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Let (Y)a = ( 1 - y ) ( 1 - q y ) . - .  ( 1 -qa - ly ) .  We prove that the constant term of the Laurem 
polynomial l'll,~i<j~n (xdxj)~(qx~lxO,~, where x l , . . . ,  x,, q are commrnuling indetermirlates and 
ax . . . . .  a~ are non-negative integers, equals (q),t+...+~,l(q)al...(q)~. This settles in the 
affLrmative a conjecture of George Andrews (in: R.A. Askey, ed., Theory and Applications of 
Special Ftmetions, Academic Press, New York, 1975, 191-224]. 

llmrodaetion 

In 1962, Dyson [3] made the following conjecture: 

( F the constant term of l-I 1 -  
i-i,~i-,, (D) 

is equal to ( a l  + "  • . + a , ) ! / a l t  . . . a , !  

This conjecture was settled by Gunson [8] and Wilson [14] and in 1970, Good 
[7] gave a short and very elegant proof. 

In 1975, Andrews [1] conjectured the following q-analog: 

let (Y)a = ( 1 - y ) ( 1 - q y ) ( 1 - q Z Y )  " ' "  (1-qa-XY), (Y)o = 1, 

(Y)-x = ( 1 -  yq-X)-l, then 

the constant term of l"I ( x i ~ ( q x ~ i s e q  u a l t °  (A) 
l~i<j~rt \X~/ \ / a ~  X/ aj 

( q ) a l + . . . + o J ( q ) a l  " " " ( q ) ~ .  

Andrews' conjecture generalizes Dyson's since the latter is the ease q = 1 of the 
former. 

An excellent exposition of Andrews' conjecture, as well as of some related 
conjectures of Macdonald, is given in Morris' [13] thesis. Morris writes: "Inde- 
pendent proofs of Andrews' conjecture for n > 3 . . .  would provide many deep 
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examples of multiple basic and ordinary hypergeometric identities, a topic about 
which little is currently known." 

One natural way to try to prove this conjecture was to try to emulate Good and 
find a difference-equation proof. This is essentially the approach taken by Kadell 
[9] in his proof of (A) for n = 4. It has not been successful for larger values of n, 
but the attempt did lead one of us (D.Z.) to a general theory of hypergeometric 
sums  [15].  

Another line of attack, which led to D.Z.'s combinatorial proof of Dyson's 
conjecture [16], was to try to employ the beautiful ideas of Foata [4]. This 
approach failed as well. What finally did work was a synthesis of the Good 
(difference-equation) approach and of the Foata (combinatorial) approach. If it 
were not for their ideas this proof would never have come to be. We also 
benefited from a clever idea of Gessel [6]. 

We will prove Andrews' conjecture (A) by proving an equivalent identity, 

~., f (K)  I-[ 1 (q)a~+...+a,, 1 
1 . , . , . .  : - :  (z)  

namely 

where ~ is the set of all matrices K = ( k / - j ) l ~ i , i ~  n satisfying/q~ = - ~ i  and, for every 

i, ~'.~= 1/q-j = 0, and f(K) is defined by 

f (K)  = ( -  i) ~ k,qr,%(k, + ~)12, 

both summations being over all pairs (L ]) for which 1 ~< i < ]  <~ n. 
We shall end the introduction by showing that (A) and (Z) are equivalent. 
An immediate consequence of the q-binomial theorem [10, 1.2.6. ex. 58] is the 

identity 

= ~" (--l)kqk(k+1)IZ(q)a+b y--k 
(y)o(qy-bb T 

where the summation is taken over all k, - - ~ < k  < +0% but (q)=X is defined to be 
zero for negative integral values of a. It follows that for each pair (i, ]) such that 
1 <~ i < ]  <~ n we have the identity 

(x~) (q~,~ = ~ ( - 1 ) ' q ' ( ' + W 2 ( q ) ~ + ~  x - ' x ; "  
xx~ ,~ x~ /,~ ~ (q)~+~,(q),~+~ 

where we have put ~ =-ki-i. 
Multiplying all these ~) identifies together and looking for the constant term 

shows that Andrews' conjecture is equivalent to 

(--l~l'<"r'nk"q ~l'~'¢4`'k"(k~'÷l)12 R (q)at+o 1 : (q)a,+..-+a~ 
~,~¢ I - ,<i - -  (q)~+~(q)~+~ (q)a~ ' ' "  (q)a, '  

where the sum is over all K = (/q-i) e~g'. Dividing through by l'Ii-~i<i-~, (q)~+~ yields 
(z). 
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1. Combinatorial preibninaries 

A partition p with m parts is a non-increasing sequence of m non-negative 
numbers. That is p : p(1) I> . . .  ~ p(,,) I> 0. Unlike common usage [2] we allow zeros 
so what we call "a  partition with m parts" can be trivially identified, by chopping 
the zeros, with what is known in common parlance as "a partition with at most m 
parts". The number of parts of a partition is denoted by # p  and the sum of its 
elements by IPl. Thus, for example, # (332100)=6 ,  # ( 3 2 2 1 0 ) =  5, # ( 3 3 2 1 ) = 4 ,  
[3321001 = [332101 = [33211 = 9. 

The weight of a partition p is defined by weight(p) = qlpl. Thus weight(32110) = 
q7, weight(00000)= 1. Given any set ~ on whose elements there is a weight 
defined, we denote by weight(~)  the sum of all the weights of the individual 
elements: weight(~t) =~'_,A~ weight(A). It is a known fact [11, 5.1.1 ex. 15] that 
the weight of the set of partitions with m parts is 1/(q),,. 

Given sets ~ l , . . . , ~ t N  if we define a weight on the product s ~ x . - - x ~  N 
by w e i g h t ( A 1 , . . . ,  A ~ ) = w e i g h t ( A 1 ) . . . .  • weight(AN), then, of course, 
weight(~l x .  • • x ~tN) = weight(~l)  • • • weight(~N). 

We will have occasion to consider creatures called partition matrices, which are 
matrices P = (l~j)~.j~, whose entries l~,j are partitions. The weight is defined by 

w e i g h t ( P ) = q * * (  ~ Ip, jl), 
where q ** x denotes qX. Given a numerical matrix (q )~ i . j~ ,  it is obvious that the 
weight of the set of partition matrices P = (l~i)~-~i~, having #l~i =q i  is 

rl 1 
i - i l i - .  (q)." 

Another important combinatorial species is the word. A word in the alphabet 
{ 1 , . . . ,  n} of type 1 ~ 2 ~ . . .  n ~- is any sequence containing exactly a~ l 's ,  
a 2 2 ' s , . . . , a , n ' s .  We will denote the set of words of type 1 ~ . . .  n~  by 
M ( a l , . . . ,  a,).  For example, the members of M(1, 2, 1) are {1223, 1232, 1322, 
2123, 2132, 2213, 2231, 2312, 2321, 3122, 3212, 3221}. 

Every word W on n letters gives rise to (~) 2-lettered words (W~i)t.i<i.~,, where 
W~j is the word with the letters i and j, of type i",]~ obtained by retaining only the 
letters i and j. For example if W=41211321133214EM(6 ,  3, 3, 2) then 

W12 = 121121121 Wla = 111311331 

W23 = 232332 

W14 = 4 1 1 1 1 1 1 4  

W24 = 42224 

Wa4=43334. 

This paper would have been much harder to write were it not for the useful X 
notation, popularized by Adriano Garsia. For any statement A we write 
x ( A )  = 1 if A is true and x ( A ) =  0 if A is false. For example X(I+ 1 = 3)=  0, 
X(2+3 = 5)= 1. 
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The major index of a word W = W ~ . . .  Wt is defined as maj (W)= 
1--1 ~i=~ 0¢(W~>W~+x). This notion was introduced by MacMahon (see [1]) who 

proved that 

q=,jcw  = (1.1) 

A related notion, which in this paper is only used for permutations, is that of the 
number of inversions inv(W)=~.t~,,<o~lx(W..>WB). It is immediate that 
inv(W) = ~x~i<i~, inv(Wii), on the other hand it is grossly wrong that m a j ( W ) -  
~t-~i<i~. maj(Wii). However ~l~i<i~. maj(Wii) can be used to define a brand-new 
statistic, which for lack of a better name, we will call the z-index: z ( W ) =  
F.l.~<i..maj(W~j). It is a well-known fact that 

..... ( q L , " "  (q )a  

and thus 

Z qmai(W3 = Z qinv(W). 
W ~ M ( a l  .. . . .  a,,) W ~ M ( a l  . . . . .  a,,) 

Foata ([5], see also [11, 5.1.1 ex. 19]) gave a beautiful bijeetive proof of this 
identity. One of the cornerstones of the present paper is (Lemma 4.1) 

W . M ( a  1 . . . . .  ~ ) l ( q ) "  1 t " I ( q )  ~ } 

but our proof is by induction (the kind of proof G.H. Hardy used to call 
"essentially verification"). It would be nice to find a Foata-style proof. 

The following Bijection M is crucial for Section 3. It occurs in MacMahon's 
(see [11, p. 18]) proof of (1.1). 

Bi]ection M. Let W = Wx- • • Wt be a prescribed word on the alphabet { 1 , . . . ,  n}. 
There is a bijection between partitions p : p m . . ,  p<~) satisfying p<O>pti+x) 
whenever W~ > V¢~+I and ordinary partitions ¢/: q m . . .  qt~) such that 

Ipl = I q l + m a j ( W ) .  

Description. Scan W from left to right. Whenever you encounter a descent, that 
is, an i with W~ > V¢~+1, you know that p~O> p~+~, change 

(p ro . . .  p~Op~i+l~.., p(t~) <__ ((pro_ 1) . . .  (p~o_ 1)p(i+l)... p(l)); 

keep doing it until you have finished scanning W. The final outcome is q. 

Exmaple. p:333222111;  W =  122122112; the third place is a descent so p~-- 
222222111; the next descent is the sixth place so p <--- 111111111 and since there 
are no more descents, q = 111111111. 
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The last notion which we are going to use is that  of the tournament. A 

tournament  on n players { 1 , . . . ,  n} is a skew-symmetric matrix (t~i)~i~i~,, ~i = ti~, 

such that  ~i = i or ]. If tii = i we say " i  beats  ]"  and if t~ i = j we say " j  beats i" .  A 
tournament  is called transitive if for 1 ~< i ~ j ~ k ~< n, " i  beats ] "  and " j  beats k "  

implies " i  beats k" .  Otherwise it is non-transitive. For example 

while 

t12=1 t13=3 

t23 = 3 
is transitive 

t12 = 1 t13 = 3 
is non-transitive. 

t23 ---- 2 

There  are altogether 2 (9 tournaments ,  n l of which are transitive. This is so 

because every transitive tournament  defines a permutat ion as follows: 

There  is a player ¢r(1) who beat  everybody else, a player ¢r(2) who beat  

everybody but I r ( 1 ) , . . .  and finally a player  or(n) who got beaten by all. Given a 
permutat ion ~r, we will denote  by 0rii) the corresponding transitive tournament.  
(Warning: it should not be confused with the previous notation W~j). Thus if 
1r = 2143 

Ir~2=2 ¢r~3=1 1ra4=l 

7 / ' 2 3  = 2 ~24 = 2 

"/I"34 = 4. 

A cycle in a non-transitive tournament is a sequence (il, i2,.-., ik) such that i~ 
beats i2, i2 beats i3,..., ik-I beats ik and ik beats i~. If there exists a single player 

who is contained in every cycle, he is called a spoiler for the tournament. Note 
that  removing a spoiler f rom a tournament  breaks all cycles and so makes it 
transitive. Of  course, not every non-transitive tournament  has a spoiler, and if it 
does then this element is not necessarily unique. For  example, in 

t12=1 t13=3 

t23 = 2 

every element is a spoiler. 

The  score vector ¢,, = ( w l , . . . ,  w, )  for a tournament  is a record of how many 
games each player wins: 

NonTrans (n ;~ , ; r )  denotes the set of non-transitive tournaments  with n 
players and score vector ~ and for which r is a spoiler. 

We  highly recommend that  the reader  look up C~ssel's paper  [6] which inspired 
much  of this work.  



206 D. Ze/Iberger, D.M. Bressoud 

2. Tne combinatorial interpretation and ouUine of the proof 

Let ~ = ~ ( a x , . . . ,  a . )  be the set of partit ion matrices (Pij)a~i.i~. such that 
(i) ZT=a#pii =(n-1)a~ ( i =  1,...,n), 

(ii) #p,i  +#Pi~ = a~ +a~ (1<~i < j~<n) ,  
(iii) #p~ = 0, that is the diagonal entries are empty. 
Every such partition matrix defines uniquely a numerical matrix K = (/qi)x-~i.i-~,, 

belonging to Y/" (defined in the Introduction) where for i~  ] #Pii =a~ + k~ i. For 
example the following is a member  of ~ (4 ,  6, 3) with ka2 = 2, kxa = - 2 ,  k2a = 2: 

t :¢ 
P21 = 4 3 1 0  

\ P 3 1  = 4 4 3 0 0  

p12 = 3 3 3 2 2 2  

P32 = 0 

P13 = 4 4  ) 

1323 = 22.210000 . 
We define a weight on I~ as follows: 

weight (P)= ,(K)q ** [1~,~,~, 'P,,I], 

where K is the numerical matrix defined by P and f(K) is as defined in the 
Introduction. For example, the weight of the partit ion matrix given above is 

(--1)2-2+2q2"3/2+(-2)t-1)/2+2"a/2q ** [[3332221 

+ 1441 + 143101 + 122210000[ + 1443001 + 101] = q56. 

For any given K e Y/" let ~K denote the subset of ~ having #Pij =a~ +/% for 
i~k j. By the remarks of Section 1: 

weight(~K) = f(K) n 1 
l~ i~ j~n (q)ai+lq- i " 

Since ~ = U~c,~c~K it follows that we igh t (~ )=  1.h.s. of (Z). 

In Section 3 we win introduce two sets c g = q d ( a l , . . . , a , , )  and ~ =  
( a l , . . . ,  ah) which we will name the good guys and the bad guys respectively. 

We will introduce appropriate weights on these sets and will prove 

q['heorem 3. There is a weight preserving bijection between ~ and ~ LI ud. 

From this it follows that weigh t (~)=weight (qJ )+weight (~) .  In Section 4 we 
will prove 

"r lh~rem 4. weight((~)= r.h.s, o[ (Z). 

In Section 5 we will prove 

T I h ~ r e m  5. weight(G) = 0. 
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Combining all these would yield 

1.h.s. of (Z) = weight(~) = weight(ad) + weight(G) 

= r.h.s, of (Z) + 0 = r.h.s, of (Z). 

207 

3. The good guys and the bad guys 

* 

P =  32 

21 

would become 
~g 

We shall begin by trying to motivate what separates the good guys from the bad 
guys. As we have seen in Section 2, the left-hand side of (Z) is the generating 
function for certain matrices of partitions. Scrutinizing the right-hand side of (Z) 
we see that a piece of it, namely 

rI 1 
l~i<j~n (q)~+~ 

is also the generating function for certain matrices of partitions, specifically for 
upper triangular matrices 

Q = (Qii)l . ,<j.n 

where Q~i is a partition_with a~ + aj parts and the weight of O is simply given by 

This suggest that we want to transform matrices in ~ into the upper triangular 

matrices generated on the right-hand side. When we observe that for i~  ]: 

#p~i +#pi i  = a~ + ~ j  +o~ +kji - o~ +o~, 

it is natural to transform a matrix P of ~ by dropping the empty partitions on the 
diagonal and then for each pair (i, j), 1 <<-i<j <~ n, combining the parts of pii with 
those of pj~ to form 0ii. Thus 

531 320~ 

, 4 1 )  
20 

53321 32210~ 

0 • 4 :0) 

Of course, under this transformation there are many different matrices P which 
give rise to the same 0 .  What we shall do is to accompany 0 with a code which 
tells us how to decompose ¢~ back to the appropriate P. Thi.~ code will be a word 
W ~ M ( a l , . . . ,  a~) which is read as follows: for each pair (i,j), l<~i<]<~n and 
for each k, 1~< k ~< a~ + a~, the kth part of 0~i, namely 0 (.k) , j ,  comes from the 
partition P~i ff and only if the kth letter of W~ i is i. 
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For the example given above, the word 1123231 is the code for decomposing 
0 to get back P. For example, W23 = 2323; t~23 = 4210 and thus P 2 3  = 41 while 

P 3 2  = 20. 
It should be obvious from the definition of the decomposition procedure that P 

can be decomposed from a Q using a code word only if P E ~ r  where K is the 
zero matrix (i.e. #P~i =a~ for all 1~< i~j<~n) .  As  we shall see, this is not a 
sufficient condition. If P is in ~ r ,  K the zero matrix, then we attempt to construct 
the code word W as follows: 

A l g o ~ m  3.1 
Step 1. Initialize W to be the empty word, (Bii)= (Pii)- 
Step 2. If any of the partitions, say Bij, i~: ], is empty, then all partitions in the 

ith row are empty. Delete the ith row and column. 
Step 3. Define a tournament T =  (~i)i~i by setting for i<] :  

i v l ' R  (1) ~ R(1)~ 4- " ( I )  (1) t~i = -,,.,--ii ~'--ii , -  Ix(Bi~ <B~i ), tii= tii. 

Step 4. If T is non-transitive, then STOP. The code word cannot be created. 
Step 5. If T is transitive then it has a winner, say k. Replace W by Wk and 

delete the largest part from each partition in row k. 
Step 6. If (B,j) consists only of empty partitions, then STOP. The code word has 

been found. Otherwise, return to Step 2. 
It is important to observe here that because of the way the tournament is 

defined in Step 3, the matrix 0 is restricted by the code word W which 
accompanies it in the following manner: for 1 ~< i < j  ~< n, if the kth letter of W~j is 
strictly larger than the (k+  1)st letter, then 0}~ ) must be strictly larger than 
0(k+l) Thus, in our example, W23 = 2323 and since the second part of 023 = 4210 lJ 

came from P32 and beat the third part which came from P23, it has to be strictly 
larger (as indeed it is: 2 >  1). The conditions of Bijection M are thus satisfied and 
we can use it on each partition in 0 .  Our pair 

* 53321 32210)  

0 = * 4210 W =  1123231 

becomes 
* 42211 2 1 ! 0 0 )  

O = * 3 10 W =  1123231. 

K is the zero matrix which implies that 

f ( K )  = ( -  l )~<Jkuq T''~'k"(k'j +1)12 = i ,  

and so the weight of P is 

weight(P)=q**[ ~ ,piil]=q** [ ,~ 'Q,i'] 
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=q~(W~.q**[ ~ [Qii[]. 

We are now prepared to define a good guy. 

I~ fmi l ion .  Let  q~ = ~d(a~, . . . ,  an) be the set of pairs (W; Q) where W is a word 

in M(al,..., a,,) and Q = (Qii)x~<i,~ is an upper triangular matrix of partitions 

satisfying # O ~  =a~ + a i. The weight of an element in ~ is given by 

weight(W;O)=qz(W)'q**[~,i~<~,n I O,~ I ] • 

The elements of ~ which do not correspond to good guys will be the bad guys. 
This includes all elements of @ for which K is not the zero matrix as well as those 
with K equal to the zero matrix which are interrupted at Step 4 of Algori thm 3.1. 
The following algorithm transforms our bad guys into a set of objects over which 
we can sum the weights, and has the desirable feature that if we start with an 
element  of ~ which corresponds to a good guy, this algorithm produces the pair 

(W; O). 

Adigo~tt~m 3.2 
Step 1. [Initialize] Let W = empty word; 0 = (0ij) = upper  triangular matrix of 

empty partitions; q = 0 for 1 ~< i <~ n; B = (B~j) = (p~i); ri~ = a~ +/q~. 
Throughout this algorithm the parameters  q and r~i will be related to W and B 

as follows: 

W~M(cl,..., en), #B, i  = hi- 

Unti l  we reach Step 5, the number  of parts in 0~i will be c~ + q and r~j will equal 
a~ +/q.j - c~. Since for each i there is always some i ~ i such that/q-j ~< 0, and since 
rij >~ 0, the last equality implies that c~ is always less than or equal to a~. 

Step 2. [Define tournament] We define a tournament  S = (sii)~, j only on those 
values of i for which row i of the matrix B contains at least one non-empty 
partition. Let B ~  ~ be the largest part  of the partition B~i; if B~ i is empty then 
define B~  ) to be -o0. We define S by setting for i < j  

If S is non-transitive, go to Step 5. If S is transitive, continue with Step 3. 
An  important  observation at this point  is that if s~j = i for any pair i ~ ], then B~ i 

is non-empty.  To see why this is so, let us assume that sij = i and B~j is empty. It 
follows from the definition of s~ i that i is less than ] and Bj~ is also empty. Thus, 

o =  r,~ = a, + ~ i - q ,  O= r~ = a ~ + ~ - q .  
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Sum m ing  these equal i t ies  and using the  fact t h a t / %  = -k i~  yields 

O =  

which implies  tha t  a~ = ci, a~ = q since 0 ~< c~ ~< a~, 0 <~ q ~< % 
Since there  is a non-empty  part i t ion in row i of B, there  is an m such that  

kim > 0. Since 

E k,, = o, 
i 

there  is a p such that  ~p < 0. But  then  

#Bip  = rip = a~ + kip - q = ~p < 0, 

a contradict ion since no part i t ion can have a strictly negat ive  n u m b e r  of parts. 

Step 3. [Find winner  and transfer  his 'best players '  f rom B to 0 ]  Since S is 
transit ive,  it has a winner  i (1 ~< i ~< n). 

(a) For  1 <~ m < i, delete B~I~ ) f rom Bi,,, and add it as a new par t  to 0 , , i ;  that is 

Bi~ becomes  R (2) B (',-) u i m - - -  i m  

()(1) ~(c,~+c,)R (t) Qm becomes  " . ~ m i  . . . .  m i  - - i r n ,  

and rim is decreased by one. 

< m ~ n, delete  r~ (-x) f rom Bira and add a new par t  rl (x) +/q.~ to Oi.,; that  u t m  u / r n  (b) For  i 
is 

B . .  becomes  ~ ( 2 )  B(,,~) ~ lr 'tl  • ° ° ig t t  

0 i~  becomes  t5 (-t) t5 %+~.)(Ro) +/q,,,), - . , ~ t m  • • • " - . ~ i m  x u i m  

and r.,, is decreased by one. 

W e  now increase ci by one  and replace W by Wi. Note  that  the 
condi t ions  at the  end  of Step 1 are still satisfied. 

W e  observe tha t  if i is the winner  B~t~ + kim cannot  be  strictly negative for if it 
were  then  by the  definit ion of si,,, B,,,/ is empty  which impl ies  that  

O =  k . ,  = k-,. 

which implies that  B~t~ ) is strictly negative.  
Step 4. [Do we have  an e l ement  of  (~?] If B contains any  n o n - e m p t y  partit ions, 

we re turn  to Step 2. Otherwise,  we have  combined  all the  par t i t ions  of B into the 
par t i t ions of 0 and  coded this with W. It remains  only to invoke  Biject ion M on 
each  pai r  (Wij, Qij) as descr ibed above to yield an e l emen t  (W, Q ) e  ~. 

Step 5. [Start finalizing an e lement  of ~ ] Let  T = (~j)i*i be  a part ial  t ou rnament  
on { 1 , . . . ,  n} def ined  as follows: 

(i) if i and j a re  vertices of S, then  tij = s~ i, 
(ii) if i is a ver tex  of S and j is not,  then ~j =~i  = i, 

('tii) if ne i ther  i nor  j is a vertex of  S then t~ i is undef ined.  
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Recall that 0ij = Q~)-- . . .  -,,,o<-.~'+c,), Bij = B~  ) . . . .  R(:,,)ij . For each pair (i, j) such 
that ~i is defined, i < j ,  

(a) If tii = i, then delete B~ l) from Bit and adjoin a new part B~il)+/qi to (~i~, 

0ij becomes (~i l) ~%+~)/D(i) .  - . .  t z i j  ' t 'ii 

Bii becomes B~  ) R%) 
""  • " • - - i i  • 

Decrease rij by one. 
(b) If ~i = I, then delete B ~  ) from Bii and adjoin a new part B)~ ) to 0ii, that is 

Oij becomes (~1) ~(¢,+¢,)R(1) 
"" " ' "  " - - i t  ~ i i  , 

Bi~ becomes B~ ) R(',) . . . .  ji J . 

Decrease ri~ by one. 
Observe that we now have that, 

#1)~i = ca + q + x(t~i exists), rii = a~ +/% - ca - x(t~j = i), 

where X(t~ i = i )=  0 if t~j does not exist. 
Step 6. [Finalize element of N ] For each partition 0~i, the information on 

whether a given part came from P~i or Pii is encoded by the word W~it~i where 
W~j~j = W~j if t~i does not exist. As in the case of good guys, if the k th letter of 

~(k)  ~ (=)(k+l) W~it~ i is strictly larger than the ( k + l ) s t  letter, then . .~ - ~ i ~  . We apply 
Bijection M to each pair (Wi~i, Oii) to obtain (W~ti~, Q~i) satisfying 

We have thus transformed our matrix P into a quadruple (W, T; Q, B) of a 
word, a non-transitive tournament and two matrices of partitions. We can recover 
our original matrix P because: 

(i) the aq are known constants, 
(ii) the ca can be recovered from the fact that #Qii  =ca + q  +x(t~ exists), T 

non-transitive implies that n >~ 3, 
(iii) the ki~ can be found using the last relationship of Step 5: 

= #Bi  - + ca + x(t,  = i), 

(iv) W and T provide the code for reconstructing 0 and apportioning the parts 
in Q to recreate P. 

A bad guy will be such a quadruple which corresponds to an element P E ~. 

Specifically, we make the following definition. 

D~lh~ltioL Let ~ = ~ ( a l , . . . ,  an) be the set of quadruples (W, T; Q, B) such 
that for some numbers c l , . . . ,  c~ with 0 ~< ca ~< a~ we have 

(i) W is word in M ( c l , . . . ,  c~); 
(ii) T = (~j)i,,i is a non-transitive partial tournament on {1, 2 , . . . ,  n} for which 

the incomplete vertices (those vertices i for which t~ i does not exist for some ]) 
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lose all games and if both i and ] axe incomplete then t~ i does not exist. If W is 
non-empty then the last letter of W is a spoiler for T. (This follows from the fact 
that if W is non-empty, then T was formed by taking a transitive tournament and 
reversing some of the edges to the winner, the last letter of W.) 

(iii) Q = (Qii)l~i<j.~,~ is an upper triangular matrix of partitions such that 
#O,i  = c, + q  +x(t~ i exists); 

(iv) B = (B~i)l,~.i,~, is a matrix of partitions with empty partitions on the 
diagonal; 

(v) Setting /q.i=0, / q . i = # B i j - a ~ + q + x ( t ~ i = i )  for i¢ ] ,  we must have that 
k~j = -  k~ and Y.i ~J = 0 for each i. Note that this last condition implies that 

0 =  ( # B , j -  + + x( j = i)) 

and thus the score vector for T is completely determined by B and Q;  
(vi) If i is an incomplete vertex of T then c~ =ah and/qi = 0 for all j; 

(vii) For 1 ~< i < ] ~< n, the smallest part in Q~i is at least as large as the larger of 
B~ ) + k,~ + X(t/j = i) and B~/1). 

For example, 

W =  132 
[t12=1 t t 3 i i )  

T = | t 2 1 = l  t23 
\t31 = 3 t32 

Q= * 5 5  

B =  * 
33 5 

is a member of fl~ (3, 3, 3) and we invite the reader to go ahead and check that all 
t h e  conditions are satisfied and that this corresponds to the matrix 

* 4333 44~.- ) 
P = 54 * 

3333 65 

The weight of a bad guy is the weight of the original P to which it corresponds 
which is easily checked to be 

weight(W, T; O, B) 

= f(K)q ** [ ~  IB. l+ Z IQiil + Z maj<~i l iJ ) -  Z/q-j(ci +x<tq = i)) ] .  
• i<i i<i i<i 
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We now make T into a complete tournament on { 1 , . . . ,  n} by defining t~i = j 
whenever i and j are incomplete vertices and i is less than j. Note that this does 
not change the weight of (W, T; Q, B) because if i or j is an incomplete vertex 
then k~j equals zero. 

4. Enmentting the good 

Theorem 4. 

(q).~+...+on 
weight(~d)=(q-~ . : .  (--~on ~,,<,,,lI (q)~X+,~. 

Proof. Recall that ~d= ~d(ax, . . . ,  an) consists of pairs (W, 0 )  where W is a 
member of M(al , . . . ,  an) and O = (Q~j)~.~<j,~ is an upper triangular partition 
matrix such that #Q~i =a~ + a i. The weight is defined by 

Thus 

w e i g h t ( W , O ) = q * * [  ~ maj(Wij)+ ~ IOiil] 
~ l ~ i < i ~ n  l ~ i < j ~ n  

z ,o,,,]) 
weight(qd) = ~ )-" qZ~W), qr~lo,jl 

W ~ M ( a x  ..... on) 0 

by the general remarks in Section 1. 
Thus Theorem 4 would be proved once the following lemma is proved. 

Lemma 4.1. 

w M al ..... ( q L l " ' "  (q)on 

(recall that z(W) =Y~l,~i<j,~nmaj(Wii)). 

Proof. A venerable principle of mathematics in general and of combinatorics in 
particular is that of 'structuration' (see Melzak's classic [11, p. 377]), that is, 
introducing extra structure in order to have more things to hold on to. Every 
We M(al , . . . ,  a~) defines a clear-cut permutation vr ~ S,, as follows. Let ~r(1) be 
the last letter of W. Let vr(2) be the last letter which is not ~r(1). Let  w(3) be the 
last letter that is neither w(1) nor ~r(2) . . . .  L e t  ~r(n) be the last letter that is 
neither ~r(1) . . .  nor I t ( n - 1 ) .  

For example if W = 122144334414 ¢r(1) = 4, w(2) = 1, Ir(3) = 3, w(4) = 2, so 
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~r = 4132. A n  al ternat ive  defini t ion,  which we will find useful la ter  on,  is the  

following: Le t  S~i = i or  ], be  the  last le t ter  of W~ i. This  defines a t ransi t ive  

t ou rnamen t  cor responding  to a cer tain pe rmuta t ion  ~r such that  S~ i = ~r~i (see 

Section 1 for  nota t ion) .  Thus for  the  above  word 

W12= 12211 W13= 11331 

W23 = 2233 

W14 = 1 4 4 4 4 1 4  

W24 = 2244444 

W34 : 33444 

S12=1  Sa3=1  S 1 4 = 4  

Sz 3=3  S 2 a = 4  

S34 = 4 

and  indeed the  winner  I t ( l )  is 4, ~r(2)= 1, I r (3)=  3, I r (4 )=  2 so 7r = 4132.  For  

every  1r e S, let  M ~ ( a l , . . . ,  a~) be  the set of words in M ( a l , . . . ,  a , )  that  yie ld  7r. 

If a,,(,) is zero then  M = ( a l , . . . ,  a , )  is equal  to the set M ~ ( a l , . . . ,  t i , , ( , ) , . . . ,  a , ) .  

If a,,(,) is no t  zero but  a~ is zero  for some i:/: ~r(n), then  M ~ ( a l , . . . ,  a , )  is the  

empty  set. Set 

~'(al , . . . ,  a , ) :  Y~ q~w~, ~ ( a l , . . . ,  a ,)= Y~ q~ .  
W ~ M ( a l  ..... a~) W E M ~ ( a l  ..... a~) 

Let  us prove 

Sub lemma 4.1.1.  Le t  

c ( m  a) = c(1r, al ,  . . . , a , ) =  

and 

then  

l ~ i < j ~ r t  

N 

E(~) = I'I [1-  q°-,,~++~-,-,]-~, 

F =  ( a x ,  • .  • ,  a , )  = q ¢ ( = ' " ) E ( ' n ' )  • (q)a,+...+o~-1 
( q ) o ~ _ ~ ' - "  ( q ) ~ _ ~  " 

Note  that  if a,,(,) is zero then  F , , ( a x , . . . ,  a , )  equals F = ( a l , . . . ,  gt.,<,,),..., a,,). I f  

a,,(,) is no t  zero bu t  a~ is zero for  some i ¢  ~r(n), then F . ~ ( a l , . . . ,  a , )  = O. 

Proof  of  4.1.1.  For  any "Jr e S,  and  for l = 1 , . . . ,  n let 

Irl = 1r = 1r(1)Tr(2) . . .  I t (n )  

¢r2 = 7r(2)1r(1)vr(3). . .  7r(n) 

~rl = Ir(2) . . .  ~r(/)1r(1)~r(/+ 1 ) . . .  I t (n)  

"n'. = -n'(2) . . .  -n-(n)'n'(1). 
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The  sub lemma is trivially true for  n = 1. If it is true for n - 1 it is true for the 

' boundary '  a ' s  at n, that  is, for ( a l , . . . ,  an) for which a~ = 0 for  at least one  i. 
W e  claim that F,~ satisfy the fol lowing recurrences:  

It 

F,~(al, . . . , a~¢~ + 1 , . . . ,  an) = ~, qrL='~¢~l~<'~t'~"'+%"'lF~,(a~,. . . , an). 
1=1 

This  is so because every W e M ~ ( a l , . . . , a , ~ l ~ + l , . . . , a ~ ¢ , , ~ )  ends with the  
let ter  ¢r(1) and writ ing W =  W'~r(1) leaves us with W ' e M ~ , ( a ~ , . . . ,  an) for some 

l be tween  1 and n. 
Since 

l 

z ( W )  = z ( W '  zr(1)) = z ( W ' ) +  ~, (a,~(1) + a~(,))X(cr(1) < It(r)) 
r = 2  

the  recurrences are explained.  
Now we need  

Observation 4.1.1.1. 

c(1r, a ) =  ~ a ~ x ( 1 r ( i ) < T r ( j ) ) .  
l ~ i < / ~ r t  

Proof  of  4.1.1.1. 

c( r, a)-- 
l ~ i < j ~ r t  

-- ~ a~o)x(i < ~( j )  and  ar-z(i) < ]) 
i j  

= ~,, a ,~X( ' tr( i )  <'trO') and i < ]) 
ii 

= ~ a ,~X(1r ( i l<~r( j l ) .  [] 
i < i < / ~ n  

Observation 4.1.1.2. 

c(~r,; a)  = c(~r; a ) -  a,~2~X(~r(1) < ~r(2)) 

. . . . .  a~¢z~X(cr (1) < ¢r (l)) + a~¢l~x (¢r (2) < It( 1 )) 

+ ' "  + a~¢l~x(~r(l) < or(l)). 

Proof of  4.1.1.2. Recal l  that 7rt = ~r (2) I r (3) . . .  ¢r(/)Ir(1)~r(/+ 1 ) . . .  or(n), that  is, 
~r~ is obta ined  f rom ¢r by  moving ~r(1) l steps to the right. In  so doing, you lose 

Y/,--2 Y.z,=2 a,~,~x(~r(1) < or(r)) but  you gain a,,~l~X(cr(r) < or(l)). [ ]  

Observation 4.1.1.3. c(1r; a l , . . . ,  a=¢l~+ 1 , . . . ,  an) = c(~r; a l , . . .  , an). 

Proof o f  4.1.1.3. Immedia te  f rom 4.1.1.1.  [ ]  
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In order  to complete the proof of Sublemma 4.1.1 we will show that its r.h.s. 
satisfies the recurrences established above for the F~. Namely, we must show that 

qCC~;")E(Tr) (q)a~+...+,~ 
( q ) a r a  " " " ( q )o~m"  " " (q)a, , -1 

n 

= Y. q~,E(~,) (qL~+...+~-~ (.) 
t=1 ( q ) a l - 1 "  " " ( q ) a , , - 1  

where 
l 

Hi = c(1rl; a l , . . . ,  an)+ ~, (a~(1)+ a~(,))x(1r(1)< It(r)). 
r = 2  

We need 

O b s e r v a t i o n  4 . 1 . 1 . 4 .  For l = 1 , . . . ,  n 

Hi = c(1r; a) + ( l -  1)a=(~). 

P r o o f  o f  4 . 1 . 1 . 4 .  

I 
Hz = c(Trl; a l , . . . ,  an)+ E (a=(1)+ a=(,))x(1r(1) < It(r)) 

r - - 2  

i 

( 4 . 1 . 1 . 2 )  C ( ' r r ;  a)-- E aTr(r)X(qr(1)<'tr(r)) 
r = 2  

l l 

+ ~'. an(1)x(~r(r)< I t ( l ) )+  ~ (a~(1)+a~(,))x(1r(1)< ~r(r)) 
r=2 r = 2  

l 

= c ( ¢ r ; a ) +  ~ a ~ ( 1 ) = c ( T r ;  a ) + ( l - 1 ) a ~ ( 1 ) .  [ ]  
r = 2  

Dividing both sides of (*) by c(~;a) . .  q (q)~l+---+,~-x/((q)~l-x "(q)o~-l) we get that 
we have to prove 

n 

(1 -q"~÷+~ ' )E(~)=  Y '. q~'-~)°.,~,ts(~,). 
( 1  - q % " )  z= t 

Now, for convenience, set x~ = q"-,,,, l = 1 , . . . ,  n and note that 

E(m)  = E(~r)= 

and for l ~> 3 

1 

( 1  - x 2 " ' "  x ~ ) ( 1  - x 3 " ' "  x . )  • • • ( 1  - x . ) '  

E(~n) = 
( 1 - x s  • " " x E x l x z ÷ l " "  • x , ) . . .  ( 1 - x ~ ) "  

We are left with the task of proving the purely algebraic identity 

1 - x x .  - • x.  1 

1 - x ~  ( 1  - x 2 " ' "  x . ) ( 1  - x s " "  x . )  • • • ( 1 -  x . )  
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1 

( l - x 2 -  • • X " ) . - -  ( l - x . )  ( 1  - - X l X  3 

x1 

- • • X")- • • ( 1 - x . )  

x~ x~ -1 
4 - . - - q  

( 1 - - X 3 X 1 X  4 " "" X,n) " " " (1-x.) (1  - x3" " • X.Xl)  • • • (1  - x l ) "  

This  will be  p roved  by induct ion  on  n" 

r.h.s. = 
(1 - x 2 J ~  3 • • - x n ) -  • • ( 1 -  X") 

X l  + 
( 1 -  x l x 3 "  • • ~ )  

[ 1 

( 1 - x 3  • • • X " ) ' - "  ( l - X " )  
F - . . h  

x~-2 ] 
(1 - x 4 x s " "  • X r t X l )  " " " (1 - x 1 ) '  

inductive 1 

h y p o t h e s i s  ( 1 -  X 2 X  3 " " " X ~ ) "  " " (1 - X") 

+ 
x, [1 

( 1 -  x l x 3 " "  • X") 

- x t x 3 "  • • X " ) / .  ~ 

0-- xl) J (1- 
1 

x 3 " "  X")-""  ( l - X " )  

1 X 1 ] 

( 1 -  x 2 " "  • X") ÷ 1 -  x~ ( 1 -  

1 

x3- . -  x")- - • ( 1 -  x~) 

( 1 -  x l "  " " X") 1 = [ ]  
(1  - x l )  (1  - x 2 " ' "  X") • • " (1  - X")" 

W e  can now go on  to comple te  the p roof  of L e m m a  4.1. Since F = ~ s .  F~ we 

m u s t  s h o w  t h a t  

(q),.,+-.-+, = ~ q,(,,;,o (q),,~+---+--1 E(.,,.). 
(q)a~ " " " (q)o~ ~,~s. ( q ) ~ - t  " " " (q )o~-x  

Divid ing  by ( q ) , , ~ + . . . + o ~ - l / ( ( q ) ~ , ' " ( q ) ~ )  we must  show that  

(1- q"~+"'+~) = ( 1 -  qa,) . - -  (1- q"") ~ q~(=;a)E('rr). 

Let t ing  x~ = q¢,, i = 1 , . . . ,  n, we are left  wi th  proving the pure ly  algebraic 

ident i ty .  

S u b l e m m a  4 .1 .2 .  

t hen  

d(',r) = 

L e t  

I I  ...x (~r(i)<'a'Cd)) *'frO) 
l ~ i < j ( n  

( 1 -  x l " "  X " ) =  ( 1 - x l ) " " "  ( l - X " )  
y. aOr) 

-rr,ES,, (1--X~-(2)""" Y~n'(n))""" (1- x=(,~)) " 



218 D. Ze//berger, D.M. Bressoud 

Proo[ o[ 4.1.2. If I t ( l ) =  r, tha t  is, vr = rlr' then  d(1r) = x r +  1 

n 

r.h.s. = ( l - x 1 ) ' " "  ( 1 -  x~) 
r ~ - I  

n 

= ( 1 - - X l ) " " "  (1-- X~) 

~ s .  ( 1 -  x~(2) 

• .. x~d(~r'). Now 

d(~r) 
• - .  x~(,)) • • • ( 1 -x=( , ) )  

=(1)=r 

X r +  1 * . . X, n 

y. d(1r') 
~'~s~_~ (1 - x~(2) • • • x~(,)) • - • (1 - x~(,)) 

'~ d ( q r ' ) ( 1 - X l ) . - .  ( l - x , ) . . .  ( 1 - x , )  
- Y Y, 

r = l  ¢ r , ~ , ~ _  1 ( ! - -X~(2) ' ' "  X~(~))'" " ( 1 - x ~ ( , ) )  

Now the  inner  sum, which ranges  over  all pe rmuta t ions  on { 1 , . . . ,  ~ , . . . ,  n} is 
by the  inductive hypothesis  equal  to 1, and we are thus left with 

n telescoping 
( 1 - - X ~ ) X r + I " ' ' X n  : l - x 1 " "  " x, .  ["l[-qFq 

r ~ l L  

5. Ge t t ing  r id  of  the bad guys 

Theorem 5. w e i g h t ( ~ )  = 0. 

P r a a L  Recal l  that  

weight(W, T; Q, B ) =  (-1)2,- ,<,--~q ** [ ~ maj (WJi j )  
l ~ i  < i ~ r t  

+ ~ IO, jl+ E In,jl+ Y. kii(/q-i+l)/2 
l nai < j  ,~rt l ~ i  ~ j ~ r t  l ~ i  < ] ~ n  

- ~ ~j(~ +x(~j = i ))]  
l ~ i < j ~ r t  

where  ~i = ci + X(tii = i) + rij - ~ .  F r o m  now on let G A R ( B ,  O)  denote  any expres-  
sion which depends  only on B and  O. Since the  a~'s are  known constants and  the 

ci's are  uniquely  de te rmined  by  O, anything depend ing  only on the o~'s or  q ' s  is 

also included in G A R ( B ,  Q) .  
Wri te  b~i = q + r~j - a~ then /qi = b~i + X(~i = i) and  

~. [(1/2)/q-i(~ j + l ) - / % [ q + ~ c ( t ~ i = i ) ] ]  

= ~ [(1/2)(b,~ + X(t~j = i))(b,i + X(t~j = i ) +  1) 
l ~ i < j ~ n  

-(b,i  + x(~j = i))(n + x(~i = i))1 

= G A R -  Y~ ~X(~= i )=GAR+ Y~ ~X(~=/). 
l ~ i  < i  ~ n  l ~ i  < j  ~ r t  
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Thus 
weight(W, T; Q, B) = (-1) °AR+x,-,<,--x%=° 

• q** [ G A R +  ~'. qx ( t~= j )+  X maj(Wifli,)] 
l ~ i < j 6 n  l<~ i< j~r t  

= G A R .  (-1) z,-,<,-~x(~=° 

Now 
I ~  ~r t  l ~ i < j ~ n  

weight(~)= ~ ~ weight(W, T; O, B) 
Q,B W,T 

= ~ (-1)G"a~q °'~t~ ~ (-l~'-'<,"-x('. ---° 
Q,B W,T 

The theorem would be proven if we can show that the inner sum is always zero, 
that is, for every n; e l , . . . ,  c, and score vector ff we must show 

~ " ( - 1 ) x ' " < ' " x ( " = ° ' q ' * [  ,~<i qX(t t i= ' )+ ~ maj(Wd~J']=0' 
W , T  I~ ~ n  l ~ i < j ~ r L  

where ~w.r is the sum over all W e  M ( C l , . . . ,  c~) and non-transitive T with score 
vector ~ such that the last letter of W is a spoiler for T. If W is empty, then our 
sum is merely 

(-1)~','~('. =o 
T 

where T does not have to have a spoiler. This sum is zero by the involution on 
non-transitive tournaments given in Gessel's paper [6]. We shall therefore assume 
that W is non-empty. We call the term in the sum on W and T term(W, T) and 
we see that 

~. term(W, T) = ~ ~ term(W, T) 
W , T  ~re~ W e M ~ ( e  a ..... e~) 

T e NonTrans(n ;@ ;~(1)) 

where NonTmns(n;~,;cr(1)) is the set of non-transitive tournaments 
{ 1 , . . . ,  n} with score vector ~ and spoiler 7r(1). 

But if W e l ~ ( c l ,  . . . ,  c ~ )  

where ~rii is the transitive tournament corresponding to ~r: 

mi = i ¢~ ~r-l(i) < ~r-lq). 

o n  
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Thus the above sum can be written 

~ ( -  1)~:'"'<" ̀ 'x('' =') 
weS,, TeNonTrans(n) 

• * 

qEa,~i<j,~" maj(Wii). 

WEM,, (c l  ..... c.) 

Now by Sublemma 4.1.1 

y~ q~,. ,<, ,  m,j<~,~ = F~(C~,..., c~) 
WEM~(c~ ..... c,,) 

(q)~+...+~_l q~:~..,<,,..~,,w,,,, =~) 
( q ) c x - - l " " "  (q)c~--I ( 1 - -  q%" )+ " '+c "< " ' )  " ' "  ( 1 - q  ¢-"') 

Substituting above we get that  the sum is equal to 

(q),,+ ..+~-1 
( q ) c ~ - l " ' ' ( q ) ~ - z  =eS,, 

TeNon'l?rans(n) 

(_ 1)Z~..,<.=.x(t.~ =i) 

• q * * [  1-i~,~,, qx(~r,j=i)+cix(t~j = j) + (c~ + q)x(=ii > t~i)]- E(=) 

where E(~)=(1-qC,,,~,+"+%,,,) - 1 . . .  (1-q%,-~) -1. 

Introducing the notation Yi = q "  ( i =  1 , . . . , n )  we are left with the task of 
proving the following purely algebraic identity. 

5.1. Let, for ~r e S .  and T ~ N o n T r a n s ( n ;  i f ;  ~r(1)) 

then 

weight(m T ) =  

( -1)  z''<''~'~(''=~) 1I y~(~..---~)y~,(,~=o(y~yj),,(~..>,,,) 

(1-Y=<2)" • • y=<.))(1-y=<3) • • • y=<.))--" ( 1 -  y=<.)) 

weight(w, T) = 0. 
¢re~  

TeNonTrans(n; ~, ;w(1)) 

Proof .  We shall use the fact that  T is almost transitive, Write ~r = rlr' where 

r = ¢r(1) and ~r' is a permutat ion on { 1 , . . . ,  r - 1 ,  r +  1 , . . . ,  n} and let cr be the 
transitive tournament  obtained from T by deleting r. The transitive tournament  cr 

will also be identified with the permutat ion it defines. Le t / .~T  denote the number  
of players who beat  r in tournament  T, ~ T = Y ~ = I j ~ , x ( t ~  = ] ) .  We make the 
following observation: 

Observation 5.1.1. 

Iweight(~r', cr)l" (YlY2" " " 33, " ' "  Yn)Y LT 
Iweight(~r, T)]  = 

(1 - Y=<2)" " " Y=(.)) 
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Proof of 5.1.1. 

IweightOr, T)I = l ~ i < i ( n  

( 1  - Y - ~ ( 2 )  " " " Y = ( , , ) )  " " • ( 1  - y ~ ( . ) )  

IweightOr ' ,  or)l 

- (1 - -  Y--~(2~ . . . .  - -  ( ) " " " Y ' a ' ( n ) ) j = r + l  

r - - 1  r - - 1  

Y~(~"=') I I  (y,y,.)x(,~.=O I I  y~(',.=') 
i = l  i = l  

n 

1] 
i = r + l  

r - - I  r - - 1  _ [weig__ht(~'______~, or)l Y r + l "  " " Y n  n 

(1- y=(2: : : :'y-~(.;) H (y/y,.)x(,~,.=,) I ' ]  y~(t =,-) 
i = l  i = 1  j = r + l  

I-I y X(,, =i) 

r - - 1  r - - 1  Iweight(1r ' ,  ~)j  Y r + x "  " " Yn  n 

i = l  i = l  j = r + l  

y~(,. =~) 

IweightOr',  or)l 

( 1 -  Y=(2) " " " Y = ( . ) )  
(YI"' 'Y,- ' ' 'Y,)yLT. I'-I 

W e  shall  also n e e d  the  fo l lowing  obse rva t ion .  H e r e  we  t a k e  or to be  a t ransi t ive  
t o u r n a m e n t .  

Observation 5.1.2. For every or E S. 

= " " " Y,,)Y,~(:)Y,~(2) " " " Y~(,,) we igh tOr ,  or) s g n ( o r ) ( 1 -  y l  o 1 , - a  
=~s. ( 1 - y l ) ' - "  ( 1 - ) . )  

Proof of 5.1.2. This  is t r ivia l ly  t rue  for  n = 1. W e  shall  p r o c e e d  b y  induc t ion  us ing 

5 .1 .1 .  wi th  or' b e i n g  the  p e r m u t a t i o n  o b t a i n e d  f r o m  or by  de le t ing  r = 7r(1). N o t e  
t h a t  s ince or is a p e r m u t a t i o n ,  L ,  or equa ls  o r - l ( r ) - 1 .  N o w  

sgn(or) ~ weightOr, or)= ~ IweightOr, or)l= 

(5.1.1) 

i n d u c t i o n  

• rr ( S .  ~r (~S. r = 1 
IweightOr, or)l 

- n t i S .  
• r ( 1 )  = r  

t ( Y : ' " "  Y ' ' ' "  Y")YT-'(')-x 
(1- -  Y'=(-2) :" ~ ~ [weight(cr ' ,  or')[ 

r = l  l r ' ~  S._ l ( r )  

n 0 n - - 2  

X (YI""" Y, ' ' "  Y,)Y7 -'(')-: Y~'(:) " " " Y~'("-:) 
r = l  

( l - - y : )  • • • ( l - - y , )  - • • ( 1 - y , )  

I'& 

. . . .  _ 1 ~ y~(:) y~(~-,(,)_:)(1-y,) • ~¢>,,-:-°... 
( l - y : ) . - .  ( I-y,), f f i :  

- Y°o)Y~(2)""" Y"~(-"~ t Y~(1)""" Yo(~-,(,)-i)(1--Y~(~-,(,))) 

t e l e s c o p i n g  o y~(~)--, y~-.~ 
( 1 - y t ) " " "  (I- y.) ( 1 - -  Y~(1) " " • Y~( . ) )  

c o m m u t a t i v i t y  0 n - - 1  
Y ~ ( 1 )  " " " Y e t ( n )  

(1- -y l ) " " "  (1 - -  y . )  
( l - y :  • • • y . ) .  [ ]  
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We now combine the observations in order to simplify the sum which is to be 
shown to be zero. Recall that cr is T with its spoiler removed. 

n 

Z weight(or, T ) =  Z Z 
• w e S .  r = l  T e N o n T r a n s ( n  ;@ ;r ) 

T E N o n T r a n s ( n  ; ~  ; ~ ( 1 ) )  

(5.:_:) :Z Z 
r = l  T e N o n T r a n s ( n ; ~ ; r )  "/ ' i 'nE~.-~--l(r) 

(Iweight0r', cr)l (yl" " " 9 , " "  y,)yLa- 

( 1 - - Y ~ , ( 2 )  " " " Y ~ , ( . ) )  

weight(w, T) 
~ r e S ~  

w ( 1 )  = r  

n 

= Z Z (-  l)~:'"<""xe"=') 
r = 1 T e N o n T r ~ s ( n  ; ~  ; r )  

. L T 
(Yl"" "_Yz''" .Y_,_)YT"- y sgn(cr)weight(ar', u)  

n 

Z 
r = 1 T e N o n T r m a s ( n  ;@ ;r )  

. . . .  x L T 0 I 
(Yz ~', "" Y.)Y, Y(,o)Yo-(2)''" Y(~(-~-~) 

A 
( l - y 1 ) - - "  ( l - y , ) - . .  ( 1 - y , )  

-- Y,)Y~(1)Y~(2) " Y~(-2- I). 
,=I (l-yi),=1 T e N o n ' r r a r ~ ( n  ; *  ; r )  

It now only remains to be shown that 

n 

x ~ - -  Y r  Y o ' ( 1 ) ' " "  Y : ? 2 - - 1 )  
r = l  T e N o n T r a n s ( n  ; ~ ; r )  

n 

r = l  T e N o n ' r r a a ~ ( n  ; ~  ; r )  

n - - 1  
" : " Y¢r(n-1) = 0 .  

We shall prove this by exhibiting an involution on all elements over which we are 
summing which preserves the absolute value of the weight and reverses the sign. 

We observe that since there is at least one cycle through r, we have bounds on 
L T : I ~ < / . , T ~ < n - 2 .  We first define the involution on the set of pairs (r, T), 
T eNonTram(n ;  @; r), which have weight 

1~x~a <j=. x(ta =D. ,L T. o I n--1 
- - x l  Yr Ycr(1)" " " Ya(n--l) 

and for which r beats cr(/_,T), Player u(/.~T) loses precisely L,T matches since he 
loses to u(1), ¢ r (2) , . . . ,  c r ( / . ,T-1)  and to r. Therefore if we simply exchange the 
labels of players r and u ( ~ T ) ,  so that u(L,T) now becomes the spoiler, we have 
not changed the score vector or the absolute value of the weight. But since 
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co(L,T) now beats r we have changed the sign. 

o"(1) o"(1) 
,1, ,I, 

0"(2) 0"(2) 
,!, ,1, 

,1, ,!, 
co(L,T) ~ r r ~-- co(L,T) 

The second involution is on the set of pairs (r, T), T ~ NonTrans(n;  i f ;  r), which 

have weight 

_ ( _ l ) Z l . , < , . . x % = i ) . . r . r + t .  1 " ' "  Y~-(~-I) 
Yr  Ye t ( l )  

and for which co(/..T+ 1) beats r. Player co(L,T+ 1) loses precisely/_ .T matches 
since he loses to c o ( l ) , . . . ,  co(L,T) but not to r. Therefore if we exchange the 
labels of players r and co(/_~T+ 1), so that co(L,T+ 1) now becomes the spoiler, 
we have not changed the score vector or the absolute value of the weight, but we 

have changed the sign. 

o"(1) 
,!, 

,1, 
co(L,T+ 1) --> r 

o-(1) 
,1, 

,I, 
r ---> co(L,T + 1) 
$ 

We now define a sign reversing bijection between the two remaining sets. Let 

(r, T), T c NonTrans(n; ~ ;  r), have weight 

l ' ~ Ix , , , i<~ , , , ,X  (t~ = j ) , . ,  L T . ,  1 n - - 1  
- - . t !  Y r  Y e t ( l ) "  " " Yor(n--1)  

and be such that co(LrT) beats r. Note that L ,T¢  1 for if it were then co(l) beats r 

and r beats everyone else and so the tournament is transitive. For the same 
reason, there must be a j > L ,T such that c0(j) beats r. We exchange the labels of 
players r and co(L,T) and reverse the arrow between these two players, so co(L,T) 
still beats r. If we let s = co(L,T) be the new spoiler, U be the new tournament  and 

the transitive tournament  obtained from U by deleting s, then LsU = L , T - 1 .  
Our  new pair  (s, U) has the same score vector as (r, T) and now s = co(L,T) beats 
I-(L~U+ 1)=  I-(L,T)= r. The weight of (s, U) is 

l~X~.,<~.~x%=i)v~u+x.. t  . - 1  
- -  ." .Ts Y ¢ ( 1 ) "  " " Y ~ ( n - - 1 ) ,  

precisely the negative of the weight assigned to such a pair in the second 
summation.  Any  pair (s, U)  of the second sum for which s beats ~'(/.~U+ 1) must 
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arise in this manner since LsU cannot equal n -  2, for if it did then s would beat 
~'(n- 1) and lose to everyone else and so U would be transitive. Also, since U is 
non-transitive, there must be a j<~L~U such that s beats T(j). 

o-(1) 0-(1) = ,r(1) 
,1, ,I, 

1, 1, 
0 - ( L , T )  ---> r r = " r ( L , U  + I )  * -  o ' ( L , T )  = s 

[-1[=] 
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