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Sister Celine Fasenmyer’s technique for obtaining pure recurrence relations for 
hypergeometric polynomials is formalized and generalized in various directions. 
Applications include algorithms for verifying any given binomial coefficients 
identity and any identities involving sums and integrals of products of special 
functions. This is shown to lead to a new approach to the theory of special 
functions which allows a natural definition of special functions of several variables. 

0. INTR~OUCTI~N 

About 35 years ago, Sister Mary Celine Fasenmyer developed a general 
method for obtaining pure recurrence relations for hypergeometric 
polynomials [6-8; 13, Chap. 141. In this paper we hope to demonstrate some 
far-reaching implications stemming from Sister Celine’s ideas. In particular, 
Sister Celine’s technique enables one to “evaluate,” either explicitly or induc- 
tively, any sum involving products of binomial coefficients. This simple fact 
was apparently overlooked by workers in combinatorics who developed 
various ad hoc methods for computing such sums. However, Sister Celine’s 
method has a much wider scope than that. We shall generalize her method to 
give an algorithm for verifying any given identity involving sums and 
integrals of products of special functions, which will hopefully lead to a new 
approach to the theory of special functions. 

One of the consequences of Sister Celine’s technique is that if F(n, k) is 
multi-hypergeometric (see Section 1 for definition), then 

G(n)= F(n, k) 
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satisfies a linear recurrence equation with polynomial coefficients. Stanley 
[ 141 was the first to consider such discrete functions as such, and even gave 
them a name which we adopted: P-recursive functions. Stanley [ 141 also 
considered real functions f(x) satisfying a linear differential equation with 
polynomial coefftcients, which he called “D-finite functions.” Stanley [ 14 1 
proved, among other results, that both the classes of D-finite functions and 
P-recursive functions are algebras under addition and multiplication. 

Stanley’s notions of P-recursiveness and D-finiteness, and their higher- 
dimensional counterparts, are the most fundamental concepts in the present 
paper. We chose to call these higher-dimensional analogs “multi-P-recursive” 
and “multi-D-finite.” A discrete (continuous) function F(m, ,.... m,,) 
u-(x, Y.., . * x,)) IS multi-P-recursive (multi-D-finite) if it satisfies a linear 
ordinary recurrence (differential) equation with polynomial coefficients in 
each of its variables. We prove that both multi-D-finiteness and multi-P- 
recursiveness are preserved under integration and summation. 

The final synthesis is accomplished in Section 4, where we define a 
sequence of functions (P,(X)) to be special if there exist polynomials a,(n. x). 
b,(n, X) such that 

t a,(4 x) P;‘(x) %E 0, 
r=O 

t b&z, x) Pn+*(X) = 0. 

Defining P(n, x) = P,(x), we see that P: N x R -+ (C is special if it satisfies 
ordinary equations in each of its variables. This definition immediately 
generalizes to functions of several discrete and continuous variables. 

The reason P-recursiveness is so important is that in order to specify a 
linear recurrence equation with polynomial coefficients one only needs a 
finite number of parameters. Thus in order to encode a function satisfying, 
for n >, 2, (5nf 3) a(n) + (4n - 1) a(n - 1) - (7n + 11) a(n - 2) = 0, we 
only need to “store” the numbers (5, 3; 4, -1; -7, -11) and the initial 
values a(O), a(l). Similar remarks hold for D-finiteness and their higher- 
dimensional analogs. This resembles the fact that an algebraic number is 
given by the coefftcients of its minimal equation and that a polynomial is 
given by its coefficients. 

0.1. Nomenclature 

Z denotes the set of integers, N the set of positive integers. When we write 
f: N -+ C we mean that f is defined on all of Z but supported in N (i.e., 0 = 
f(-1) =f(-2) = . . .). Thus if we say “f: N + C satisfies the recurrence 
a(n) f(n) + b(n) f(n - 1) + c(n) f(n - 2) = 0,” we mean a(O) f(0) = 0, 
a(l)f(l)+b(l)f(O)=O, etc. 
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If f: Z -+ C, we define the shift operator Xf(n) =f(n + 1). A linear 
recurrence operator with polynomial coefficients is something of the form 

+ a,(n)X’, 
,=0 

where the a,(n)‘s are polynomials. It is easily checked that the set of linear 
recurrence operators with polynomial coefftcients is an algebra: 

( 5 a,(n) X’ 
r=0 I( i b,(n) xs) = 5 i a,(n) b,(n + r)Xr+s. 

SZO r=o s=o 

Likewise, the set of linear differential operators with polynomial coef- 
ficients is also an algebra, a fact which follows easily from Leibnitz’s rule. 
For a function of several discrete variables f(m, ,..., m,), we set XJ(m, ,..., 
m, ,..., m,) = f(m, ,..., m, + l,..., m,), i = l,..., n, and a general linear partial 
recurrence operator is written 

where the (I,, . . . a ‘s are polynomials in (m, ,..., m,). 
For a detailed discussion of linear recurrence operators we refer the reader 

to [ 181, where the word “recurrence” is replaced by “difference.” 

1. SISTER CELINE'S TECHNIQUE 

1.1. 

DEFINITION 1. F: Z + C is hypergeometric if there exist polynomials p 
and q such that p(n) F(n) - q(n) F(n - 1) s 0. 

DEFINITION 2. F: Z*+C is multi-hypergeometric if there exist 
polynomials in two variables, P, Q, P’, Q’, such that for all (n, k) E Z* 

P(n, k) F(n, k) - Q(n, k) F(n - 1, k) = 0, 

P’(n, k) F(n, k) - Q’(n, k) F(n, k - 1) = 0. 

Remark. Every product of binomial coefficients is hypergeometric. For 
example F(n, k) = ( i )’ satisfies 

n’F(n, k) - (n - k)‘F(n - 1, k) = 0, 

kT(n,k)-(n-k+ l)‘r;(n,k- l)=O. 
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DEFINITION 3 (Stanley [ 141). F:Z + C is P-recursive if it satisfies a 
recurrence equation with polynomial coefficients, namely, there exist 
polynomials P, ,..., P, such that P,,(n) F(n) + P,(n) F(n - 1) + . . . + 
P,(n) F(n - r) = 0. 

Of course every hypergeometric function is P-recursive, where the relevant 
recurrence is of first order. 

Sister Celine (Fasenmyer (6, 71, Rainville [ 131) described her algorithm in 
terms of example. A formal statement of her method is given by the 
following theorem and proof. 

THEOREM 4. Let F(n, k) be multi-hypergeometric and assume that 
s:= ..r F(n. k) converges for every n (in particular, if F(n, .) has finite 
support for all n). Then G(n) = rp= co F(n, k) is P-recursive. 

Proof. For f: Z2 + Cc we introduce the negative shift operators 
Xmm ‘f(n, k) = f(n - 1, k), Y-‘f(n, k) = f(n, k - 1). Of course 
X-‘Y-‘f(n. k) = f(n - r, k - s). Since F is multi-hypergeometric, we have 

P(n, k) 
Xm ‘F(n, k) = Q(n, k) F(n, k). 

P’(n, k) 
Y-‘Fh k) = Q,cn, k) 0, k), 

(l.la) 

(l.lb) 

for some polynomials P, Q, P’, Q’. Iterating (1.1) we get 

X-‘Y-SF(n, k) = 
P’(n-r,k-s+ 1) P’(n - r, k) 
Q’(n-r,k-s+ 1) -*’ Q’(n-r,k)’ 

P(n - r + 1, k) P(n -r + 2, k) P(n, k) 
Q(n - r + 1, k) Q(n - r + 2, k) 

F(n k) d2f A rsh k) 
“‘ecn, ’ BrS(n3 k) 

F(n, k). 

From now on we shall consider all polynomials in (n, k) as polynomials in 
k whose coefficients are polynomials in n, i.e., we view C [n, k] as C[n] [ k]. 
Let 

p = max(deg, P, deg, Q), 

p’ = max(deg, P’, deg, Q’). 

Let us look for polynomials in n, a,,(n), such that 

\’ K7 a,,(n) X-rY-SF(n, k) = 0. 
Iti 
r=o s=o 

(1.2) 
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where M and N are to be determined. This is true provided 

(1.2’) 

where the dependence upon n is suppressed. 
The common denominator is B,+,,,,(IC), and multiplying by it yields 

The left-hand side is a polynomial of degree Mp + Np’ in k (check!) and 
setting each of the coefficients to 0 yields Mp + Np’ + 1 homogeneous 
equations for the (M + l)(N + 1) unknowns urs (r = 0 ,..., M; s = 0 ,..., N). In 
order for such non-trivial ars to exist we must require that (A4 + l)(N + 1) > 
Mp + Np’ + 1. Certainly there exist such M and N. The least A4 by which we 
can get by is M=p’ and then N=pp’-p’+ 1. 

So far we have constructed a partial difference operator with polynomial 
coefficients (with k missing): 

R(n, x-1, Y-1) = 2 i a,,(n)X-‘Y-S, 
r=o s=o 

such that R(n, X-‘, Y-‘) F(n, k) E 0. 

We claim that R(n,X-‘, I) G(n) E 0, i.e., that G(n) is a solution of the 
recurrence equation with polynomial coefficients CrTo alto a,,(n)) 
G(n - r) E 0. This follows from 

LEMMA 5. Let F(n, k) be a solution of the partial difference equa- 
tion R(X-‘, Y-‘, n) F(n, k) s 0, where k is missing from R. Then 
G(n) = Cr= --oo F(n, k) satisfies the ordinary dlflerence equation 
R(X-‘, Z, n) G(n) E 0. 

Proof. Let R(X-‘, Y-‘, n) = Cf=o Ri(X-‘, n) Y-‘. 
We have 

0= ‘? R(X-‘,Y-‘,n)F(n,k)= ? 
k=?, 

e Ri(X-‘, n) Y-‘F(n, k) 
k=?a, i%O 

= f. Ri(X-‘, n) 5 F(n, k - i) 
k=-cc 

= G Ri(X-I, n) G(n) = R(X-‘, Z, n) G(n). 
,TO 
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Remark. Our notation is different from that of Sister Celine, who 
considered the polynomials G(n, x) = Cr= -m F(n, k) xk. Since xG(n, x) = 
CLmF(n,k- 1) xk, multiplication by x corresponds to the operator Y-‘. 
The above proof shows that G(n, x) satisfies the pure recurrence relation 

5 (2 ~,~(n)x’) G(n-r,x)=O. 
r=o \s=o I 

Remark. Theorem 4 states that if F(n, k) is multi-hypergeometric, then 
Ck F(n, k) is P-recursive in the surviving variable n. Later on we shall 
generalize Sister Celine’s method to show that even if F(n, k) is multi-P- 
recursive (to be defined in Section 2), it is still true that G(n) = 
rF= -~ F(n, k) is P-recursive. 

1.2. Examples 

Since every product of binomial coefficients is multi-hypergeometric, 
Sister Celine’s technique gives a straightforward way to evaluate binomial 
sums (either “explicitly” if the resulting recurrence is of first order, or 
“inductively” if the recurrence is of higher order). This simple observation 
was apparently overlooked by combinatorists who dealt with binomial sums, 
probably because of the cultural gap between combinatorics and analysis (to 
which the theory of hypergeometric series belong, at least “officially”). 

We shall now illustrate the method by finding recurrences for some 
binomial sums. 

EXAMPLE (i). G(n) = rFZea (t). Here X-‘F = [(n - k)/n] F, Y-IF = 
[k/(n - k + l)] F, so X-‘Y-’ = (k/n) F and eliminating k yields 
n(Z--X-l-X-‘Y-‘)F(n, k)=O. Putting Y-‘=I, we get n(I--2X-l) 
G(n) = 0, .i.e., G(n) = 2G(n - 1) and so G(n) = C . 2”, for some constant C, 
which is found out to be 1, by plugging n = 0, i.e., G(n) = 2”. In this trivial 
case G(n) is much more than just P-recursive. Since the relevant recurrence 
is of the first order, it is hypergeometric, and as a matter of fact geometric 
(i.e., it satisfies a first-order recurrence relation with constant coefficients). 

EXAMPLE (ii). F(n, k) = (i)* = n!2/[k!2(n -k)!‘]. 
Applying Sister Celine’s method yields the partial difference equation 

(n-(2n- 1)X-‘++ 1)X-*-(2n- 1)X-‘y-1 

-2(n- 1)X-*Y-‘+(n- 1)X-‘Y-‘]F(n,k)=O. 

Substituting Y-’ = I shows that G(n) = CIEZO (It)’ satisfies the recurrence 
(n - (4n - 2) X-‘) G(n) = 0, from which follows that G(n) = ( 2,” ). 
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The above examples were given merely for pedagogical reasons, as they 
are much more easily handled by other methods. However, the next example, 
which is taken from Rainville 113, p. 2341 is not as trivial. 

EXAMPLE (iii). F(n, k) = (-l)k (n + ZC)!/[(~!)~ (+), (n - k)!] can be 
shown (using the routine method of Theorem 4) to satisfy the partial 
difference equation 

[nl-(3n-2-4Y-‘)X-I 

+(3n-4+4Y-‘)X-2-(n-2)X-3]F(n,k)=0. 

Plugging in Y-’ = Z yields 

or more explicitly 

nG(n) - (3n - 6) G(n - 1) + 3nG(n - 2) - (n - 2) G(n - 3) = 0. 

Since G(Z-) = 0, the recurrence enables us to compute G(n) inductively, 
once G(0) is given. 

1.3. The Method of Creative Telescoping 

One of the steps in Apery’s proof of the irrationality of 4’(3) (Van der 
Poorten [ 15, Sect. 81) was to prove that 

u(n) = /go ( L)2 (“:“)’ 
satisfies the recurrence 

n’u(n) - (34n3 - 51n2 + 27n - 5) u(n - 1) + (n - 1)3 u(n - 2) = 0. 

The way it is proved there is to “cleverly construct” 

B(n,k)=4(2n+ 1)[(2k+ I)-(2n+ II21 (;)‘(“:“)’ 

“with the motive that” (in our notation) 

(1 - Y-‘) B(n, k) = P(n, X-‘) F(n, k), where F(n,k)=( ~)‘(“~“)*, 

P(n, X-‘) = n3Z - (34n3 - 51n2 + 27n - 5)X-l + (n - 1)3 X2, 
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and then “0 mirabile dictu” 

o= c (1- Y-‘)B(n,k)= G P(n,X-‘)F(n.k)=P(n.X-‘)u(n). 
k--x koo 

Sister Celine’s technique takes all the magic out of “creative telescoping.” 
Indeed, we can use it to concoct short proofs to the fact that G(n) = 
Ck F(n, k) indeed satisfies the particular recurrence obtained for it. (This 
resembles the fact that it is much easier to prove that a proposed function 
solves a given differential equation than to construct a solution from 
scratch.) 

Given a binomial sum G(n) = xp= --co F(n, k) we use Sister Celine’s 
method to find a recurrence equation R(X-‘, Y-‘, n) F(n, k) = 0. Now we 
write R(zT’. Y-‘, n) = R&l-‘, n) - (1 - Y-‘) S(X-‘, Y-‘. n), where 
R,(K’. n) = R(X-‘, I, n). Next we compute F’(n, k) = S(X-‘, Y-‘, n) 
F(n. k) which is of the form [a(n, k)/b(n, k)] F(n, k), for some polynomials a 
and 6. 

Once we have gone through the pain of finding R,(X-‘, n) and F’(n, k) 
we can gracefully present a short proof to the fact that R&T’, n) G(n) = 0. 
All we have to do is urge the reader to verify that R,(X-‘, n) F(n, k) = 
(1 - Y-‘) F’(n. k) and then conclude that 

R&X-‘, n) G(n) = q’ 
k-:ir 

R&i-‘, n)F(n, k) = + 
k-L 

(1 - Y-‘)F’(n, k) = 0. 

Following the above recipe, let us present a short proof of the result 
obtained in Example (iii) of Section 1.2. 

PROPOSITION. 

co 
T (-1)k (n + k)! 

G(n) = k=&m (k!)Z (f), (n - k)! 

satisfies the recurrence 

nG(n) - (3n - 6) G(n - 1) + 3nG(n - 2) - (n - 2) G(n - 3) = 0. 

Proof. We cleverly construct 

B(n, k) = (212 - 2)(-l)k (n + k - 2)!/[(k!)*($), (n - k - l)!] 

with the motivation that 

B(n, k) - B(n. k - 1) = nF(n, k) - (3n - 6) F(n - 1, k) 

+ 3nF(n - 2, k) - (n - 2) F(n - 3, k) 
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(check!). By telescoping, 

nG(n) - (3n - 6) G(n - 1) + 3nG(n - 2) - (n - 2) G(n - 3) 

= 2 [B(n,k)-B(n,k- l)] =O. 
k=-m 

1.4. Form over Content 

We have already mentioned in the Introduction the fact that the 
knowledge that a sequence G(n) satisfies some recurrence with polynomial 
coefftcients is much more important than knowing the actual recurrence. 
Since it is possible to find, from the outset, upper bounds for the order 
of the recurrence satisfied by G(n) and the degree of the coefficients, 

are guaranteed that there exist constant C,, such that 
Ff=, Cf=, C,,n’G(n -s) = 0. 

So, to decipher the (or rather an) equation satisfied by G you need (R + 1) 
(S + 1) “bits” of information which can be obtained by plugging in values of 
G for n = 0, 1, 2 ,..., (R + l)(S + l), remembering that G(L) = 0. Many 
times, the resulting system of equations will have many solutions and it may 
turn out that G(n) actually satisfies a recurrence of order less than S. (If this 
is the case we will get many possible recurrences, since once you know that 
P(X-‘, n) G(n) = 0, then also Q(X- ‘, n) P(X- ‘, n) G(n) = 0, for evev 
operator Q). 

EXAMPLE (i). By a priori considerations, it can be shown that 
G(n) = C (i) satisfies a recurrence of the form (an + 6) G(n) + (cn + d) 
G(n - 1) = 0. Since G(-1) = 0, G(0) = 1, G(1) = 2, G(2) = 4, G(3) = 8, we 
have the following system of linear equations b = 0, 2(a + b) + (c + d) = 0, 
4(2a + b) + 2(2c + d) = 0 and 8(3a + b) + 4(3c + d) = 0, whose solution is 
(a, b, c, d) = ~(1, 0, -2,0) and we obtain the expected recurrence 
nG(n) - 2nG(n - 1) 3 0. 

In most cases the system of linear equation obtained is rather large. But if 
we have to verifv that G(n) satisfies a proposed recurrence life is much 
easier. All we have to do is plug in n = 0, l,..., (R + l)(S + 1) and verify 
that the proposed recurrence is satisfied for these values. Thus, 

PROPOSITION 6. If it is known that G(n) satisfies some recurrence of 
order R whose coeflcients are polynomials of degree S, then in order to 
check that G(n) satisfies a proposed recurrence (of the same or lower order) 
one only has to check it for a finite number of values of n. Namely, 
n = 0, I,..., (R + l)(S + 1). 

COROLLARY 6a. If F,(n, k) and F,(n, k) are both multi-hypergeometric, 
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then there exists a fmite number L such that if Ck F,(n, k) = Ck F,(n, k) is 
true for 0 < n < L, it is true for every n >, 0. 

EXAMPLE (ii). Prove that xi=-,, (-l)k ( .yk)3 = (3n)!/(n)!‘. By a priori 
considerations it is seen that G(n) = xi=-, (-l)k (nyk)3 satisfies a 
recurrence of the third order with coefficients of the third degree, i.e., R = 3, 
S = 3. We have to check that G(n) satisfies the recurrence n’G(n) - 
3(3n - 1)(3n - 2) G(n - 1) = 0. All we have to do is let the computer check 
the above identity for n = O,..., 16. 

Remark. The above resembles the fact that in order to check that two 
polynomials of degree < N are equal, it is enough to check that they are 
equal at N + 1 points. 

1.5. 

A considerable short-cut in Sister Celine’s method is obtained in the case 
of binomial sums, as opposed to general hypergeometric sums. In this case 
we can write 

and then the polynomials P(n, k), P’(n, k), Q(n, k), Q’(n, k) of Theorem 4 
can be factored with respect to k: 

P’(n, k) = (k - m,(n))(k - m2(n)) ..a (k - m.N(n)). (1.3) 

The main step in Sister Celine’s method is finding the (M + l)(N + 1) 
unknowns a,,(n), 0 < r < n, 0 < s <N. Let us write (1.2’) more explicitly: 

T& . . . P(n - s + 1, k) 
3 Q(n - s + 1, k) 1 

+ P’(n, k) <i 
Q’(n, k) S~o a1S(n) 

P(n, k- 1) P(n--s+ l,k- 1) 
Q(n, k- 1) ‘** Q(n-s+ l,k- 1) 1 

+ P’(n, k) P’(n, k - 1) t7 
Q’(n. k) P’(n, k - I) ,yo a2S(n) 

P(n, k - 2) P(n-s+ l,k-2) 
Q(n, k - 2) *” Q(n-s+ l,k-2) 1 

P’(n, k) 
’ Q’b, k) 

... P’(n,k-M+ 1) 
... P’(n, k -M + 1) 

.A’ 

x X a,,(n) 
P(n, k - M) 
Q(n,k-M) *” 

P(n-N+ l,k-M) =. 
Q(n-N+ l,k-MM) 1 ’ s=o 
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Plugging in k = m,(n),..., m,(n) yields N equations for the N + 1 
unknowns a,,,..., aN. Once we have found them we divide (1.4) by P’(n, k) 
and substitute the zeros of P’(n, k - l), viz., k = m,(n) + l,..., m,(n) + 1. 
This gives us a system for a,, ,..., alN. Repeating this process yields M + 1 
systems of equations each with N+ 1 unknowns, a considerable 
simplification over the initial system with (A4 + l)(N + 1) unknowns which 
was obtained by equating the coefficients of powers of k to zero. 

Exercise. Find a recurrence equation for 

2. GENERALIZATIONS OF SISTER CELINE’S TECHNIQUE TO 
THE CLASS OF MULTI-P-RECURSIVE FUNCTIONS 

2.1. 

Stanley’s notion of P-recursiveness can be easily generalized to several 
variables. 

DEFINITION 7. F: Z” + C is multi-P-recursive if for i = l,..., n there exist 
polynomials Pj = Pj(m, ,..., m,), j = 0 ,..., ri, such that 

2 P;(m) F(m, ,..., m,-,,m,-j,mit,~..,m,)= 0. 
j=O 

(2.1) 

In the shift operators notation, (2.1) can be written 

(,$oP$;j)F~O, i=l,..., n, (2.1’) 

where 

X;‘F(m) = F(m - e,), (e, = (0 ,..., ‘: ,..., 0)). 

Loosely speaking F is multi-P-recursive if it satisfies an “ordinary” 
recurrence with polynomial coefficients in each of its variables. We are now 
ready for the following generalization of Theorem 4, which asserts that 
multi-P-recursiveness is preserved under the JJ operation. 

THEOREM 8. Let F: Z2 -+ C be multi-P-recursive and assume that 
CpT --oD F(n, k) converges for every n. Then G(n) = CFT --oo F(n, k) is P- 
recursive. 
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Proof. Since F(n, k) is multi-P-recursive, there exist polynomials 
P O ,..., P,, Q,, ,..., Q,, in (n, k) such that 

~-(r-l) F 
I ’ 

(2.2a) 

&I i ‘I y-l+... ++“-” F, 
Q, Qx 1 (2.2b) 

5 

where, as in the proof of Theorem 4, 

x- If(n, k) = f(n - 1, k), Y-‘f(n, k) =f(n, k - 1). 

For a rational function P/Q we define deg(P/Q) = max(deg P, deg Q). Again 
we shall consider all polynomials in (n, k) as polynomials in k whose coef- 
ficients are polynomials in n. We need the following simple lemma. 

LEMMA 8. Let p (respectively q) be the maximal degree of the coef- 
ficients of (2.2a) (2.2b). ZfL > r, K > s, XL YmKF(n, k) can be expressed as 
a linear combination of (X-‘Y-jF(n, k); 0 < i < r, 0 < j < s} with coef- 
ficients whose degree in k is at most (L - r + 1) p + (K - s + 1) q. 

ProoJ The statement is certainly true for (L, K) = (r, s - 1) and 
(L, K) = (r - 1, s), by virtue of (2.2). We will presently show that the truth 
of the lemma for (L, K) implies its truth for (L + 1, K). The proof that 
(L, K) implies (L, K + 1) is similar, and the lemma would follow by double 
induction. 

Indeed, assume that 

r-1 r-1 
,l-Ly-KF= \' \‘ A,(J-'y-'F), -- 

i=O j=O 

where the Aij’s are rational functions whose degree in k is at most 
(L-r+ l)P+(M-sf l)q. 

Applying X-’ to both sides yields 

r-1 s-1 
x-(L+l)y -KF= F7 \' (~-l~~~)(~-(i+l)y-i~) 

-- 
i=O j=O 

r-l s-1 

= \‘ r (X-Q- ,,j) X-‘Y-‘F 
-i3 i= L j=O 

S-l 
+ K7 (X-‘/l 

,TO 

r- ,,j) Y-‘(X-‘F). 
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Using (2.2a) we now express X-‘F as a linear combination of (X-‘F; 
i = O,..., r - l), with coefficients of degree p. Thus, X-(L+“Y-KF can be 
expressed as a linear combination of {X-‘Y-‘F, 0 < i < r, 0 < j < S) with 
coefficients whose degree does not exceed 

(L-r+ l)p+(K-s+ l)q+p= [(L+ 1)-r+ l]p+(K-s+ l)q. 

Completion of the proof of Theorem 8. Let us look for polynomials in n, 
aij(n), such that Cy=“=, Cj”=, aij(n) X-‘Y-jF(n, k) = 0, where M and N will be 
determined. As in the proof of Theorem 4, we would be able then to conclude 
that G(n) satisfies a recurrence equation with polynomial coefficients. 
Clearing denominators and using the lemma yields 

where Afb are polynomials, and changing the order of summation gives us 

The expression in brackets is a polynomial of degree (M - r + 1)p + 
(N - s + 1) q in k. Equating the coefficients of kcX-aY-bF to zero, 

(O<c<(M-r+I)p+(N-s+l)q,O<a<r,O<b<s) 

produces rs[(M - I + 1)p + (N - s + 1) q + l] homogeneous equations for 
the (M+ l)(N+ I) unknowns. In order to guarantee that there is a non- 
trivial solution we must require that 

rs[(M-r+ l)p+(N-s+ l)q+ l] < (M+ l)(N+ 1). 

Certainly there exist such A4 and N. This completes the proof of the theorem. 
Consider F: Z” + C such that CF,=-, ..a x&-, F(m ,,..., m,) is 

convergent for all (mk+ ,,..., m,). Summmg over m ,,..., mk kills the depen- 
dence on these variables and yields a function G(m,+ , ,..., m,) in the 
surviving variables. The next theorem claims that if F is multi-P-recursive, so 
is G. 

THEOREM 10. Let F: Z” + C be multi-P-recursive and assume that 
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is defined for every (mk+ ,,..., m,,) E Znpk. Then G: Znmk + C is also multi-P- 
recursive. 

Proof. The result would follow by iteration once we have proved it for 
k = 1. Since F(m) is multi-P-recursive, it satisfies n recurrence equations of 
the following form: 

R,(m ,,..., m,;X,)F=O, 

R,(m, ,..., m,;Xz)F=O, 

R,(m, ,..., m,;X,)F=O. 

Viewing G [m, ,..., m,] as Q [m, ,..., m,] [m, 1, we eliminate m, out of R, and 
R,. R, and R, ,..., R, and R,, like we did in Theorem 8. This produces 
equations of the following form: 

SAm, ,..., m,;X,,X,)F=O, 

S,(m, . . . . . m,;X,,XJF=O, 

with m, missing. It follows, as in Lemma 5, that G(m,,..., m,) = 
rz,= -,X F(m, ,..., m,) satisfies 

S,(m2 ,..., m,); I. X,) G = 0. 

S,(m, ,..., m,); I, X,) G = 0. 

So G is multi-P-recursive. 

Remark. The above theorem and algorithm enables us to “evaluate” 
multi-binomial sums, either explicitly or inductively, in a parallel fashion to 
the ways indicated in Section 1. 

2.2. q-Binomial Identities 

All the foregoing has an immediate q-analog, A function F: Z -+ C is q- 
hypergeometric if F(n)/F(n - 1) is a rational function of q”. The notions of 
q - P-recursiveness and multi-q - P-recursiveness are similarly defined 
where m, ,..., m, are to be replaced by qml,..., q”n, respectively. It thus follows 
that every q-binomial identity can be verified in a finite number of steps. 

EXAMPLE. Andrews [ 11 conjectured that the constant term of 

FIl<itj<n (EijXJXj)ai ( w h ere .sij=l if i<j and =q if i> j, a ,,..., a, are 
positive integers, and (~1)~ = (1 - y)( 1 - q-v) . . . ( 1 - qap ‘~7)) is the multi- 
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binomial coefficient (q)a,+. . . +aJ[(q)a, ..a (q)J. This is known for n < 3 but 
still open for n > 4. Since the constant term of the above expression can be 
expressed as a multi-q-binomial sum, our method ensures that for every n 
there exists an integer L(n), which can be explicitly computed, such that the 
truth of Andrews, conjecture for 0 < a, <L(n), i = l,..., n, would imply its 
truth in general. However, 15(n) becomes very large with n and in any case 
there is no way our method can prove the conjecture for every n. We shall 
return to Andrew& conjecture later and present a line of attack which 
appears to be more promising. 

2.3. The Class of Multi-P-Recursive Functions 

Stanley [ 141 considered the class of P-recursive functions on Z and 
proved that they form an algebra with respect to addition and multiplication. 
His proofs can be easily generalized to show that the class of multi-P- 
recursive functions on Z” is also an algebra. 

Theorem 10 above answers some of the problems raised by Stanley in 
[ 141. In particular, problems (c), (e), and (f) in [ 141 asked whether certain 
functions are P-recursive, Since these functions are expressible as binomial 
sums, the answer is affirmative. 

2.4. The Taylor Coeficients of a Rational Function 

The following theorem was conjectured by Stanley [ 141 and independently 
proved by Gessel [9]. 

THEOREM 11. Let P(x, ,..., xn) and Q(x, ,..., XJ be two polynomials and 
assume that Q(O,..., 0) # 0. Let P/Q = CmENJ(m) x”, then f(m) is multi-P- 
recursive and in particular the diagonal g(n) = f (n,..., n) is P-recursive. 

ProoJ Since the class of multi-P-recursive functions is an algebra, we 
can assume without loss of generality that P = 1. Let Q = 1 - Cf=, C,xs’, 
then 

Q-, = 2 

k,....,k, 

and so 

f(m)=C (k,+...+k,)!C:‘...C~, 
k,! .*. k,! 

where the sum is taken over the set ((k, ,..., kK); k, p, + . . . + k,P, = m}. 
Elementary linear algebra shows the existence of constants (independent of 
m) a,, and b, such that a typical member of the above set can be written 
k/ = xi”=, a/,m, + xi=, b,S,, j= 0 ,..., K, where S ,,..., S, are running 
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parameters. Substituting this expression in the above formula forf(m) yields 
a multi-binomial sum with 1 x signs. Now the theorem follows from 
Theorem 10. 

It is easily seen that f: Z” + 6, defined in N” by Q ’ = xmsNnf(m) xm 
and f = 0 outside N”, satisfies the inhomogeneous partial difference equation 
with constant coefficients Q(X; I,..., Xi’) f = 6, where 6 is the discrete Dirac 
delta function: 6(O) = 1, S(Z” - 0) = 0. Recall that a function g satisfying 
Qg = 6 is called a fundamental solution corresponding to Q. In terms of this 
terminology we can rephrase the last theorem. 

THEOREM 12. Every partial difSerence operator with constant coef- 
Jcients Q(X; I,..., Xi’) such that Q(O,..., 0) # 0 has a multi-P-recursive 
fundamental solution. 

3. THE CONTINUOUS ANALOG OF SISTER CELINE’S TECHNIQUE AND 

MULTI-D-FINITE FUNCTIONS 

3.1. 

One of the methods for evaluating definite integrals is to differentiate with 
respect to a parameter and then integrate by parts, thus getting a certain 
differential equation with respect to the parameter. For example (Gillespie 
[ 10, p. 99]), to evaluate Z(b) = I” emXz cos 2bx dx. We have 

Z’(b) = y 
,oc 

-2xe-“’ sin 26x dx = ) -2be-“’ cos 2bx = -2bZ(b), 
K’ m 

obtaining the differential equation Z’(b) + 2bZ(b) = 0. Solving it gives 
Z(b) = KE-b2 and since Z(0) = fi, Z(b) = \/; eCb’. 

The continuous analog of Sister Celine’s technique offers a uniform setting 
for what appeared to be a collection of tricks. But before describing it we 
need to introduce the continuous counterpart of the notions 
“hypergeometric,” “P-recursive,” and “multi-P-recursive.” Recall that 
f: Z -+ C is hypergeometric (P-recursive) if it is a solution of a first order 
(any order) linear recurrence equation with polynomial coefficients. 

DEFINITION 13. Let F: R + C be a function, distribution, or a formal 
power series. F is hyperexponential if these exist polynomials p(x) and q(x) 
such that p(x) F’(x) + q(x) F(x) = 0. In other words F(x) is hyperex- 
ponential if its logarithmic derivative is a rational function. It is clear that 
the product of 2 hyperexponential functions is again hyperexponential. 

The following definition is due to Stanley [ 141. 
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DEFINITION 14. F: R + C is D-finite if it satisfies a differential equation 
with polynomial coefficients. Namely, there exist polynomials p0 ,..., pr such 
that (pO+P,D+ . . . +p,D’)F=O. 

This definition is immediately generalizable to several variables. 

DEFINITION 15. F: R” + C is multi-D-finite if for i = l,..., n there exist 
polynomials Pj = P$x, ,..., xn), j = 0 ,..., ri, such that 

(3.1) 

(Here Di = a/ax,, i = l,..., n). 

We are now ready for the continuous analog of Sister Celine’s technique. 

THEOREM 16. Let F(x, y) be multi-hyperexponential such that G(y) = 
j", F(x, y) dx converges for every y. Then G(y) is D-finite. 

Proof. There exist polynomials P, P’, Q, Q’ in (x, y) such that D,F = 
(P/Q) F, D,,F = (P//Q’) F. If the degrees in x of P/Q and P’/Q’ are p, p’, 
respectively, then it is easily seen, using Leibnitz’s rule inductively, that 
0; D’y F = (A,iIBij) F, where the degree of Aij/Bij is ip + jp’. Now we 
eliminate x in the same way as we eliminated k in Theorem 4, getting an 
operator R(D,, D,, y) such that RF = 0. Now write R(D,,, D,, y) = 
R,,(D,,, y) - D,S(D,, D,, y), where RJD,, y) = R(D,, 0, Y). Finally, it is 
seen that 

o= j.* ND,, D,, Y> F(x, Y> 
--CC 

= jm -m RdDy9 Y)F(~, U) d-x + jya D,P(D,, D,, Y) Fl dx 

= R,(D,, Y) G(Y) + 0. 
Remark. The continuous counterpart of the method of creative 

telescoping would be to first find F’(x, y) = S(D,, D,, y) F(x, y) and then 
ask the reader to verify (or believe) the formula R,,(D,, y) F(x, y) = 
D,F’(x, y), from which R,(D,, y) G(y) = 0 readily follows. 

Exercise. Find a differential equation with polynomial coefficients 
satisfied by 

G(Y) = jy cl/(X2-y*) dx. 

- Y 
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Hint. Consider the function 

We have 

-2x 
DJ= @2 _ r’2)2 F; D,F= 

2.1 
(“y’ - $)? F- 

The proof of Theorem 10 can be easily translated to continuous language 
to yield. 

THEOREM 11. Let F: R” + C be m&i-D-finite ana’ assume that 
W k+l, . . . . x,) = I?, *.- I?, F,(x, ,..., x,) dx, ,..., dx, is defined for every 
(x k+ ,,..., x,) E Rn-k, then G is also multi-D-Jinite. 

3.2. 

The class of multi-D-finite tempered distributions has been considered 
extensively by I. N. Bernstein who gave them a different definition. A very 
clear exposition of I. N. Bernstein’s deep theory can be found in the recent 
monograph of Bjork [4]. It follows from Bernstein’s theory that f is multi-D- 
finite if the CZn subvariety ((x, 5) E C 2n; o(P)(x, 5) = 0 VP E I(J)} has 
dimension n. Here 

I(f) = (P = c c,,xw; Pf = 0) 

and 

(I.N. Bernstein proved that dim Vra n for every f, and dim Vf = n if f is 
multi-D-finite). 

One of I. N. Bernstein’s major achievements was the result that every 
linear partial differential operator with constant coefficients has a multi-D- 
finite fundamental solution. Since multi-P-recursiveness is the discrete analog 
of multi-D-finiteness, Theorem 2 can be viewed as a partial discrete analog 
of Bernstein’s theorem. It is possible to imitate Bernstein’s proof to show that 
Theorem 12 is still true even if Q(O,..., 0) = 0, but the proof is much more 
complicated. 
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3.3. The Isomorphism between Multi-D-Finite Formal Power Series and 
Multi-P-Recursive Functions 

Stanley proved that f: N -+ C is P-recursive iff the formal power series 
CzzO f(n) x” is D-finite. A slightly more complicated proof shows that 
f: N” + G is multi-P-recursive iff the formal power series CmENn f (m) x”’ is 
multi-D-finite. This furnishes another proof to theorem 11 since it is easily 
verified that Q(x, ,..., x,)-l is multi-D-finite. 

4. THE ULTIMATE GENERALIZATION: TOWARD A NEW APPROACH 
TO THE THEORY OF SPECIAL FUNCTIONS 

4.1. 

Askey [3, p. xxiv] defines a special function as “a function which occurs 
often enough that it gets a name.” This very apt “meta” mathematical 
definition explains why the more than two centuries old theory of special 
functions was so reluctant to be confined to a narrow theoretical framework. 
The first attempt at a unified theory was undertaken by Truesdell [ 151 who 
implicitly defined a special function as one which can be transformed to a 
solution of what he called “the F-equation,” namely, ,the partial differential 
recurrence equation 

F(z, a + 1) - F(z, a) = $ (z, a). 

Another line of attack, which employed the deep theory of Lie groups and 
algebras, was started by Wigner, continued by Weisner and carried into 
perfection by Miller [ 121 and others. Here we shall present an approach 
based on the observation that all known special functions are both D-finite 
and P-recursive, in a sense to be explained. 

Indeed, all families of special functions have some things in common. In 
particular, they satisfy a dl$erential equation and a recurrence equation. For 
example, the Legendre polynomials satisfy [ 13, pp. 160, 1611. 

nP,(x)-(2n- l)xP,-,(x)+(n- l)P,-,(x)=0, 

(1 -X2) P:(x) - 2xPA(x) + n(n + 1) P,(x) = 0. 

(4.1) 

(4.2) 

Notice that all these equations have coefficients which are polynomials in n 
and x. 

The reader might have noticed that in previous sections we refrained from 
using the terms “sequence” and the notation {a,,}. Instead we chose to 
upgrade n from a subscript to a variable and say “the function f(n) defined 
on Z.” 
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This “discrete lib” put discrete and continuous functions on the same 
footing and enabled us to realize the close analogy between P-recursiveness 
and D-finiteness (first noticed by Stanley [ 14)). Accordingly, instead of the 
phrase “the sequence of functions {_P,(x))p, we shall say, “th_ function 
p: N x R + C defined by P(n, x) = P,(x). Writing XP(n, x) = P(n + 1, x), 
D = d/dx, Eq. (4.1) and (4.2) become 

[nl-(2n-l)xX-‘+(n-l)X-z]P~0, (4.1’) 

[(l-xZ)D2-2xD+n(n+ l)I]P=O. (4.2') 

Thus P satisfies “ordinary” equations with polynomial coefficients in each 
of its variables. The same is true for the Bessel, Laguerre, Hermite, Jacobi 
and ail other known special functions. It is seen that being “special” is 
nothing but the analog on Z x R of both D-finiteness and P-recursiveness, 
and consequently the next definition should not come as a surprise. 

DEFINITION 18. F: Z x R + C is a special function if these exist 
polynomials P,(n, x),..., P,(n, x), Q,(n, x),..., Q,(n, x) that that 

(P,,+P,D+...+P,.D')F-0, 

(Qo+Q,X-‘+...+QsX-S)F=O. 

The class of special functions on Z x R will be denoted S( 1, 1). 
The above definition immediately suggests a general definition for special 

functions of several variables, possibly paving the way to a general theory of 
special functions of several variables. 

DEFINITION 19. F: Zk x RI--t @ is special if there exist polynomials in 
Cm * 1**., mk ; x1 ,..., x,), Pb ,..., Pti, i = l,..., k; @i ,..., Q-ii, j = l,..., 1, such that 

(Pf)+PfJ;'+ . . . +P',iXr')F=O, i = l,..., k 

(Q’o + Q’, Dj + . . . + @jj 07) F = 0, j = l,..., 1. 

The class of special functions on Zk x R’ will be denoted L(k, I). It is 
clear that if F(m, ,..., mk ; x, ,..., x1) is in L(k, I), then for every integer a, 
F(a, m, ,..., m,; x, ,..., xl) is in L(k - 1, I) and for every real y,, F(m, ,..., mk; 
.“I) 1 x2 ,..a, x,) is in L(k, I- 1). Note that L(n, 0) and L(0, n) are the classes of 
multi-P-recursive and multi-D-finite functions, respectively. The method of 
proof of Theorems 10 and 11 yields immediately. 
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THEOREM 20. Let F: Zk x R’+ C belong to L(k, I), then if 

G(m,,..., mk9 x ,,..., Xl) 5 9 F(m ,,..., mk, x ,,..., x,) 

m*=-cc 

is defined on Zk-’ x R’, then it belongs to L(k - 1,l). Similarly, if 

H(m, ,..., mkv X2res., xk) = , ,..., mkv xl ,... . xk) dx, 

is defined on Zk x RI-‘, it belongs to L(k, I- 1). 

As a matter of fact, the limits of integration or summation need not be 
(-co, co), and we have the following more general result. 

THEOREM 21. Let F: Zk x R’ + C belong to L(k, 1); then if a,,, a; are 
constant integers (possibly *co) and a, b are real constants (possibly &oo). 
then 

G(m,,..., mk, x1, ..., xk) = 2 F(m ,,..., mk, X1,..., xk) 
ltl,=Q 

and 

.b 

H(m, ,..., mk, X2 ,..., xk) = 1 F(m, ,..., m,; X, ,..., Xk) dx, 
a 

belongs to L(k - 1,l) and L(k, I- l), respectively, provided the-y are dejned. 

Prooj We shall prove that if F E L(l, l), then G(n) = Ii F(n, x) dx is P- 
recursive (i.e., belongs to L(l, 0)). The proof of the general result is similar. 
Once again we eliminate x, getting an operator R(n, E, D) such that 
R(n, E, D) F z 0. Write R(n, E, D) = R,(n, E) + DS(n, E, 0); then 

0 = .’ R(n, E, D) F(n, x) dx 
J a 

= jb R&z, E) F(n, X) dx + lb D[S(n, E, D) F(n, x)1 dx. 
a a 

By the fundamental theorem of calculus, 

R,(n, E) G(n) = S(n, E, D) F(n, a) - S(n, E, D) F(n, b). (*I 

But since F(n, x) is special so is S(n, E, D) F(n, x) and therefore both 
S(n, E, D) F(n, a) and S(n, E, D) F(n, 6) are P-recursive, i.e., belong to 
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L( 1,O). By Stanley’s theorem the difference is also P-recursive, and therefore 
there exists an operator R,(n, E) annihilating the right-hand side of (*). 
Consequently R ,(n, E) R,(n, E) G(n) = 0 and G is P-recursive. 

The last theorem explains why so many special functions are defined 
either by a sum or an integral. 

Example (i). 

satisfies a differential equation with respect to x and pure recurrence 
relations. with polynomial coefftcients, in each of the discrete variables 
a, ,..., ap, P,,..., /3,. The summand belongs to L(p + 4 + 1, I) and the sum 
belongs to L(p + q, 1). Of course J4 also satisfies many mixed relations 
involving simultaneous shifts in several aI)s and pj’s, called continguous 
relations. Wilson 171 found all linearly independent contiguous relations 
satisfied by J,( 1). 

EXAMPLE (ii). F(m, n, x) = xm(l -x)” belongs to L(2, l), and indeed 

F(m+ l,n,x)-xF(m,n,x)=O, 

F(m, n + 1, X) - (1 - x) F(m, n, x) = 0, 

x(1-x)DF-[m-(n+n)x]F=O. 

It follows from Theorem 21 that 

B(m, n) = io’ xrn(l -x)” dx 

belongs to L(2,0), which is hardly surprising considering the fact that 
B(m,n)=(m- l)!(m- l)!/(m+m- l)., t the very famous beta function 
which is not just multi-P-recursive but multi-hypergeometric: 

(m + m) B(m + 1, n) - mB(m, n) = 0, 

(m+m)B(m,n+ l)-nB(m,n)=O. 

Carlson [5] uses generalization of j: x*(1 - x)” dx, which he calls 
“Dirichlet Averages,” as a basis of his approach to special functions. Such 
integrals enable him to express all the known special functions as certain 
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integrals of elementary functions. In this respect, his method is a special case 
of ours. In general, if P,(x) ,..., PJx) are rational functions, then 

F(m, ,..., mk) = 
I 

‘P,(x)“’ .a. Pk(~)mkdx 
0 

is multi-P-recursive. 

EXAMPLE (iii). f(k, 19, z) = cos(2kB) cos(z sin 0) is easily seen to belong 
to L( 1, 2), and so l:f(k, 8, z) de must belong to L(1, 1), i.e., is special. It 
turns out [ 13, p. 1201 that it is the Bessel function J,,(z). 

4.2. All Identities Involving Special Functionss Can Be Checked in a Finite 
Number of Steps 

Like polynomials and multi-P-recursive functions, special functions are 
completely characterized by a finite number of parameters, namely, the coef- 
ficients of e and the initial values in the “characteristic set” (the set of 
common zeros of P$ Q$) which is a finite set in virtue of I. N. Bernstein’s 
theory. Thus, given any identity involving sums or integrals, we can use the 
generalized Sister Celine technique to find the appropriate differential and 
recurrence equations satisfied by both sides and see whether they match, and 
then compare initial values. Alternatively, we can plug in enough special 
values and check for them and then deduce equality in general, like we did in 
Section 1. 

EXAMPLE. 

xn = 2-“n! y 
““’ (2n - 4k + 1) P, _ Zk(~) . 

k:O k! (3/2),-k 

The summand on the right-hand side belongs to L(2, 1) and the sum 
therefore belongs to L(1, 1). Calling the right-hand side G(n, x), we should 
obtain, using the above methods, 

G(n, x) - xG(n - 1, x) = 0, 

(XII-n)G=O 

from which follows G(n, x) = x”. 

4.3. Generating Functions 

It follows that if F E L(k, r), then 

G(m, ,..., mk-, ; S, x, ,..., x,J = g F(m, ,..., mk, x, ,..., x,) S”’ 
PQ=O 
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belongs to L(k - 1, I + 1). Conversely H(m, ,,.., mk+, ; x2 ,..., xe) = coeff. of 
xyk+’ in G(m, ,..,, x,) belongs to L(k + 1, l- 1). 

EXAMPLE (i) [ 13, p. 1651. For the Legendre polynomials 

F P,(x) t” = (1 - 2xt + tZ) - I.‘?, 
II=0 

which certainly belongs to L(0, 2). 

EXAMPLE (ii). For the Laguerre polynomials 

x L’,“‘(x) t” = (1 - t))“+ff’ exp(-xt/( I - t)), 
?I=0 

which is clearly in L(0, 2). 
Of course if P,(x) is special and C, is P-recursive, then C,P,(x) t” is in 

f.(l, 2) and 

c C,P,(x) t” 

PI=0 

is in f.(O, 2), i.e., is multi-D-finite in x and t. 

4.4. Connection CoeJFcients 

Most of the known special functions are also orthogonal and hence satisfy 
a linear recurrence of the form 

-up,(x) = a(n) P,, ,(x) + b(n) P,(x) + c(n) P,-,(x). (“1” 

Any family of polynomials satisfying (*) for general u(n), b(n), c(n) is 
called orthogonal. Given two families of orthogonal polynomials, we are 
interested in the connection coefficients 

C(n, k) = (-b P,(-K) Q,(x) w(x) dx, 
-a 

where it is assumed that {Q,(x)} is orthogonal with respect to the measure 
w(x) dx over the interval (a, b). It so happens that in all the classical cases 
w(x) is algebraic and therefore (Stanley [ 141) D-finite. If both {P”(x)} and 
( Qk(x)} belong to L(1, 1) and w(x) is D-finite, then F(n, k, x) = 
P,(x) Qk(x) w(x) is in L(2, 1) and by Theorem 21, C(n, k) is in L(2,O). 
Thus, 
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PROPOSITION 22. If {P,(x)} and (Q,(x)} are two families of orthogonal 
special functions and (Q,(x)} is orthogonal over (a, b) with respect to 
w(x) dx, where w(x) is D-finite, then the connection coeflcients function 

C(n, k) = jb P,(x) Q,(x) w(x) dx 
-a 

is multi-P-recursive. 

Sometimes we are lucky and the relevant recurrences turn out to be first 
order, in which case C(n, k) can be expressed as a single product, as is the 
case between Gegenbauer polynomials with different indices (Asley [2, 
p. 591). However in most cases the resulting recurrences are of higher order 
and the best that can be done is to express C(n, k) as a sum of products (e.g., 
[2, P. 62, (7.28)]). 

Remark. If you already have a guess what C(n, k) might be, it is very 
easy to verify (or falsify) your guess. If P,(x) Q,(x) satisfy 

(1) xP,(x) = 44 P,+ ,(x1 + b(n) P,(-K) + C(n) P,-,(x). 

(2) xQ,(x) = a'(k) Qk+ dx) + b'(k) Q,(x) + c'(k) Qk- L4, 
then F(n, k, x) = P,(x) Q,(x) w(x) satisfies 

(3) a(n) F(n + 1, k, x) + b(n) F(n, k, x) + c(n) F(n - 1, k, x) 

= a’(k) F(n, k + 1, x) + b’(k) F(n, k, x) + c’(k) F(n, k - 1, x). 

Since the coefftcients are independent of x the same partial difference 
equation is satisfied by 

C(n, k) = lb F(n, k, x) dx: 

(4) a(n) C(n + 1, k) = a’(k) Gin, k + 1) + (b’(k) - b(n)) C(n, k) 

+ c’(k) C(n, k - 1) - c(n) C(n - 1, k). 

All you have to do is verify (4) and check C(0, k) and C(I, k). 

4.5. Linearization Coeflcients 

PROPOSITION 23. Let {P,(x)} be an orthogonal family of special 
functions (i.e., @n, x) = P,(x) E L(1, 1)) which is orthogonal over (a, b) with 
respect to the measure w(x) du. Assume that w(x) is D-finite. Then the 
linearization coeflcients function 

bh k, 0 = lb P,(x) P,&) P&l w(x) dx 
a 

belongs to L(3,0), i.e., is multi-P-recursive. 
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Proof: F(n, k, 1, x) = P,(x) Pk(x) P,(x) w(x) belongs to L(3, l), being the 
product of special functions. The result follows from Theorem 21. 

Once again the appropriate ordinary recurrences satisfied by b(n, k, f) may 
turn out to be of the first order, in which case b(n, k, I) is expressible as a 
single product. This is the case with the Legendre, ultraspherical, and 
Hermite polynomials [2, pp. 39, 421. But in most cases we have higher-order 
recurrences. In the case of the Jacobi polynomials, Hylleraas [2, p. 401 found 
second-order recurrence relations satisfied by b(n, k, l). 

Askey [2, p. 401 is unhappy about “guessing the solution for small n and 
then proving it by induction.” The generalized Sister Celine elimination 
algorithm eliminates all the “guess work” from computing the linearization 
coefficients (or rather of finding the appropriate recurrences) but is very hard 
to carry out. Once again, the significance of Proposition 20 rests on the fact 
that indeed there are ordinary recurrence equations satisfied by b(n, k, I). So 
by computing b(n, k, I) for small values of (n, k, I) we can plug them in and 
let the computer solve the resulting linear system of equations. To check that 
the recurrences obtained are true, all one has to do is verify that the 
following partial recurrence equation is satisfied 

a(n) b(n - 1. k, I) + P(n) b(n, k, f) + y(n) b(n + 1, k, I) 

= a(k) b(n, k - 1, I) + P(k) b(n, k, I) + y(k) 0, k + 1.1) ( *) 

(where xP,(x) = a(n) P,_,(X) + p(n) P,(x) + y(n) P,+,(x)). The proof of (*) 
is similar to the one indicated in the previous subsection. Of course one also 
has to check the boundary values b(0, k, 1) and b( 1, k, I). 

5. COEFFICIENTS OF RATIONAL FUNCTIONS AND THEIR q-ANALOG 

5.1. 

Dyson’s ex-conjencture (see [ 181) states that the constant term of 

is (a, + ..e + a,)!/[~, ! . . . a,, !]. This result was proved independently by 
Wilson, Gunson, and Good (see [ 181 for a detailed discussion of Good’s 
elegant proof). Certainly (a, + . . + + a,)!/(a, ! . . . a, !) is multi- 
hypergeometric. If 4,(.x, ,..., x,) ,,.., #n(~, ,..., xm) are general rational 
functions, we can hardly expect the constant term of 4:’ ... $in to be multi- 
hypergeometric, but the following is true. 
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PROPOSITION 24. Let F&z,,..., a,) be the constant term of $4’ --- #in, 
where (1 ,..., 4, are rational functions of x, ,..., x,. Then F, is multi-P- 
recursive. 

ProoJ: F(x, ,..., x,, a, ,..., a,) = 9;’ s.. 4 “,” is in L(n, m) (check!) so by the 
comments in Section 4.3, 

W ,,..., b,, a,, . . . . a,) 

= coefficient of $1 e-e x> in F(x, ,..., x,, a, ,..., a,) 

is in L(m + n, 0) and by the remarks following Definition 19, FO(ul ,..., a,) = 
G(0 ,..., 0; a, ,..., a,) is in L(n, 0). 

We shall now describe how to actually obtain the ordinary recurrences 
satisfied by F&z, ,..., a,). We have 

ElFIF= P,/Q, 3 

E,,FIF = P,/Q, 

(x,~,>W=WQ;, 

(x,j,, F/F = P;;QL, 

where P, ,..., P,, Q, ,..., Q,, P; ,..., Pk, Qi ,..., Qk are polynomials in 
6 , ,..., x,). By iterating the above equations, using the continuous and 
discrete Leibnitz rules, we form E~1(xID,)4’ ..- (x,DJDn for sufficiently 
large a,,P ,,... ,P,. Then we look for polynomials in (a ,,..., QJ, 
C a,4 ,...,. o,(al y.-9 a,), such that 

(*) 

by equating all the coefficients of xfl .-. x2 to zero. But since 
(xD)(C”o, a,~“) = ZTYoo na,x”, comparing the constant term on both sides 
of (*) yields 

The ordinary recurrence equations in Ez,..., E, are obtained similarly. 
Once again, it is much easier to verify that F,, equals a conjectured 
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function than to construct F,, from scratch. If G, is a known function of 
CI, ,..., ~1, and it is conjectured that F,, = G,, then it is enough to find one 
partial recurrence equation rather than n ordinary recurrence equations. This 
was how Good proved Dyson’s conjecture. 

We are looking for polynomials in (a, ,..., a,), C,,. .=$,. . .o,(u, ,.... a,) 
such that 

There are many possibilities and we are interested in making a, ,..., a,, as 
small as possible, while we do not care how big the /3, . . . . . /I,,, are. Now 

(**) 

is such a partial recurrence equation. In order to verify that F, = G, all that 
need be done is check that G, satisfies (**) and that F, = G, on and near 
the boundary of N”. 

Exercise. Find a linear recurrence equation satisfied by 4(m) = const. 
term of (x+ l+~-‘)~. 

Hint. Put F(m, x) = (x + 1 + x- l)m, then 

EF/F=x+ 1 fx-‘=(x2 +x+ 1)/x, 

(XD)F/F=m(x-x-‘)/(x+ 1 +x-l) 

= m(x2 - 1)/(x2 +x + 1). 

5.2. Andrews’ Conjecture 

We shall now describe how to obtain the n ordinary recurrence equations 
satisfied by the constant term of nIIGit,<,, (e,,xi/xj) a, (see Section 2.2 for 
definitions of the symbols). Let 

EJ(a, ,..., a, ,..., a, ; x, ,..., x,) 

= f(a, )...) a, + l,..., a, ; x, ,..., XJ 

and 

Qjf(u, ,..*, Q,; XI y***T Xj,**., X,) 

= f(u, ,..., a, ; x, ,..., qxj ,...) 35,). 

For simplicity, only the case n = 3 will be considered. The procedure for 
general n is similar. Consider thus 
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Now 

E,F/F= (1 -@)(l -r+), 

E,F/F = 
( 
1 - q”*+’ $)(I -9~‘~). 

E,F/F= 1 -q@+‘z 
( )( l-qqa,+‘: ’ 1 

x2x3 (1 - 9a‘+*)( 1 - Px&) Q,FP'= z XI (1 - 9a2x*/x,)(l - PX3/X,> 
x,x3 (1 -go?+’ 

QJIF=-T x2/x1)(1 - 9a2x2/x3) 
x* (1 -gal+’ x,/x,)(1 - 9o3x3/x2) * 

Now we eliminate x, , x2, x3 and obtain equations 

P,(@‘, go*, P; E,, Q,, Qd F = 0, 

P&P, go’, Pi E,, Q, 3 Q,> F = 0, 

Pkf’, qnZ, P; E,, Q, 9 Qz> F = 0. 

If Fo(al , a,, u3) is the constant term of F, then 

P,(q”l, qa2, qa3; E,, I, I) F, G 0, etc. 

This is so because Q,(c a,,~;) = C u,q”x,” and therefore Qi acts like the 
identity on the constant term. 

The drawback of the above method is that it is only good for one specific 
n at a time, besides being very complicated. However, we believe that 
MACSYMA can be used to find a simple and symmetric equation of the 
form 
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which will enable us to conjecture an equation of the form 

Once this has been verified, we check that 

( x Cm,. . .a,,~,. . .o.W ... E”” n 
) 

I( + . +c,,/(da, .-a (s),,] = 0 I 

and the equality of the boundary values of F, and (q),[+. . +aJ(q)a, ... (q),, 
will hopefully follow by induction. 

6. FINAL COMMENTS 

Every P-recursive function satisfies many linear recurrence equations with 
polynomial coefficients. Indeed, if P(n, X)f = 0, then for every operator 
Q(n, -0, Q(n, X) P(n, X)f = 0. F or example f(n) = n! satisfies the first-order 
recurrence equation (X - (n + l))f(n) = 0 and therefore (X + n) 
(X - (n + l))f(n) = 0, i.e., (X2 - 2X - n(n + l))f(n) = 0. Sister Celine’s 
technique enables us to lind one recurrence satisfied by G(n) = Ck F(n, k), 
but there is no guarantee that the recurrence found is the one of minimal 
order. 

Gosper [ 111 developed a decision procedure which is equivalent to the 
problem of determining whether (a(n) X + b(n))(l - X) possesses a different 
factorization. It would be very interesting if one could generalize Gosper’s 
algorithm to determine whether a linear recurrence operator P(n, X) can be 
factorized or whether it is irreducible. If P(n, X) = Q(n, X)R(n, X), then 
some solutions of P(n, x)f= 0 are also solutions of he lower-order 
recurrence equation R(n, X)f = 0. 

In Corollary 6a we proved that in order to check 

T F,(n, k) = r F&l. k) 
k 

(*I 

it is enough to check for 0 Q n <L, for some integer L. Sometimes it might 
be more efficient to actually find the recurrence equations satisfied by both 
sides of (*). Let us call the left and right sides of (*) G,(n) and G,(n), 
respectively, and suppose that the recurrences found for G,(n) and G,(n) are 

(1) 5 c,(n) G,(n + r) = 0, 
r=0 

(2) 5 b,(n)G,(n +s)sO. 
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If R = S then both equations should be equal, up to a polynomial multiple 
(i.e., c@, is the same polynomial for all r). However if R < S, we write 

(4) G,(n+R)=- 18; s G(n + r) 
R 

and then 

(5) G,(n+R+l)=-Rf’ :f$))G,(n+r+l) 
r=O R 

=- 
cR-l(n + ‘1 

cR(n+ l) 
Gdn +R) 

R-l 

-c 
c,-An+ 1) G (n+r) 

r=l cR(n + 1) ’ ’ 

Now we plug (4) in (5), thus expressing G,(n + R + 1) as a linear 
combination with rational coellicients of G,(n), G,(n + l),..., G,(n + R - 1). 
By iterating the process, we similarly express G,(n + R + 2),..., G,(n + S) 
and finally plug them in (2). If it turns out that 

i b,(n) G,(n + s) = 0, 

then G,(n) s G,(n) provided they are equal on the “characteristic set” 
{n; b,(n) = 0). 
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