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Abstract
In the Alice HH vs Bob HT problem, Alice and Bob flip a sequence of n coins, with Alice scores a point

whenever “HH” appears and Bob scoring a point whenever “HT” appear. In this note we calculate the first
3 moments of the random variable “Alice’s Score minus Bob’s Score” and then use an Edgeworth expansion
approach to estimate that Bob’s probability of winning exceeds Alice’s probability of winning by 1

2
√
πn

.

1 Definitions
Symbol Definition
n ∈ N Number of coinflips in the sequence

C1C2, . . . , Cn Sequence of coinflips Ci ∈ {H,T}
∆i :=

1CiCi+1=HH − 1CiCi+1=HT

The difference (Alice score - Bob score) due to the coinflips Ci, Ci+1

Xn =
∑n−1

i=1 ∆i Alices total Score minus Bob’s total Score. The total difference in score after
the n flips

1HH• and 1•HH Used as a shorthand notation for the indicators of the events like 1HH• :=
1{CiCi+1Ci+2 = HH•} when the value of i is implicit. The bullet “•” stands
for a “wildcard” that could be either H or T , but makes calculations a bit easier
to visualize when used in multiple places to keep i constant. For example:
1HH• · 1•HH = 1HHH or 1HH• · 1•HT = 1HHT or 1HT• · 1•HT = 0 (since the
middle coinflip cannot be both H and T simultaneously).

2 Moment Calculations

2.1 1st Moment
E [Xn] = (n− 1)E [∆i] = 0

2.2 2nd Moment
Note that ∆i and ∆j are independent unless i = j or i = j±1 (i.e. the “range” of the interactions is only 1 coinflip.)
From this it follows that we can expand to get:

E
[
X2

n

]
= (n− 1)E

[
∆2

i

]
+ 2(n− 2)E [∆i∆i+1]

and we compuite:

E
[
∆2

i

]
= E

[
(1HH − 1HT )

2
]
= E [1HH + 1HT + 2 · 0] = 1

4
+

1

4
=

1

2

and:

E [∆i∆i+1] = E [(1HH• − 1HT•) (1•HH − 1•HT )]

= E [1HHH − 1HHT − 0 + 0]

=
1

16
− 1

16
= 0

so combining gives:

E
[
X2

n

]
=

1

2
(n− 1)
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2.3 3rd Moment
Again, keeping track of only interactions at range 1 away, we have the expansion:
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]
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 n∑
i,j,k=1

∆i∆j∆k


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[
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i

]
+ 3(n− 3) · 3! ·E [∆i∆i+1∆i+2]

+ (n− 2) ·
(
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1

)
E
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i∆i+1

]
+ (n− 2) ·
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1

)
E
[
∆i∆

2
i+1

]
Now we notice that any expectation of the form E [(...product of stuff...) ·∆i+2] (i.e. it ends with a ∆ on its

own and not squared) is exactly 0 because the the last ∆ is equally likely to be +1 or −1 (either both 50% or both
0% depending on whether the product of stuff at the beginning end is a H or ends in a T.) So the only surviving
term here is the term E

[
∆i∆

2
i+1

]
which gives:

E
[
∆i∆

2
i+1

]
= E

[
(1HH• − 1HT•) (1•HH − 1•HT )

2
]

= E [(1HH• − 1HT•) (1•HH + 1•HT + 2 · 0)]
= E [1HHH + 1HHT − 0− 0]

=
1

8
+

1

8
=

1

4

So we have:
E
[
X3

n

]
=

3

4
(n− 2)

3 Edgeworth Expansion
We use an expansion for the density function of the random variable of the form (see https://en.wikipedia.org/wiki/Edgeworth_series)

ρX(x) ≈ 1√
2πσ

e−
(x−µ)2

2σ2

(
1 +

κ3

3!σ3
He3

(
x− µ

σ

)
+ . . .

)
where µ = E [X] , σ =

√
Var [X] and κ3 = E

[
(X − µ)3

]
, and He3(x) = x3 − 3x is the 3rd Hermite polynomial.

In our case µ = 0 so this simplifies a bit to:

ρX(x) ≈ 1√
2πσ

e−
x2

2σ2

(
1 +

κ3

3!σ3
He3

(x
σ

)
+ . . .

)
3.1 A lemma about integrating He_3
Lemma 1. Have that:

∞̂

0
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2πσ

e−
x2

2σ2 He3

(x
σ

)
dx = − 1√

2π
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Proof. Have:

∞̂

0

1√
2πσ

e−
x2

2σ2 He3

(x
σ

)
dx = EZ∼N (0,σ2)

[
1Z>0He3

(
Z

σ

)]
= EZ∼N (0,1) [1Z>0He3 (Z)]

= EZ∼N (0,1)

[
1Z>0Z

3
]
− 3EZ∼N (0,1) [1Z>0Z]

= EZ∼N (0,1)

[
φ(Z)3

]
− 3EZ∼N (0,1) [φ(Z)]

= (3− 1)!!
1√
2π

− 3
1√
2π

= − 1√
2π

where we have used the relu function φ(x) = x1{x>0} and the result for Gaussians that (which can be proved
by a nice integration by parts induction)

E
[
φ(Z)k

]
=

{
(k−1)!!

2 k is even
(k−1)!!√

2π
k is odd

3.2 Alice - Bob using the Edgeworth Approximation.
Lemma 2. If we use the Edgeworth approximation:

ρX(x) ≈ 1√
2πσ
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x2

2σ2
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3!σ3
He3
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σ

)
+ . . .

)
then we get:

P (X > 0)−P (X < 0) = − 2κ3

3!σ3

1√
2π

Proof. By making the chage of variable x → −x and using the fact that He3(x) is an odd polynomial:

P (X < 0) =

0ˆ

−∞
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)
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Hence, when we subtract the probabilities we get:

P (X > 0)−P (X < 0) =

∞̂

0
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(
(1− 1) + (1− (−1))
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+ . . .
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·

∞̂

0

1√
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dx+ . . .

= − 2κ3

3!σ3

1√
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by the Lemma.
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Proposition 3. Suppose that the Edgeworth approximation holds for the random variable Xn which is Alice’s Score
minus Bob’s score. Then:

P (Alice wins)−P (Bob wins) = − 1

2
√
πn

+ . . .

Remark 4. Note that we know already from other methods that the result of the proposition is true. However,
it is NOT YET PROVEN that the Edgeworth expansion actually holds (need to deal with the fact that the
sequence ∆i are not purely independent but are instead dependent). One relevant paper that seems to have the
type of result needed to justify this Edgeworth expansion is MR0871198 > Heinrich, Lothar > Some remarks on
asymptotic expansions in the central limit > theorem for > m-dependent random variables. > Math. Nachr. 122
(1985), 151–155.

Proof. By the lemmas we have:

P (Alice wins)−P (Bob wins) = P (Xn > 0)−P (Xn < 0)

= − 2κ3

3!σ3

1√
2π

+ ...

= −
2
(
3
4 (n− 2)

)
3!
(
1
2 (n− 1)

)3/2 1√
2π

+ ...

= −
2
(
3
4

)
3!
(
1
2

)√
1
2

1√
2π

(n− 2)

(n− 1)3/2
+ ...

= − 1

2
√
πn

+ ...

where we have used n−2
(n−1)3/2

= 1√
n
+ .... as n → ∞.
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