NOTE

A COMBINATORIAL PROOF OF NEWTON'S IDENTITIES

Doron ZEILBERGER

Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

Received 8 April 1983

We are going to give a new proof of Newton's celebrated identities

$$\sum_{r=0}^{k-1} (-1)^r \left(\sum_{1 \le i_1 < \dots < i_r \le n} x_{i_1} \cdots x_{i_r} \right) \left(\sum_{j=1}^n x_j^{k-r} \right) + (-1)^k \left(\sum_{1 \le i_1 < \dots < i_k \le n} x_{i_1} \cdots x_{i_k} \right) k = 0, \quad (*)$$

where n and k are positive integers and x_1, \ldots, x_n are commuting indeterminates.

Consider the set $\mathcal{A} = \mathcal{A}(n, k)$ of pairs (A, j^{i}) where

- (i) A is a subset of $\{1, \ldots, n\}$,
- (ii) *j* is a member of $\{1, ..., n\}$,
- (iii) |A| + l = k, where |A| denotes the number of elements of A,
- (iv) $l \ge 0$ and if l = 0, then $j \in A$.

Define the weight of (A, j^l) , $w(A, j^l)$ by $w(A, j^l) = (-1)^{|A|} (\prod_{a \in A} x_a) x_j^l$, for example $w(\{1, 3, 5\}, 2^3) = (-1)^3 x_1 x_3 x_5 \cdot x_2^3 = -x_1 x_2^3 x_3 x_5$. It is readily seen that the l.h.s. of (*) is the sum of all the weights of the elements of \mathcal{A} . We will now prove that this sum is zero. To this end introduce the mapping $T: \mathcal{A} \to \mathcal{A}$ defined by

$$T(A, j) = \begin{cases} (A/\{j\}, j^{l+1}), & j \in A, \\ (A \cup \{j\}, j^{l-1}), & j \notin A. \end{cases}$$

This mapping satisfies $w(T(A, j^{i})) = -w(A, j^{i})$ and is an involution (i.e. T^{2} = identity). Thus all the weights can be arranged in mutually cancelling pairs and their sum is therefore zero.