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Introduction 

"The theory of correspondence 
reaches far deeper than that of 
mere numerical congruity with 
which it is associated as the sub
stance with the shadow" 

James Joseph Sylvester 

To most contemporary mathematicians matrices and linear transformations are 
practically interchangeable notions . Indeed, the mainstream 'Bourbakian' estab
lishment, with its profound disdain of the concrete, goes as far as to frown at the 
mere mention of the word 'matrix'. 

To me, however, (as well as to a growing number of mathematical dissidents 
c~lled 'combinatorialists') a matrix has nothing whatsoever to do with that 
intimidating abstract concept called 'a linear transformation between linear vector 
spaces". Instead, an n x n matrix is the 'blueprint' of all the possible edges one 
can draw on n given vertices, a determinant is the 'weight' of all permutation 
graphs and matrix-products represent paths (details later). 

The purpose of this paper is to give a survey of this combinatorial interpretation 
of matrix algebra and_ to present elegant and illuminating proofs of five classical 
matrix identities . 

In 1965, Dominque Foata [4, 2] gave a beautiful combinatorial proof of the 
celebrated MacMahon master theorem, thus setting the stage for combinatorial 
matrix algebra. Recently, two other elegant proofs have appeared: Straubing's 
proof of Cayley-Hamilton [9], and Orlin [8], Garsia [6] and Temperley [10] 
independently found a combinatorial proof of the matrix tree theorem. 

I am going to present here new renditions of these three pearls, making them 
purely bijective and as succinct as possible. To them I am going to add two rubies 
of my own: a proof of det(AB) = (det A)(det B) and a new combinatorial proof 
(quite shorter than Foata's [5]) of Jacobi's det(eA) =eo-A. 

*This research was partly supported by a summer research grant donated by my wife Jane. 
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1. The set-up 

For us, the entries of matrices A= (aii) are not numbers but rather commuting 
indeterminates. We have n labeled vertices {1, ... , n} and the weight of the edge 
i ~ j is aii. A (directed) graph is a collection of edges and the weight of a graph is 
the product of the weights of its edges. For example, 

weight(~
2

~4) = a 12a13a24a34. 
~:f' 

Whenever we have a set of objects possessing weights, we define the weight of the 
set to be the sum of all the individual weights. For example 

weight({< 4, 
2 7 ·4, 12.3 ~ 4}) ~ a.,a.,+a~a, +a~ 

A cycle is a directed graph whose edges are i1 ~ i2, i2 ~ i3, ... , ik ~ i1 for 
some subset of the vertices {il> . .. , ik}. The weight of a cycle is -ai,i2ai:zi3 • • • aiki, 

(that is the negative of its weight qua graph). The weight of a disjoint union of 
cycles is defined as the product of the weights of all constituent cycles. In 
particular, it is readily seen that the weight of a permutation graph, whose edges 
are i ~ 7T(i) (i = 1, ... , n) for some permutation 7T is equal to 

n n 

(o-1)#cycles n ~ . = (sgn 7T) n (-a. ). 
Tr h) l.,. (a) 

(1) 
i = l i = l 

(This is so since the sign of an even cycle is -1 and the sign of an odd cycle is + 1, 
thus the sign of 7T is (-1)#ofevencycies, taking (-aii) rather than (aii) gives a '-1 

credit' to each odd cycle, making the total contribution to the left hand side of (1) 
(-1)#cycies, as it should .) 

We have thus obtained the following combinatorial interpretation of the 
determinant; 

det(- aii) =weight(g}>er(n)), 

where g}>er(n) is the set of permutation graphs on the n vertices {1, ... , n}. 
Similarly, the principal minors of (-aii) corresponding to any subset of vertices is 
the weight of the set of disjoint unions of cycles covering these vertices. Thus 
det(Sii- aii) (where Sii is the identity matrix) is the weight of the set of all directed 
graphs that consist of disjoint union of cycles. For example, if n = 2 

=weight( i :2) + weight(f 2) 
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+ weight(i ~) + weight(f ~) 

+weight(i ¢ 2). 

If A= (~i) describes one kind of edges (called A-edges) and B = (bii) describes 
another kind of edges (called B-edges) then, for every pair (i, j), the (i, j) 
component of AB is the weight of the set of paths of length 2 from i to j such that 
the first edge is an A-edge and the second edge is a B-edge. This follows 
immediately from the definition of matrix multiplication. In particular the (i, j) 
entry of A k is the weight of the set of paths of length k from i to j, where, of 

!- course, 

2. Foata's proof of the MacMahon master theorem [2,4] 

Let A(mb ... ' mn) =coefficient of X'{' ' .. . x;:'n in (auxl + . .. + alnXn)m1 • •• 

(anlXl + ... + annXn)m". The MacMahon master theorem says that 

(2) 

Consider the collection .sti of all pairs ( G, H) such that 
(I) G is a directed graph, multiple edges and loops allowed such that 

(i) For every vertex i, the number of outgoing edges equals the number of 
incoming edges, 

(ii) for every vertex i, its outgoing edges are ordered from top to bottom 
(what computer folks would call a stack); 

(II) H is a disjoint union of cycles (not necessarily covering all vertices). 
For example, the following ( G, H) is such a pair: 

G: out of 1: 1 ~ 3 

1~2 

1~1 

1~1 

outof2: 2~3 

2~1 

2~2 

out of 3: 3 ~ 3 

3~3 

3~1 

3~2 

H : (13) (i.e ., 1 ~ 3 ~ 1) 
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The weight of an edge i ~ j is a.;ixi and let 

weight( G, H)= ( -1)# cycles of H · product of all edge-weights of G and H . 

For example, for the above ( G, H) 

weight( G, H)= ( - 1)(a13x3)(a12x2)(a11xl)(auxl) 

· (a23x3)(a21x1)(a22x2) 

· (a33x3)(a33X3)(a31x1)(a32x2) 

· (a 13x3)(a31x1) 

= - a i 1 a12a i3a21 a22a23a~1 a32a~3x ix~xj. 

We will prove (2) by showing that both the sides of (2) are equal to the same 
thing, namely to 

def' 
weight(d ) = L. weight(G, H). 

Let CfJ be the set of all directed graphs satisfying (I) and 7/e the set of all directed 
graphs satisfying (II) . Clearly d = G x 7/e and 

weight( d )= weight(W) · weight('Je). 

By the remarks in Section 1, 

weight('Je) = det{l>,i - a,ixi). 

(3) 

(4) 

In order to show that the left-hand side of (2) is equal to weight (d) we will have 
to prove that 

(5) 

Indeed, for every (mb .. . , m") consider the subset of CfJ consisting of graphs 
such that: for i = 1, .. . , n, i has m, outgoing edges (and therefore m, incoming 
edges). Now for every i, you have m, choices of choosing its outgoing edges and 
the total weight of each choice is (a, 1x1 + · · · + a,"x"), implying that the total 
weight of all m, choices outgoing edges of i is (a,1x1 + · · · + a,"x")m' . Doing the 
same thing for every single vertex shows that the weight of the set of graphs 
having (for i = 1, . .. , n) m, edges out of i is (a 11x1 + · · · + a 1nXn)m, · · · (~ 1x 1 + 
· · · + annXn)m·. But we also have to take care of the fact that there are exactly m, 
edges coming into i (i = 1, ... , n) and therefore weight(Cfi) =the x'{'• · · · x;;'· term 
in the above product = A(m 1, ... , m")x'{'• · · · x;;'· . Summing over all 
(m1, .. . , m") yields (5), which together with (4) and (3) yields 

weight(d ) =left-hand side of (2). 

We will now prove that weight(d) = 1, and thus complete the proof. Let's define a 
mapping from d to d as follows . 



~ 
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Given a pair ( G, H), start at vertex 1 and walk along G in such a way that you 
always choose the top edge. Keep walking until either 

Case I. You have encountered a previously visited vertex of G, or 
Case II. You have come across a vertex of H. 
In Case I we have transversed a complete cycle of G that is completely disjoint 

to the vertices of H. We remove this cycle from G and put it in H . 
In Case II, we take the cycle of H to which that vertex belongs and move it 

from H to G. Also, we do it in such a way that these newcomer edges of G are 
placed on the top of the old edges. 

For example, if 

G=1~2 H=empty 

1~ 1 

2~3 

2~1 

3~2 

3~3 

then the walk on G is 1 ~ 2 ~ 3 ~ 2, and Case I holds; thus the new (G, H), call 
it ( G', H'), is 

G'= 1~2 

1~ 1 

2~1 

3~3 

H'=(2,3) 

Now let's apply the mapping to (G' , H'). The walk is 1 ~ 2, since vertex 2 is an 
H' vertex, belonging to (2, 3). We remove (2, 3) from H' and put its edges 2 ~ 3 
and 3 ~ 2 in G' in their respective places on the top of the outgoing edges of 2 
and 3 respectively. We get ( G, H ) back. Of course this is no coincidence, and it is 
readily seen that applying the mapping twice on any pair ( G, H) reproduces it. In 
short, our mapping is an involution and therefore , of course, a bijection. Since 
there is 'conservation of edges' in (G, H ) the absolute value of the weight remains 
the same, but since the parity of the number of cycles of H changes, the sign 
changes. Thus all the terms of weight( d ) =I weight( G, H) can be arranged in 
mutually cancelling pairs, except to the only element of d on which the involution 
cannot be defined, namely the 'trivial ' pair (empty, empty) whose weight is 1. 
Thus 

weight(d) = 1 =right-hand side of (2). 

This completes the proof. 
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3. Straubing's proof of the Cayley-Hamntou theorem [9] 

Let A be an n x n matrix and let P(A.) = det(H- A) then the Cayley-Hamilton 
theorem says that the n x n matrix P(A) is the zero matrix. Spelled out in full, it 
says that 

An+ (-an- a22- . .. - a"")A n - 1 

+(sum of all 2 x 2 principal minors, of - A)A n -
2 

+ .. . +(sum of all k X k principal minors of - A)A n-k 

+ · · · +det(-A)=O. (6) 

We have to prove that every entry of the matrix on the left hand side of (6) is 
equal to zero. 

Fix i and j and let .sll = .sll (i, j) be the set of pairs (P, C) such that 
(i) P is a path from i to j, 

(ii) C is a disjoint union of cycles, 
(iii) The total number of edges of P and C combined equals n. 
The weight of an edge k ~ m is akm and 

weight(P, C)= (-1)#cycles ofc [product of all edge-weights of C and P]. 

For example, if i = 1, j = 2, n = 5, (1 ~ 3 ~ 2, (1)(3, 5)) is an element of .sll 
whose weight is ( -1)2(a13a 32)[ (an)(a3sas3)]. 

Now we claim that 

weight(.sll (i, j)) = (i, j) entry of the left-hand side of ( * ). (7) 

Indeed, the path P may be of any length n - k for 0 ~ k ~ n. The weight of the set 
of paths of length n- k from i to j is exactly the (i, j) entry of A n - k. Now you 
have kedges left to form disjoint cycles, and you have the freedom to choose any 
k-element subset of {1, .. . , n} for your vertices. The weight of the set of all these 
is (by the remarks of Section 1) equal to the sum of all k x k principal minors of 
-A. Summing over all 0 ~ k ~ n gives (7). 

The proof will be completed once we show that for every i, j 

weight(.sll(i, j)) = 0. (8) 

To this end we will introduce the following mapping from .sll(i, j) to itself. Given 
(P, C) start at i and walk along the path P until you either 

Case I. Come to a previously visited vertex of P , or 
Case II. come to a vertex. that belongs to one of the cycles of C. 
In Case I you have transversed a cycle of P whose vertices are disjoint to all the 

cycles of C. You remove that cycle from P and join it to C. 
In Case II you remove that cycle from C and insert it (at that vertex) in P . 
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Example. n = 5, i = 1, j = 3 

(1 ~ 2~ 3 ~ 2~ 3 ; (5)) ++ (1 ~ 2~ 3; (23), (5)) 

(1 ~ 3 ~ 3 ; (3, 4, 5)) ++ (1 ~ 3 ~ 4 ~ 5 ~ 3 ~ 3; 0). 

It is readily seen that this mapping is an involution defined on every element 
(P, C) of s'/. . (Let the number of vertices (=number of edges) of C be k, and 
suppose that the vertices of P are disjoint from those of C. Then P has as many 
vertices as edges (n- k of them) and therefore must contain a cycle.) By 
'conservation of edges' the absolute value of the weight stays the same, but since 
the parity of the number of cycles of C changes, the sign of the weight is reversed. 
Thus, all the elements of weight(s'/.) can be arranged in mutually cancelling pairs 
and their sum is therefore zero. 

4. A combinatorial proof of the matrix tree theorem [6, 8, 10] 

Consider directed graphs on the n vertices {1, ... , n}. A tree rooted at n is a 
directed graph without cycles such that every vertex has exactly one outgoing 
edge except to the root n that has no outgoing edges. Let fJ = fl (n) be the set of 
trees rooted at n. The weight of an edge k ~ m is akm and the weight of a tree (or 
for that matter any directed graph) is the product of the edge-weights. 

The matrix-tree theorem says that weight(fl(n)) equals the determinant 

a 12 + · · · + a1n -a12 

- an an+···+ a2n 

(9) 

-an- 1,2 an- 1,1 + ... + an- 1,n 

Let 00 be the set of pairs (B, C) such that 
(i) B is a directed graph such that for a certain subset VB of [1, .. . , n -1} 

there is exactly one edge going out of every vertex of VB. The end vertex of each 
edge may be any vertex of {1 , .. . , n} except its origin (i.e ., no slings allowed); 

(ii) C is a collection of disjoint cycles, of length ~2, on the set of vertices 
V 0 Vc being the complement of VB with respect to {1, ... , n - 1}. 

The weight of a pair (B, C) is defined by 

weight(B, C)= ( -1)# cycles of c [product of all edge-weights of B and C]. 

For example (n = 5) 

weight(1 ~ 5, 3 ~ 5 ; (2, 4)) = (- 1)1a 15a 35a 24a42· 

It is readily seen that (9) = weight(OO) . 
Define the following mapping on 00. Given (B, C ) look at all cycles, both of B (if 
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any) and of C. Pick the cycle that contains the lowest vertex and change its 
affiliation (if it belonged to B put it in C and vice versa). For example (n = 6) 

(1 ~ 2, 2 ~ 1, 4 ~ 6; (35))- (4 ~ 6; (12)(35)) 

(1 ~ 6, 2 ~ 6; (345))- (1 ~ 6, 2 ~ 6, 3 ~ 4, 4 ~ 5, 5 ~ 3; 0). 

It is not hard to see that we have a sign reversing involution that is defined on 
all elements of 00 that have cycles. The only survivors are those elements of 00 of 
the form (B, 0) where B has no cycles, i.e., is a tree! Thus weight(d) = weight(:J) 
and this completes the proof that weight(:J) equals (9). 

5. det(AB) = (det A)(det B) 

The matrix AB represents compound edges i ~ k ~ j with weight a;kbki• where 
k can be any vertex. Let weight A ( 1T) = (sgn 1T )ai-rr(ll · · · an.,.(n)• weightB ( 1T) = 
(sgn 1r)b1.,.<1l · · · bn.,.(n)· Let 9Per(n) denote the set of permutations on {1, . .. , n} 
then det A= weight A (9Per(n )), det B = weightB(9Jler(n )). What is det (AB)? 

Let Z(n) be the set of pairs (f, 1r) where f is any mapping {1, ... , n}~ 
{1, . .. , n} and 1T is a permutation. Let 

weight(f, 1T) = (sgn 1T )(a lf(l)bf(l)-rr(l)) ... (aif(i)bf(i)orr(i)) ... (anf(n)bf(n)-rr(n))· 

A moment's reflection would convince you that 

det(AB) = weight(Z(n)). 

An element of Z(n) is a good guy iff is a permutation. Then of course r 1 
o 1r 

is a permutation and weight(f, 1r) =weight A (f)weightB (f- 1 
o 1T ). Thus 

I weight(!, 1r) = (det A)(det B). (10) 
(f. orr) good 

In order to prove that det(AB), which we said was equal to weight(Z(n)), is 
equal to (det A)(det B), we have to show only, thanks to (10), that 

I weight([, 1r) = 0. . (11) 
(f. orr) bad 

Once again we have to find a killer involution. If (f, 1r) is a bad guy, all it means 
is that f is not a permutation, i.e, there exist b, i and i' such that f(i) = b and 

f(i') = b, or in a more picturesque notation there exist A-edges i ~ b and i' ~b. 
Pick the smallest such b, and for that b, the smallest such i and i'. 

Case 1: i and i' belong to the same cycle of 1r. The cycle to which both i and i' 
belong looks as follows: 

i ~ b !4 1r(i) ~whatever · · · .!4 i' ~ b !4 1r(i') ~ blablabla · · · ~ i. 

What you have to do is break this long cycle into two cycles: 

i ~ b !4 1r(i') ~ blablabla ~ i 
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and 

7T(i) ~whatever 14 i' ~ b 14 7T(i). 

(Note that the underlying permutation changed from 7T to 7T times the transposi
tion (i, i').) 

Case II: i and i' belong to different cycles of 7T. Let these cycles be 

i ~ b !4 7T(i) ~ blablabla · · · 14 i 
and 

i' ~ b !4 7T(i') ~whatever· · · !4 i' . 

In this case what you have to do is to combine them into one cycle: 

i ~ b !4 7T(i') ~whatever· · · 14 i' ~ b !4 7T(i) ~ blablabla · · · ~ i. 

(Note that the underlying permutation changed from 7T to 7T times the transposi
tion (i, i').) 

Example. n = 6 

(1 ~414 2~ 214 5 ~ 314 6~ 314 3~ 2144~ 2141) 

¢} 

(1 ~ 414 2~ 214 4~ 2141)(214 5 ~ 314 6~ 314 3~ 2). 

It is readily seen that what we have here is a sign reversing involution defined 
on all the bad guys and thus the sum of the weights of all the bad guys is 0. This 
proves (11) which together with (10) completes the proof of det(AB) = 

(det A)(det B). 

6. A new combinatorial proof of Jacobi's det(eA) = etrA 

The first to realize that Jacobi's identity has anything to do with combinatorics 
was Jackson [7] who gave it a combinatorial interpretation. Foata [5] then went on 
to give an elegant combinatorial proof. We are now going to give another 
combinatorial proof that is shorter and more direct. 

eA =I A k/ k! is the exponential generating function of paths of all length. 
Namely, writing B = eA, B = (b;i) we have 

1 
k ! weight[ set of all paths from i to j of length k] 

= the sum of all terms in b;i of total degree k. 

Now for m = 0, 1, 2, ... , let 973m be the set of objects of the form ( 7T, P;'TT(il• 
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i=1, ... ,n) where 
(1) 7T is a permutation of {1, ... , n}; 
(2) For i = 1, .. . , n, P;.,.. (;) is a path from i to 7T(i); 
(3) The total number of edges of all paths is m; 

(4) The edges are labeled by distinct labels from {1, . . . , m} in such a way that 
they are increasing along every path. 

The weight of such an object is sgn 7T times the product of all edge-weights, the 
product of an edge k ~ l being akl· 

For example if n = 4, m = 15 ~ 

7T=1~2,2~1,3~3,4~4 

P12:1~2~2~2 

P 4 7 4 12 1 13 4 1 5 4 44: ~~~~ 

is one member of @ 15 whose weight is 

By general properties of exponential generating functions we have 

= 1 
det(eA) = I -weight(@"'). 

m ~ o 111! 

We are now going to define an involution @m ~ @m (for every m) that is going to 
get rid of most of the terms in weight(@m). 

Let j ~ i be the edge of highest label s for which j -=f i. This edge must 
necessarily belong to P.,..- ' (i)i which has the form 

- first path: 

where s =s0 and r~O. 
Now consider P.,.- ' Ci li 

- second path: 

Let 0,;; a,;; l be the only a such that t"' < s < t"'+1 • The involution consists of 

swapping the portion~ i ~ i ~ · · · ~ i of the first path and (the possibly 
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t t t 

empty) portion ~ j ~ j ~· · . ...-..:._ j of the second path, getting for the 

transformed object 

- first path: 

P 1( ") h 0 t + I 0 . , 0 .,.-•<ni: 7T- I ~w atever . . . ~ 1 ~ 1 ~ ... ~ 1 

- second path: 

P .,. - '(i) i : 1r-
1(j) ~ blablabla · · · ~ j ~ i ~ i ~ · · · ~ i 

Example. n = 3 

1 2 3 
'IT= 2 3 1 

P 12: 1~2~2~2~2 

1 2 3 
'7T=2 1 3 

P 12: 1~2~2~2~2 

p 21: 2~1~1~1 

p 33: 3~1~1~3~3~3~3. 

Since we have 'conservation of edges' , the absolute value of the weight is retained, 
but the sign changes, since the underlying permutation has been multiplied by the 
transposition (i, j). Thus the involution gets rid of all the terms in weight(~m) 
corresponding to elements of ~m on which the involution makes sense. The only 
survivors of weight(~m) are weights of elements on which the involution cannot 
be defined, call these elements C(;im· Thus weight(~m) = weight(C(;im), where C(;im are 
those objects all of whose edges are slings, that is , edges from a vertex to itself 
i ~ i. The underlying permutation for all the members of C(;im must necessarily be 
the identity permutation and all paths have the form 

with appropriate edge labels. Since the exponential generating function for paths 
of the form i ~ i ~ 0 0 0 ~ i is ea, it follows that 

Thus 

This completes the proof. 
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7. Exercises 

The difficulty rating of these exercises follows the famous Knuth scale that 
ranges from 0 (outright trivial) to 50 (impossible). 

1. (10) Starting from the combinatorial definition of the determinant prove that 
the determinant vanishes if two rows are identical. 

2. (12) Give a combinatorial interpretation to an arbitrary minor (not necessar
ily principal) obtained by choosing rows il> ... , ik and columns j1 , ... , ik-

3. (20) Using Exercise 2, prove the Laplace expansion of the determinant. 
4. (39) Go through Aitken's book [1] and try to prove combinatorially as many 

results as possible. 
5. (28) Using a proof similar to Straubing's, prove the following identity: let m 

be any integer then if A is an n x n matrix (trAm)+ (sum of 1 x 1 principal 
minors of -A) (tr A m- 1

) + · · · +(sum of k x k principal minors of -A) 
(tr A m+k) + ... +(sum of m X m principal minors of -A) m = 0. 

Note that for m ~ n it is a trivial consequence of the Cayley-Hamilton theorem, 
and that for A diagonal these are Newton's identitities. 

6. (45) Another way of stating the matrix tree theorem is to say that the weight 
of the set of trees rooted at n equals the (n, n) minor of the determinant of the 
matrix (Ali) defined by A;;= Li -.' i aii• A;i = -aii (i# j). Find what is enumerated by 
an arbitrary (not necessarily principal) minor and prove the so-called "all minor 
matrix tree theorem". (For a proof see Chaiken's [3] interesting paper.) 
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