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THE ALGEBRA OF LINEAR PARTIAL DIFFERENCE OPERATORS
AND ITS APPLICATIONS*

DORON ZEILBERGER

Dedicated to Richard J. Duffin

Abstract. The algebra of linear partial difference operators is investigated, and an elimination procedure
demonstrated. Applications to combinatorics are given. In particular, a new proof and a q-analogue of
MacMahon’s Master Theorem are given.

Introduction. In this paper the algebra of partial difference operators will be
considered, and applications to combinatorics demonstrated. It is surprising that partial
difference equations have received so little attention while partial differential equations
flourished. The only serious study of partial difference equations was in numerical
analysis, and then only as a tool for solving partial differential equations numerically.
Specific partial difference equations arose in random walk and combinatorics, but no
unified theory such as in H6rmander [6] was attempted.

We hope to show here that partial difference operators are much more comfortable
to work with, since the shift operator Xf(m)= f(m + 1) has a simple "Leibnitz rule"
X (fg) (Xf)(Xg). This is so much simpler than the continuous Leibnitz rule:

D" (fg) E k
(Dkf)(D"-kg)"

A general theory of linear partial difference equations will not be attempted here.
Instead we shall, study the algebra of linear partial difference operators, and describe
how to extend the elimination procedure in the algebra of polynomials (Van der
Waerden [8]) to the algebra of partial difference operators. This will be followed by
various applications of the elimination procedure. Unfortunately, in most cases, the
algorithm is too cumbersome to be done by hand. However, since the algorithm
involves nothing more complicated than multiplication by polynomials, it would be
possible to employ a "symbolic" computer (such as MIT’s MACSYMA) to solve some
open problems in combinatorics.

This paper is dedicated to Richard J. Duffin whose pioneering work in partial
difference equations prompted the author’s interest in them. The author is also
indebted to Richard A. Askey who challenged him to prove Andrews’ [1] conjecture
( 5). The present paper is a result of attempts to prove this conjecture, which is a
q-generalization of the already resolved Dyson’s conjecture. We attempted to q-
generalize Good’s [12] elegant proof of Dyson’s conjecture.

Although our algorithm is capable of doing it, in principle, for any given n, it turns
out to be too involved to do by hand. However, our algorithm turns out to be useful in
other situations, as we hope to show later.

Next, let us describe briefly the content of the paper. In 1 the algebra of linear
ordinary difference operators is introduced and we show how to take an inverse of an
operator. This is generalized to linear partial difference operators in 2. Following this
is a description of elimination in the algebra of linear partial difference operators with
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920 DORON ZEILBERGER

constant coefficients. This algorithm is then applied to give a new proof of MacMahon’s
[7] Master Theorem. Good’s proof of Dyson’s conjecture is quoted in subsection 3.4,
and 3 ends with the consideration of other possible generalizations to Dyson’s [8]
conjecture B.

Section 4 gives a generalization of MacMahon’s Master Theorem which answers, in
particular, a question posed by Andrews [1,p. 213].

Andrews’ [1] conjecture about the q-generalization of Dyson’s conjecture is
considered in 5. Although we failed to prove it, we describe how, in principle, for a
given n, the algorithm is capable of settling it. Section 6 presents the algorithm of
elimination in the most general setting, in the algebra of linear partial difference
operators with variable coefficients.

We are very grateful to George Gasper, whose valuable criticism and comments
transformed a disastrous first draft into a hopefully reasonable final version.

1. The algebra of ordinary difference operators. Let Z be the set of integers. We
shall here consider the vector space of functions ’1 {f:Z --> C}. A linear (ordinary)
difference operator is a mapping P:I -> 1 of the form

co,(m)f(m+a), fl,(1.1) Pf(m) [al<M
where M is a positive integer, and c are elements of 1. In case all the c’s are
constants (polynomials), we have a linear difference operator with constant (poly-
nomial) coefficients. Introducing the shift operator Xf(m) f(m + 1), we can write (1.1)
in the form

Pf [a,<M caXaf1.2)

The set of all such operators will be denoted by 1. Note that the operator X has a
particularly simple "Leibnitz rule",

(1.3) x (fg) (xf)(xg),

which proves that 1 is an algebra:

(1.4) (Y cX)(Y axO)=E E c(X"o)x+.

Let +I1, --I be the subalgebras

+1={ Y cX,forsomeM}
0a_<--M

-lil--’{ E caX,forsomeM}.-M=a_<O

+1 (respectively _1) can be embedded in the algebras of linear difference operators of
infinite order:

a->0

The domain of an operator in +/-1 is -, the space of functions of finite (=compact)
support:

{f:Z C; f- 0 except at a finite number of points}.
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An element of +/-1 has an inverse in +/-1 (assume Co 0) iff co(m) 0 for all m then
-1 -1

1+ Y. C’X’ Co
l<--a<MC0

k =0 l<a<M C0

Each term on the right-hand side is evaluated according to (1.4), and since the
lowest order term in ( (co,/co)X’)k is

k

we see that the sum in (1.5) is well defined, since the coefficients of any X are finite
sums. This is a generalization of taking the reciprocal in the algebra of formal power
series, the latter corresponding to the case where the c’s are all constants.

The above formalism can be applied to solve a general linear difference equation
M

(1.6) Z c(m)f(m-ce)=O, rn M,
=0

in terms of the initial values f(0), , f(M- 1). Of course there is a unique solution iff
co(m) 0 for all m, and we can write (1.6) as

(1.6’) cX =0 inmNM.
0

Extending by 0 in {m < 0}, we get

(1.6") cX-[=g inZ,
0

where g is supported in {0 N m NM 1} and each of its values is a linear combination of
f(O),...,f(M-1).

From (1.6")we get
M )-1
0

which is an explicit expression for , in spite of its formal" appearance.. Te lger t fi! eeeeeas. The discussion in 1 can easily be
generalized to several discrete variables. For n a positive integer, consider the vector
space of functions

={:zcl.

A linear partial difference operator is a mapping P’ of the form

P(m) 2l<c(m)(m +), e.(.1

Where multiindex notation is used; m, e Z, m (m,..., m), (1,""", ),
2 andM is a positive integer. The coecients c(m) are elements of. In

case all the c’s are constants (polynomials), we have a linear partial difference equation
with constant (polynomial) coecients. We introduce the shift operators
Xff(m,...,mi,...,m)=(m,...,mi+l,...,m), i=l,...,n; (Xi is the unit
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shift in the mi coordinate). We can write (2.1) in the form

P= E cX,(2.2)

because f(m + a)=X X"f(m)= Xf(m). The set of all linear partial difference
operators on Z" will be denoted by ,. The operators (X1, ’, X,) satisfy the simple
"Leibnitz rule",

(2.3) x(&) (xf)(xg),

which shows that n is an algebra:

(2.4)

Let F1," ", F2- be the 2 orthants in Zn; then if F is such an orthant,

r,, { caXa; only finitely many ca’s are nonzero}
is a subalgebra of ,, since F is a cone.

rn can be extended to the algebras of linear partial difference operators of infinite
order r0, {Yar CaXa}"

The domain of an operator rO, is o, the space of functions of finite (=compact)
support,

o,, {f. Z" + C; f 0 except at a finite number of points}.

As a matter of fact, if P e r0 involves all X1,..., Xn (i.e., it is not of lower dimension),
P can be applied to functions whose support is a union of "hyperstrips", i.e., functions
whose support is a subset of a set of the form U i=x {-Mi <- mi <-Mi}, where the M/
are positive integers. The space of such functions will be denoted by o-. Of course, it
may happen that the domain is even larger.

An element P of r, has an inverse in r0 (assume co 0) iff co(m) 0 for all m,
and then

-1 -1

(2.5) laMCaXa 1 + l<lal<MC0
Ca Xa Co

k

I; (-) E -x co.
k=0 l_-<lal_-<M C0

Each term on the right-hand side is evaluated according to (2.4); since the lowest
order terms in (l_lalM(Cdco)Xa)k have order k, it is seen that the sum in (2.5) is
well defined, since the coefficient of any X takes contributions only from the first I/[
terms in (2.5), and thus consists of a finite sum. This generalizes the taking of the
reciprocal in the algebra of formal power series of several variables, the latter
corresponding to the case where all the ca’s are constants.

The above formalism can be applied to solve a general linear partial difference
equation in an orthant F,

E ca(m)f(m-a)=O in{m;m-aF},(2.6) lal<M

in terms of the boundary values of f, that is, values of f near the axes. Of course (2.6) has
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a unique solution iff co(m)s 0 for all m, and we can write (2.6) in the form

(2.6’) ( Y c,,X-)/c=O in{m;m-aeF}.

Let us extend f by zero outside F. Then (2.6’) can be written as

(2.6") (., c,X-’).f=g inZn,
II<M

where gjs supported in a neighborhood of the axes, i.e., is an element of the function
space -0, discussed above, and each of the values of g is a linear combination of values
of f near the axes.

From (2.6")we get
-1

which is an explicit expression for f in F, in terms of its values near the axes. Suppose
P(z) is a polynomial in n variables, Zl,’’’, z,; then if

P(z)-1= 2 c(m)z m,
m_>0

and 8 is the discrete Dirac delta function:

then

So

z --z1 "Zn

8(0) 1, 8(m) O, mrs O,

c(m) (Y’. c(a)X-’)8(m), mZ

(2.8) c V(X-1)- 18,

and c satisfies the partial difference equation P_(X-I)c- 8, so c is a fundamental
solution of the operator P(X-X).

3. Elimination in the algebra of linear partial difference operators with constant
coefficients.

3.1 The algebra of linear partial difference operators with constant coefficients in n
variables, cn, is isomorphic to the algebra of polynomials C[z,..., z], and the
procedure in Van der Waerden i-8, 27, 77, 78] can be used to derive equations of
lower dimensions from a system of equations.

Example. Solve the system

(i) f(m + 1, n + 1)-2f(m, n + 1) +f(m + 1, n)=0,

(ii) .f(m, n) + if(m + 1, n) -f(m + 1, n + 1) if(m, n + 1) O, m,n>-O.

Setting Xf(m, n)= f(m + 1, n), Yf(m, n)= [(m, n + 1), we can write the above
equations in shorthand as

(XY- 2 Y +X)f O,

(3.1) (I+iX-XY-iY)f =O.



924 DORON ZEILBERGER

Let us eliminate Y from

el(X, Y) XY- 2Y+X,

Pz(X, Y) I + iX-XY- Y.

We would like to get an operator involving X only, so we write

el(X, Y)= Y(X-2)+X,

Pa(X, Y) Y(X + i) + (I + iX),
and we get that

O(X, Y) (X + i)PI(X, Y) + (X- 2)P:(X, Y) -21 + (1 i)X + (1 + i)X,
(3.2a) (-21 + (1 i)x + (1 + i)x)f o.
Similarly, it also satisfies

(3.2b) ((i + 2) Y2-(i + 1) Y-I)f= O.

(3.2a), (3.2b) immediately yield f, given f(0, 0), f(0, 1), f(1, 0), f(1, 1).
In general, given n partial difference operators with constant coefficients, on Z",

we can use the elimination procedure to obtain n ordinary difference operators
Ol(X1)," , O,(X,). If this is the case, we say that the ring (P1, Pn) is "a complete
intersection". The elimination algorithm not only yields n ordinary difference opera-
tors Ol(X1), , O,(X,) in case of "complete intersection", but also tells us when the
algorithm "breaks down", whenever it is not.

3.2 The elimination procedure in Van der Waerden [8] can be applied in any
polynomial ring R Ix1, , x, ], where R is a commutative ring (there it is assumed that
R is a field, but for our purpose it is enough that R is a commutative ring), in particular,
if R is the ring of partial difference operators with constant coefficients. Let x
be n indeterminates, and suppose we have n + 1 operators with constant coefficients,

Pi(X,...,X,;x,...,x,), /= 1,..., n +1,

where the dependence on x1,"’, x, is polynomial. In other words, the Pi’s are
polynomials in X1, , X,, xl, , x,. In general it is possible to obtain, by elimina-
tion, an operator O(X1,’" ,X,), independent of xl,’",x,, which is in the ring
generated by P1," , P,+I; i.e., there exist Ol(X, x),. , O,+I(X, x) such that OlP1 +

+ O,,+IP,,+I is independent of xl,’’’, x,.

3.3 A new proof to MacMahon’s Master Theorem. MacMahon’s Master Theorem
(MacMahon [7], see also Andrews [1, p. 214]) asserts that the coefficient of x
in

I (= aox
i=1

is equal to the coefficient of z ...z" in the power series expansion of [det(&/.-
ai/.zi)]-1

Setting
F(ml, ", m, xl, ", x,) I-I ai/.

i=1 /=1

we are interested in Fo(ml, , m,) const, term in F(ml, , m, xl, , x,). Now

XiF ao F, i=l,...,n,
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and F satisfies the n partial difference equations

xj(-ai + 6ijXi)F O, 1, , n.
/’=1

These are n linear homogeneous equations in x 1,’’ ", xn and (in this case Gaussian)
elimination yields

(3.3) P(X)F O, rnl,. m,, -> O,

where P(X) det (-ai + 6i.X). Since P(X) is independent of x 1," , x,, and is a linear
operator, we also have

(3.4) P(X)Fo= O.

We now claim that

(3.5) Fo IX-( X;1P(X)]-16
X1 XnP(X)-1

[det (6ii aiXT, )3-’.
This follows from the fact that both sides are solutions of (3.3), and the boundary values
match by the inductive hypothesis. By the remarks at the end of 2 it follows that (3.5)
implies the MacMahon Master Theorem. We prefer, however, to preserve the theorem
in the form (3.5), because, as will be seen later, it yields a generalization.

3.4 Good’s proof to Dyson’s conjecture. In 1962, Dyson [2] made the following
conjectures:

Conjecture B.

The constant term in : 1-. is

ii,jn

and its generalization
Conjecture C.

The constant term in

(na)!/(a!)"

This was proved by Gunson [5], Wilson [9], and Good [4]. ’Good’s proof is the proof that
got us started in this business. Because of its importance, and also because of its
elegance, we shall repeat it, in our notation. Set

F(a, a,., Xl, x,,) I-I (1
<--i,j<--_n

F satisfies the n partial difference equations,

i=l,...,n, ai>O.

Elimination of X1, Xn yields

(3.6) (I-X- X)F 0 in al,’", a,, > O.

1-I (1 x) a’ (a+...+a,,)!
is

ij al!" an!
<-i,j<-n
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This equation is independent of x1,’", xn, and therefore (3.6) is also satisfied by
Fo(al,’’’, an), the constant term of F. So

(3.7) (I-X- X- )Fo O.

G(al,..., an)=(a+" "+an)!/(al!’" an!) is also a solution of (3.6) and the boun-
dary values match, by the inductive hypothesis. So it follows that Fo(al,""", an)
(al+" .+a,)!/(al! a,!).

3.5 There are many generalizations to Dyson’s conjecture B. In Dyson’s con-
jecture C the factors (1-(xi/xl)),’", (1--(Xi/Xn)), (i= 1, "’’, n) were grouped
together, but we can take any n subsets of the n(n 1) factors (1 -(xg/xi))(i j, 1 <= i,

<-_ n) and group them together, forming a function of a 1, ’, an, x, , xn. Then we
can use elimination to find a partial difference equation independent of x l, "’,

satisfied by that function, and therefore also satisfied by the constant term (or any other
coefficient, for that matter). Let us illustrate it by the following.

FACT. Fo(a, b, c) constant term in V(x1, x2, x3, a, b, c)

[(1__1)(1__ x)j,[(l__ X)(l__.l)][(1__3)(1 __)]c,
is given by,

G(a, b, c) (2a)!(2b)!(2c)!(a + b + c)!/[a !b !c !(a + b)!(a + c)!(b + c)!].

Pro@ F satisfies the following linear partial difference equations,

XIF (2 Xl x_)FX2

X2F (2 Xx X3F
X3 XI/

X3 2/
Eliminating xl, Xa, x3 we get that F satisfies the partial difference equation

(3.8) (X21 +X+X-2XlX2- 2XiX3 2X2X3 +XlX2X3)F O.

Since this is a linear equation and is independent of x, x2, x3, it is also satisfied by
F0(, b, c). It is straightforward (albeit rather long) to check that this equation is also

3satisfied by G(a, b, c). It is trivial to check that Fo G on the boundary of Z/,
{a 0}Ll{b 0}Ll{c =0}.

The special case a b c yields conjecture B for n 3. The above proof was given
for pedagogical reasons, because the Fact is equivalent to

(_l)k( 2a )( 2b )( 2c)= (2a),(2b)l(2c)l(a+b+c)l.
a+k b+k c+k a!b[c[(a+b)[(a+c)!(b+c)!’

this is equivalent to the terminating form of Dixon’s theorem, which in turn is
equivalent to Dyson’s conjecture C for n 3 (Andrews [1, p. 214]).

4. A generalization of MacMahon’s Master Theorem.
4.1 In 6 we shall describe how to generalize the elimination procedure to systems

of linear partial difference operators with variable coefficients. In this case the task is
much harder, since the ring of linear partial difference operators is not commutative.
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However, in some cases of variable coefficients operators the elimination method
generalizes right away. This happens when the operators to be eliminated are pairwise
commutative. In particular, let us prove the following generalization of MacMahon’s
Master Theorem.

THEOREM. Let (fii(mi)), 0 <= i, ] <-_ n, be a matrix of discrete functions (where the ith
row has functions depending only on mi), and for a discrete function G, let

G(m)= G(0)G(1) G(m 1).

Then Fo(ml, , mn) the constant term of

F(mx," ", m.; xx," x.)=
i=1

is given by

(4.1) G(m,..., m,)= [det (3,-fiiXT’)]-a6,
where 6 is the discrete Dirac delta function, det (6ii-fiXV, is a linear partial difference
operator with variable coefficients, and its inverse is calculated by (2.5).

Proof. The proof is along the same lines as the one given in subsection 3.3.
F F(ml, , m, x,. , x,) satisfies

XiF: = fij(mi)F,
Xi/

i=l,...,n;

xj[6i.rYfi -fii(mi)]F O, 1,..., n.
1=1

Gaussian elimination still works here because any two entries in the matrix

(6ijXi-fij(mi)) which are in different rows, commute, since Xi acts only on functions
independent of mi. Consequently F(m, , mn xi, , xn) satisfies

(4.2) det (tiiXi fii(mi))F O.

This partial difference equation is independent of Xl, , xn, and since it is linear it
follows that it is also satisfied by Fo(m,. ", ran), the constant term of F.

So

(4.3) det (i]Xi fii(mi))Fo O.

But we also have

(4.4) det (3ijX fii(m))G =- O.

Fo G on the boundary of ZT-, that is on U in= {mi 0}, by the inductive hypothesis, and
thus the theorem follows" F0---G throughout Z_.

4.2 A q-analogue of MacMahon’s Master Theorem. The above theorem answers,
in particular, a question raised by Andrews [1, p. 213] about a q-analogue to
MacMahon’s Master Theorem. The q-analogue of (a+b) is (a +b)(a+qb)(a +
qZb) (a + q"-b); and naturally the q-analogue of (a + b + c) would be (a + b +
c)(a + qb + qZc)(a + qZb + q4c) (a + q"-b + qZ’-Zc), and in general, a q-analogue
of (al +" + an)" would be

(al +’" + an)(al +qa2 +" +qn-a)
x (a +q2a2+. +q2n-lan) (al +q’-a2+" "+q"-("-tan).
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It is seen that a q-analogue of the Master Theorem is obtained by putting fgi(mi)=
aqq’’(-l), where the aq’s are constants.

5. About the possibility of proving a q-analogue ot Dyson’s conjecture. In [1, p.
216], Andrews conjectured that the constant term of

( eiiXi) {1, < j,
F= ,, Ei]

# ai q, j > i,
li,jn

is q,+...+,/(q.., q,), where (x)=(1-x)(1-qx)... (1-q-x). This is the q-
analogue of Dyson’s conjecture C. Let us try to generalize Good’s proof. We have the n
equations

XIF=(I_qXI) ( Xl)1-qF,

Xn-1]

By finding the expressions forX X for high enough , , n, it is possible in
principle (for a fixed n), to eliminate x, , x from these equations, and get a linear
partial difference operator P(a, , a X, ,X such that PF O. Then it would
be possible to check that P(q,+...+/(q... q))=0, and equate boundary values.
Details will appear elsewhere.

However, this process is very complicated to do by hand (a symbolic computer will
help here), and we were unable to find such an equation even for n 3.

.1. sselfi edg Ie eeeees.Since
the process of elimination in Van der Waerden [8] is based on Gaussian elimination in a
commutative ring, we shall first describe how to modify Gaussian elimination to the
noncommutative ring of partial difference operators. To begin with, let us consider the
ring of linear ordinary difference operators.

Suppose we have the two operators

(6. la) O (aX + b) +P(m, X)a +... +P(m, X),

(6. lb) O (a’X + b’) +P; (m, X)I +... +P(m, X)I,

where P, , P, P, , P are any linear difference operators and the coecients of
1 are first order. If a, b, a’, b’ were constants we could have just multiplied the first
equation by (a’X + b’), the second by (aX +b) and subtracted, thus getting rid of I.
But since a, a’, b, b’ are functions, (aX + b) and (a’X + b’) do not commute in general.

We first form

(6.2a) b’O bO (m)X +. .,
(6.2b) a’O-aO= -(m) +....

Now we apply X to (6.2b) and get

(.b’) X(a’O- aO) -[X(m)]X +....
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Since b and Xb are functions, they commute, and (Xb)(6.2a) + 4, (6.2b’) yields an
operator independent of A 1.

The above process can be described as reducing two equations in which the
coefficients of A1 are first order difference operators, to two equations in
(XA 1, A 2, , An) in which the coefficients of XA are zero order difference operators,
i.e. functions.

The same method can be applied to the case in which the coefficients of A are of
any given order k.

(6.3a)

(6.3b)

Now

Ql =(aoXk +alXk-lq "+ak)Alq-.

QE=(a’oXk +a’lXk-l + "+a)hl+.

(6.4a) aoOl aoO2 (blXk-l+ + bk)h "]- ",

(6.4b) a ’kOl akO2 (coXk-1 +" + Ck-1)X, -]"

Now applyingX to (6.4a) we get two operators, linear in (XA 1), h 2, , An, in which the
coefficients of (XA 1) are operators of order k 1. Continuing in this manner, we get rid
of h altogether.

If we have n operators, Q1," ", Qn linear in hi,." ", An, we can use the above
procedure to get n 1 operators linear in h 2, , An. Continuing in this manner, we end
up with one operator linear in An, and since it is possible to divide by An, we end up with
an operator Q independent of hi,."", An. This operator is in the ideal generated by
{Q1, Qn}, and so Qlf 0,..., Q,f O:ff Qf O.

6.2 Gaussian elimination in the ring oi linear lartial flitlerenee olerators. Let us
consider a special case first,

QI [(a Y + b)X + (cY+ d)]h + PE(m, X, Y)A2 +"" +Pn (m, X, Y)hn,

Q2 [(a’Y + b’)X + (c’Y + d’)]h +P(m, X, Y)A2 +"" +Pn (m, X, Y)hn.

Let us write it as follows,

Q1 (a Y + b)(XA 1) + (cY + d)h +’",

Q2 (a’Y + b)(Xh 1) + (c’Y + d’)h +" ".

Using the process of subsection 6.1 we get rid of XA, to get an operator

Q =PI(Y)AI+" .
Once again using the above process, this time to get rid of h 1, yields

O P2(Y)(XA 1) +’".

XQ; and Q are two operators, linear in (XA 1), A 2, , An, but with the advantage that
the coefficients of (XA 1) are just ordinary difference operators. In this form it is possible
to use the method in the previous subsection, to get rid of (XA 1) altogether.

In general, suppose that we know how to do Gaussian elimination for partial
difference operators of dimension K-1; let us describe how to perform Gaussian
elimination for partial difference operators of dimension K. Consider the two operators

(6.5a) A PI(X,"’, Xr)h + P2(X1,’’’, XK)A2 +’’" q- Pn(X,’",

(6.5b) B P (X1, , Xr)A1 +P(X1, , Xr)h2 +"" + P’n (XI, , Xr
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Let us write

L

PI(X1," ", X:) _. Qi(X2," ", Xr.)X,
i=0

L

(Xl, XK) E Oi (X2,""’, XK)X1.
i=o

Substituting in (6.5) we get that A, B are linearly dependent on A1,
(X1A 1), , (XA 1), Aa, , An. Using the algorithm for dimension K 1, we can get
rid of A 1, yielding

c +... +

and using it another time, we can get rid of (xLA 1)"

D DIA +" +DL-I(X-1A 1).

C, X1D are two linear operators in (XIA 1), , (xILA 1). Continuing the process, we can
dispose of (X1A 1), (X2A 1), , (XA 1) successively, and finally get rid of h altogether.
This algorithm eventually yields an operator which is independent of

6.3 General elimination. Let us recall that if P1, P2 e R [x 1, , xn ], where R is a
commutative ring, we get an element Q e{P1, P:z}, which is in R Ix2,’", x,,], by
expressing P1,. P2 as polynomials in xl, with coefficients in R[x2,’", Xn], and by
forming x P1, xP2 for sufficiently large l, thus getting linear equations in the powers of
xl, with coefficients in R[x:z,’", x,]; then we use Gaussian elimination. The same
method can be used in n[Xl,’", xn], where n is the ring of partial difference
operators on Zn. This is so because we know how to perform Gaussian elimination in
that ring.

In general, if we have N + 1 operators Pl(Xl, , XN)," ", Pv+l(Xl, ", XN),
where the dependence on x1,’", XN is polynomial, it is possible to get an operator
which belongs to the ideal {P1, , PN/a}, and which is independent of xl, , XN. The
present algorithm is a generalization to the ring of linear partial difference operators, of
the process described in subsection 3.2 for the ring of partial difference operators with
constant coefficients.

6.40verdetermined systems of linear partial difference operators. In subsection
3.1 we saw that two linear partial difference operators with constant coefficients usually
give rise to an operator of lower dimension. The same is true for general linear partial
difference operators. Let P, Q be two such operators on Zn, and write them as follows,

P=Zp (x ,

O E Oi(X2," ", Xn)Xl.

By considering P, X1P, , X[P, Q, X1Q," , XIQ for sufficiently large L,M we get
linear dependence on the powers of X1 and using the process of Gaussian elimination
described in subsections 6.1, 6.2, we obtain an operator involving only X2,’’’, X,,
which is in the ideal {P, Q}. In general if we have n operators
PI(X1,’",Xn),’",P,,(X1,’",Xn) we should get n "ordinary" operators
QI(X1),’", Q,,(Xn). If this is the case, the ideal {P1,""" ,P,} is called "complete
intersection". If this is not the case, then the algorithm will tell us so by breaking down.
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Example. Find 2 ordinary difference operators satisfied by every solution of the
system

(i)

(ii)

mf(m + 1, n + 1) + nf(m + 1, n) + 2mr(m, n + 1) mnf(m, n) O,

f(m + 1, n + 1)+(n + 3)f(m + 1, n)+mf(m, n + 1)-3mr(m, n)=0,
m,n>=O.

In our notation

P1 (X, Y)f (mXY + nX + 2mY- mnI)f O,

Pz(X, Y)f= (XY + (n + 3)x + mY- 3ml)f O.

We have to eliminate P1, Pz. Writing

P mXY+2mY+ (nX- toni),

P: XY+ mY + (n + 3)X 3mL
yields

Ol P mPz (2m m:Z) Y + (nX- mnI- m(n + 3)X + 3mZI),
O2 P1 2Pz (m 2)XY + (-(n + 6)X + 6m mn ).

Simplifying, we get

O1 m(2- m) Y + (n mn 3m)X + m(3m n)I,

O:z (m 2)XY + (-(n + 6)X + (6 n )mI).

XQI (1 m2)XY-(mn + 3m + 3)X2
4- (m + 1)(3m n + 3)X,

Oz (m 2)XY + (-(n + 6)X + (6 n)m).

(m-2)XOl-(1-m:)O:z will be an ordinary difference operator in the m-direction,
i.e., an operator in X. Similarly, it is possible to find an ordinary difference operator in
the n-direction.

Remark. In Even and Gillis [3] the authors mention that they were unable to find a
combinatorial proof of the ordinary difference equation (34) there, which is satisfied by
P,.st. However they exhibit 3 partial difference equations satisfied by P,.st, namely (9),
(32), and one obtained from (32) by replacing r by s. Thus our (completely elementary)
algorithm should yield their ordinary difference equation (34).
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