Z CiX(tij =j)+ Z ma](“’,,t,,)] =0,

W, T 1<i<j=n 1si<j=n
where ) w r is the sum over all We M(c,, ..., ¢,) and non-transitive T with score
vector w such that the last letter of W is a spoiler for T. If W is empty, then our
sum is merely

Z (—1)%<x@=D

where T does not have to have a spoiler. This sum is zero by the involution on
non-transitive tournaments given in Gessel’s paper [6]. We shall therefore assume
that W is non-empty. We call the term in the sum on W and T term(W, T) and
we see that

Y term(W, T)= ), Y term(W, T)
W, T weS, WeM, (Cq,---sCn)
T € NonTrans(n ;w ; (1))

where NonTrans(n; w; m(1)) is the set of non-transitive tournaments on
{1, ..., n} with score vector w and spoiler #(1).
But if WeM,_(¢y,...,¢,)

Y maj(Wy)= Y maj(Wy)+ Y (g+c)x(m>1t),

Isi<j=n Iwi<js=n I=si<j=n
where m; is the transitive tournament corresponding to =:

i =i & 'ﬂ'—l(i)<7r—1(j).
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Thus the above sum can be written

z z (—— 1)21<i<,-‘,‘x(tii=i)

weS, TeNonTrans(n)
T q ¥* [ z cx(t; =)+ Z (c; + ¢;)x(m; > tii)]
I<i<j=<n Isi<j=n
z qzl<i <iwn MAH(W,) .
W eM,(Cy,...sCn)

Now by Sublemma 4.1.1
z q21<i<i<nmﬂj(vvﬁ) = F‘n_(cl, cen cn)
WeM, (cy,---.cn)

@i e
(q)cl—l .o (q)c"—l (l_qcﬁ(z)+---+c,,(,,)) .. (1 _ qc_"("))

Substituting above we get that the sum is equal to

(q)c “+---4c,—1 .
. (—1)ZsmicizaX =)
(q)Cl“l T (q)c,,—l 11-;3"
TeNonTrans(n)

| T o= axty =)+t e)xtm > 1) | Em)

I=i<j=n
where E(7) =(1—q%o* ) 1. .. (1—g°~=)1,

Introducing the notation y,=q% (i=1,...,n) we are left with the task of
proving the following purely algebraic identity.

Lemma 5.1. Let, for weS, and T eNonTrans(n; w; 7(1))
(—-— 1)21<i<,' <n X(t;=1) H yx(‘n’ﬁ =), x(t; =f)(y_y_)x (m;>t)
1=si<jsn ! ) e

weight(mr, T) =
(1—)’«(2) te Y’n'(n))(]-—y-n-(3) T )’-n(n)) T (1“)’«(n))

then

> weight(m, T) =0.

mweS,,
TeNonTrans(n; w;mw(1))

Proof. We shall use the fact that T is almost transitive, Write 7 = ro’ where
r=m(1) and o’ is a permutation on {1,...,r—1,r+1,..., n} and let o be the
transitive tournament obtained from T by deleting r. The transitive tournament o
will also be identified with the permutation it defines. Let L, T denote the number

of players who beat r in tournament T, L,T=3}, ;% x(t; = j). We make the
following observation:

Observation 5.1.1.

|weight(zr’, o)| - (y1¥2- - - 9, - - - yu)yr"

lweight(mr, T)| =
| (1— y‘rr(2) tre y':r(n))
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Proof of 5.1.1.
[I  yreyrtei(yy x>y

T)l — I<i<j=n

(1 )’17(2) y-n'(n)) toe (1 - yfrr(n))

|weight(ar,

n

|weight(wr', o)) H yX(ma=) I‘[ (yiy, y<Ce=D I‘[ yXG,=n ﬁ y Xy =)
] tJr r

B (1 Vo)t y'n-(n)) j=r+1 i=r+1
weight(#’, o)| y, n ; - -
:| g I +1°°"y H (y,y,)"“ =i) 1’] yf‘(t ) l‘l yx(t =j)
(1 - y-rr(2) ) y'rr(n)) i=1 j=r+1

— |Weight(7rly o-)‘ YT+1. ° YTI 'ﬁ yx(t —1)+x(t =r) H yx(t =i) rnl yx(tﬁ:j)
(1=Ye ' Vo) ic1 i=1 j=r+1

|weight(’, o)
(1— y'n'(2) e y'n'(n))

(YI e ?r e Yn)Yf"T' D

We shall also need the following observation. Here we take o to be a transitive
tournament.

Observation 5.1.2. For every o €S,

. sen(@)(1—y;: - - y)yom Ve Yoe
weight(mr, o) = .
-rrg:s,, g}l (1_}’1)' o (I_Yn)

Proof of 5.1.2. This is trivially true for n = 1. We shall proceed by induction using
5.1.1. with o’ being the permutation obtained from o by deleting r = 7(1). Note
that since o is a permutation, Lo equals o *(r)—1. Now

sgn() Y. weight(m, 0)= ¥ weight(m o)=Y ¥ |weight(r, o)

weS, weSs, r=1 weS,
aw()=r
511 & yn)yr o .
= Z lweight(#’, )|
r=1 (1 Yﬂ(z) y‘rr(n)) '€ S y(r) ’
induc=tion Z YV ~1(r)—1 y?,'(l) . Y;:Zf—l)
n r

A=y)- - A=y (1~

: oo™ ()~ 1_ r) " 2’ tte g'_nl
(1 v - (1 V), Z}’a(n Yo ()1)( ) Yo Yom)

Yo-(l)}’o-(2) : yc(n)
= Yo
(1-y)-- (1 Vo) s Z @
telescoping Yo " Yom
A-y)---A-y,

commutativity y3<1) T yﬁal)
—_ (1"’}’ e Yn)' 0O
(1—}’1)"'(1_}’71) '

YO'(cr‘l(r)—l)(1 - Ycr(o-"l(r)))

) (1—y0'(1) et YO'(n))
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We now combine the observations in order to simplify the sum which is to be
shown to be zero. Recall that o is T with its spoiler removed.

n
Z weight(w, T) = Z Z Z weight(m, T)
weS, r=1 TeNonTrans(n;w;r) weS,
TeNonTrans(n;w;m (1)) w(1)=r

GLD y y Y (~1)Eimmx D

r=1 TeNonTrans(n;w;r) ='eS,.(F)

_ (weight(nr’, )| (y1 - - )
A=Y= Y-n(n))

= i Z (— 1)zxsi<i<,.X(ti,-=J')

TeNonTrans(n;w;r)

CTERED ARED M) Y

. ~ sgn(o)weight(7’, o)
(1_ VitV yn) w'eS,—1(F)

n

(5-1;__2)2 z (—— 1)21si<i=u"(‘ii=i)

r=1 TeNonTrans(n;w;r)
. 31 9 VIV YowYe@  *  Yowme1)
1-y)-- A=y, V) (1—yn)

-

It now only remains to be shown that

Z Y (1P rmaeX@G=DYLT( —y Yyl V20 Yooty

TeNonTrans(n;w;r)

n
Z Z (1P r=aeX@=DyLTyl eyl
r=1

TeNonTrans(n;w;r)

n
- z Z (_ l)zldq‘"x““ =])yL T+1Yclr o’ ya’(n—l) =0.
r=1

TeNonTrans(n;w;r)

We shall prove this by exhibiting an involution on all elements over which we are
summing which preserves the absolute value of the weight and reverses the sign.

We observe that since there is at least one cycle through r, we have bounds on
LT:1<L T<n-2. We first define the involution on the set of pairs (r, T),
T eNonTrans(n; w; r), which have weight

 xt. =) LT, 1 -1
(‘1)):““’"‘" u ,)yr Yo' * * Yat-1)

and for which r beats (I, T), Player o(L,T) loses precisely L, T matches since he
loses to (1), 5(2),...,0(,T—1) and to r. Therefore if we simply exchange the
labels of players r and o(L,T), so that o(L,T) now becomes the spoiler, we have
not changed the score vector or the absolute value of the weight. But since
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o(L, T) now beats r we have changed the sign.

o(1) o(1)

{ !
o(2) a(2)

) !

) )
o(L,T)«<r r «<ao(L,T)

" \

The second involution is on the set of pairs (r, T), T € NonTrans(n; w; r), which
have weight

(<yaenX (=D LT+1,1 -1
— (1P X Gy LTy 0 0y Yotm-1)

and for which o(L,T+1) beats r. Player o(L,T+1) loses precisely L,T matches
since he loses to a(1),...,o(L,T) but not to r. Therefore if we exchange the
labels of players r and o(L,T+1), so that (L, T+ 1) now becomes the spoiler,
we have not changed the score vector or the absolute value of the weight, but we
have changed the sign.

o(1) a(1)
! {
! !
oL, T+1)—>r r ->o(LT+1)

y d

We now define a sign reversing bijection between the two remaining sets. Let
(r, T), TeNonTrans(n; w; r), have weight

Z‘i<‘n ;=i L'_T 1 PP -1
(—1)ErmaenxG=Dy LTyl ) Yon-1)

and be such that o(L,T) beats r. Note that L, T# 1 for if it were then (1) beats r
and r beats everyone else and so the tournament is transitive. For the same
reason, there must be a j> L T such that o(j) beats r. We exchange the labels of
players r and o/(L,T) and reverse the arrow between these two players, so o(L,T)
still beats r. If we let s = o(L,T) be the new spoiler, U be the new tournament and
7 the transitive tournament obtained from U by deleting s, then LU =L,T—1.
Our new pair (s, U) has the same score vector as (r, T) and now s = ¢/(L,T) beats
+(L,U+1)=+(L,T)=r. The weight of (s, U) is

: =), LU+1,1 -1
(—1)zl‘i<1<nx(tﬂ l)ys: + Y-r(l) LR y:(n—l)’

precisely the negative of the weight assigned to such a pair in the second
summation. Any pair (s, U) of the second sum for which s beats 7(L,U + 1) must
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arise in this manner since L,U cannot equal n—2, for if it did then s would beat
7(n—1) and lose to everyone else and so U would be transitive. Also, since U is
non-transitive, there must be a j <L U such that s beats 7(j).

a(1) o(l)= (1)
) 2
! !
o(LLT)—r r=7(LU+1)«<o(L,T)=s
2 !
: H DD
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