NOTE

A COMBINATORIAL PROOF OF NEWTONS IDENTITIES

Doron ZEILBERGER

Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA
Received 8 April 1983

We are going to give a new proof of Newton's celebrated identities

$$
\begin{align*}
\sum_{r=0}^{k-1}(-1)^{r}\left(\sum_{1<i_{1}<\cdots<i<n} x_{i_{1}} \cdots x_{i_{i}}\right) & \left(\sum_{i=1}^{n} x_{j}^{k-r}\right) \\
& +(-1)^{k}\left(\sum_{1<i_{1}<\cdots<i_{k}<n} x_{i_{1}} \cdots x_{i_{k}}\right) k=0 \tag{*}
\end{align*}
$$

where n and k are positive integers and x_{1}, \ldots, x_{n} are commuting indeterminates.
Consider the set $\mathscr{A}=\mathscr{A}(n, k)$ of pairs $\left(A, j^{\prime}\right)$ where
(i) A is a subset of $\{1, \ldots, n\}$,
(ii) j is a member of $\{1, \ldots, n\}$,
(iii) $|A|+l=k$, where $|A|$ denotes the number of elements of A,
(iv) $l \geqslant 0$ and if $l=0$, then $j \in A$.

Define the weight of $\left(A, j^{l}\right), w\left(A, j^{l}\right)$ by $w\left(A, j^{l}\right)=(-1)^{|A|}\left(\prod_{a \in A} x_{a}\right) x_{j}^{l}$, for example $w\left(\{1,3,5\}, 2^{3}\right)=(-1)^{3} x_{1} x_{3} x_{5} \cdot x_{2}^{3}=-x_{1} x_{2}^{3} x_{3} x_{5}$. It is readily seen that the l.h.s. of $(*)$ is the sum of all the weights of the elements of \mathscr{A}. We will now prove that this sum is zero. To this end introduce the mapping $T: \mathscr{A} \rightarrow \mathscr{A}$ defined by

$$
T(A, j)= \begin{cases}\left(A /\{j\}, j^{l+1}\right), & j \in A \\ \left(A \cup\{j\}, j^{i-1}\right), & j \notin A\end{cases}
$$

This mapping satisfies $w\left(T\left(A, j^{l}\right)\right)=-w\left(A, j^{l}\right)$ and is an involution (i.e. $T^{2}=$ identity). Thus all the weights can be arranged in mutually cancelling pairs and their sum is therefore zero.

