

Computing the 4D Geode

Dean Rubine

Lee, New Hampshire, USA.

Contributing authors: DeanRubineMath@gmail.com,
orcid.org/0009-0000-8767-8137;

Abstract

The closed form for the hyper-Catalan number $C[m_2, m_3, m_4, \dots]$, which counts the number of subdivisions of a roofed polygon into m_2 triangles, m_3 quadrilaterals, etc., has been known since 1940. In 2025, Wildberger and Rubine showed its generating series $S[t_2, t_3, t_4, \dots]$ is a zero of the general geometric univariate polynomial. They note the factorization $S - 1 = (t_2 + t_3 + t_4 + \dots)G$, where the factor G is called the Geode. Later in 2025, Amderberhan, Kauers and Zeilberger issued a challenge to compute $G[1000, 1000, 1000, 1000]$, the coefficient of $t_2^{1000}t_3^{1000}t_4^{1000}t_5^{1000}$ in G , the reward a donation to OEIS. We describe the computation, give the value and claim the reward.

Keywords: hyper-Catalan numbers, Geode array

MSC Classification: 05A15

1 The Geometric Polynomial Formula

Erdélyi and Etherington, 1940 [1] appear to be the first to give a combinatorial interpretation of the hyper-Catalan coefficient $C_{\mathbf{m}} = C[m_2, m_3, \dots]$. The combinatorial object being counted is a roofed polygon subdivided by non-crossing diagonals, which we call a **subdigon**. $C_{\mathbf{m}}$ counts the number of subdigons with m_2 triangular faces, m_3 quadrilateral faces, etc., i.e. the number of subdigons of **type \mathbf{m}** = $[m_2, m_3, m_4, \dots]$. We agree that appending zeros does not change the type.

The indexing starting at two is a bit awkward; Amderberhan *et al.* [2] renotate to start at one. We retain the indexing starting at two, as there are times in which we need the array slightly more general than the hyper-Catalans (see [3]). That array includes m_1 , which somewhat problematically refers to 2-gons in the context of subdivided

polygons. The generalized array also counts plane trees of a type; there m_1 refers to the number of unary nodes.

Our computation of $\mathbf{G}[1000, 1000, 1000, 1000]$ requires computing over a billion hyper-Catalan numbers, so the details of their calculation will be important to efficiency.

We may restrict ourselves to fifth degree polynomials, which means we are only concerned with non-zero m_2, m_3, m_4, m_5 . In this paper \mathbf{m} will always be a vector of four elements, $\mathbf{m} = [m_2, m_3, m_4, m_5]$. We will restrict our theorems to this special case.

Theorem 1 (Hyper-Catalan Closed Form, Erdélyi and Etherington, 1940 [1]) *The number of subdigons of type $\mathbf{m} = [m_2, m_3, m_4, m_5]$ is*

$$C_{\mathbf{m}} = \frac{(2m_2 + 3m_3 + 4m_4 + 5m_5)!}{(1 + m_2 + 2m_3 + 3m_4 + 5m_5)! m_2! m_3! m_4! m_5!} = \frac{(E_{\mathbf{m}} - 1)!}{(V_{\mathbf{m}} - 1)! \mathbf{m}!},$$

where $E_{\mathbf{m}} \equiv 1 + 2m_2 + 3m_3 + 4m_4 + 5m_5$ is the number of edges in a subdigon of type \mathbf{m} , $V_{\mathbf{m}} \equiv 2 + m_2 + 2m_3 + 3m_4 + 5m_5$ is the number of vertices in a subdigon of type \mathbf{m} , and $\mathbf{m}! \equiv m_2! m_3! m_4! m_5!$.

Wildberger and Rubine's [4] main theorem is that the generating series for the hyper-Catalan numbers is a formal power series solution of the **general geometric polynomial**, which means general except for a constant of 1 and a linear coefficient of -1 .

Theorem 2 (The geometric polynomial formula, Wildberger and Rubine, 2025) *The generating sum for the four dimensional hyper-Catalan numbers:*

$$\mathbf{S} \equiv \sum_{m_2 \geq 0} \sum_{m_3 \geq 0} \sum_{m_4 \geq 0} \sum_{m_5 \geq 0} C[m_2, m_3, m_4, m_5] t_2^{m_2} t_3^{m_3} t_4^{m_4} t_5^{m_5} \equiv \sum_{\mathbf{m} \geq 0} C_{\mathbf{m}} \mathbf{t}^{\mathbf{m}} \quad (1)$$

is a formal series zero of the fifth degree univariate geometric polynomial:

$$g(\alpha) = 1 - \alpha + t_2 \alpha^2 + t_3 \alpha^3 + t_4 \alpha^4 + t_5 \alpha^5 \quad (2)$$

Please see their paper for the generalization, detailed definitions and the proof.

2 The Geode

Wildberger and Rubine uncover the Geode while examining a face layering of \mathbf{S} , which they call $\mathbf{S}_F = \mathbf{S}[ft_2, ft_3, ft_4, ft_5]$ (when restricted to four dimensions). Expanding, they get a layering of \mathbf{S} into ongoing power series of a given total degree, accounting for subdigons with a given number of faces, and they notice a factorization at each face level:

$$\begin{aligned} \mathbf{S}_F = & 1 + (t_2 + t_3 + t_4 + t_5) f \\ & + (2t_2^2 + 5t_2 t_3 + 3t_3^2 + 6t_2 t_4 + 7t_3 t_4 + 4t_4^2 + \dots) f^2 \\ & + (5t_2^3 + 21t_2^2 t_3 + 28t_2 t_3^2 + 12t_3^3 + 28t_2^2 t_4 + 72t_2 t_3 t_4 \end{aligned} \quad (3)$$

$$\begin{aligned}
& + 45t_2t_4^2 + 45t_3^2t_4 + 55t_3t_4^2 + 22t_4^3 + \dots) f^3 + \dots \\
\mathbf{S}_F = 1 + \mathbf{S}_1 f + \mathbf{S}_1 (2t_2 + 3t_3 + 4t_4 + 5t_5) f^2 \\
& + \mathbf{S}_1 (5t_2^2 + 16t_2t_3 + 12t_3^2 + 23t_2t_4 + 33t_3t_4 + 22t_4^2 + \dots) f^3 + \dots
\end{aligned} \tag{4}$$

where $\mathbf{S}_1 \equiv t_2 + t_3 + t_4 + t_5$. That leads them to:

Theorem 3 (The Geode factorization, Wildberger and Rubine, 2025) *There is a unique polyseries \mathbf{G} satisfying $\mathbf{S} - 1 = \mathbf{S}_1 \mathbf{G}$.*

That concludes the summary of Wildberger and Rubine's 2025 paper. We refer readers there for the inductive proof of the Geode factorization.

Much of the research attention since the publication of Wildberger and Rubine [4] has been focused on the Geode [2, 3, 5–8]. In particular, the conjectures in the paper have all been resolved (all but one true), and combinatorial interpretations of the Geode have been given by Gessel [6] in terms of lattice paths, and Gossow [8] in terms of subdivided polygons.

The closed form for the general Geode element remains an open problem. The current author believes that such a form is unlikely to exist.

3 The Geode Recurrence

The challenge from Amderberhan, Kauers and Zeilberger [2] is to compute $G[1000, 1000, 1000, 1000] = [t_2^{1000} t_3^{1000} t_4^{1000} t_5^{1000}] \mathbf{G}$.

A straightforward calculation of $G[1000, 1000, 1000, 1000]$ from its definition involves generating the sum of all the terms of $S[t_2, t_3, t_4, t_5]$ up to $C[1001, 1001, 1001, 1001] t_2^{1001} t_3^{1001} t_4^{1001} t_5^{1001}$, dividing that (without the constant) by $t_2 + t_3 + t_4 + t_5$, and picking out the coefficient of the appropriate term. That is *prima facie* an onerous calculation, involving the construction and division of a four variable polynomial with over a trillion terms.

Rubine, 2025 [3] takes the first step toward making the calculation of a single Geode element more efficient with the following theorem.

Theorem 4 (The hyper-Catalan / Geode sum) *For a non-degenerate type vector $[m_2, m_3, m_4, m_5] \neq [0, 0, 0, 0]$ (at least one non-zero component),*

$$\begin{aligned}
C[m_2, m_3, m_4, m_5] = & G[m_2 - 1, m_3, m_4, m_5] + G[m_2, m_3 - 1, m_4, m_5] \\
& + G[m_2, m_3, m_4 - 1, m_5] + G[m_2, m_3, m_4, m_5 - 1]
\end{aligned}$$

where $G[m_2, m_3, m_4, m_5] = [t_2^{m_2} t_3^{m_3} t_4^{m_4} t_5^{m_5}] \mathbf{G}$.

Clearly we have only natural powers in \mathbf{G} , so if $m_k = 0$, then any G indexed with $m_k - 1$ will be zero, and may be omitted from the sum.

Proof Theorem 3 says

$$-1 + \mathbf{S}[t_2, t_3, t_4, t_5] = (t_2 + t_3 + t_4 + t_5) \mathbf{G}[t_2, t_3, t_4, t_5].$$

Extracting the coefficient from both sides,

$$\begin{aligned}
[t_2^{m_2} t_3^{m_3} t_4^{m_4} t_5^{m_5}] \mathbf{S}[t_2, t_3, t_4, t_5] &= [t_2^{m_2} t_3^{m_3} t_4^{m_4} t_5^{m_5}] \sum_{2 \leq j \leq 5} t_j \mathbf{G}[t_2, t_3, t_4, t_5] \\
&= [t_2^{m_2-1} t_3^{m_3} t_4^{m_4} t_5^{m_5}] \mathbf{G} + [t_2^{m_2} t_3^{m_3-1} t_4^{m_4} t_5^{m_5}] \mathbf{G} \\
&\quad + [t_2^{m_2} t_3^{m_3} t_4^{m_4-1} t_5^{m_5}] \mathbf{G} + [t_2^{m_2} t_3^{m_3} t_4^{m_4} t_5^{m_5-1}] \mathbf{G} \quad (5)
\end{aligned}$$

$$\begin{aligned}
C[m_2, m_3, m_4, m_5] &= G[m_2 - 1, m_3, m_4, m_5] + G[m_2, m_3 - 1, m_4, m_5] \\
&\quad + G[m_2, m_3, m_4 - 1, m_5] + G[m_2, m_3, m_4, m_5 - 1] \quad (6)
\end{aligned}$$

□

Notice each G has the same sum of array indices, and that the sum for C is one more than that. We can solve for a Geode element; we add 1 to m_2 while we're at it:

Theorem 5 (The 4D Geode Recurrence)

$$\begin{aligned}
G[m_2, m_3, m_4, m_5] &= C[m_2 + 1, m_3, m_4, m_5] - G[m_2 + 1, m_3 - 1, m_4, m_5] \\
&\quad - G[m_2 + 1, m_3, m_4 - 1, m_5] - G[m_2 + 1, m_3, m_4, m_5 - 1]
\end{aligned}$$

Rubine showed that when $G[m_2, m_3, m_4, m_5]$ has (at least) three $m_k = 0$, then the element is a Fuss number, which is a particular kind of hyper-Catalan number that counts subdivisions into a single kind of shape (all quadrilaterals, for instance). In particular, from Theorem 5 it is easy to see:

$$G[m_2, 0, 0, 0] = C[m_2 + 1, 0, 0, 0] \quad (7)$$

a Catalan number.

Rubine describes a general algorithm for computing Geode elements where the index to be incremented is the index with the largest m_k , and the first such in the event of a tie. In the special case when we start from a diagonal element $G[n, n, n, n]$, that index will always be 2, the first element, which we assume here. For simplicity, we assume in the code samples that it is always the first index we will be incrementing (which is index 0 in the code; apologies for the mismatch).

The Python/Sympy code in figure 1 uses the general Geode recurrence to compute arbitrary Geode elements (not just 4D). This code is obviously faster than the naive polynomial division, but it is still rather slow. In all the code samples below, we eliminate error checking and log printing for clarity and brevity.

Writing the repeated subscripts is getting old; let's abbreviate the 4D diagonal Geode elements as $H(n) \equiv G[n, n, n, n]$. Using Python's %time, on my aging PC we determine that computing $H(1) = 12344$ takes 0 seconds (i.e., is too small to measure), $H(2) = 2408941884$ takes .004 seconds, $H(3) = 894971463204720$ takes .060 s, $H(4) = 446324644841317281200$ takes 1.26 s, $H(5) = 263656050352833337510832640$ takes 28.4 s, and $H(6) = 173882340006327290808417397911384$ takes 654 s. It is not that obvious what the complexity of the computation of $H(n)$ is, but it is obvious that this implementation of the naive recurrence will not make it to $H(1000)$ anytime soon.

Fig. 1 Straightforward hyper-Catalan and Geode calculation

```

def C(m):
    return factorial(E(m)-1) / (Fact(m) * factorial(V(m)-1))
def V(m):
    return 2 + sum((i+1)*m[i] for i in range(len(m)))
def E(m):
    return 1 + sum((i+2)*m[i] for i in range(len(m)))
def Fact(m):
    return prod(factorial(m[i]) for i in range(len(m)))
def G(m):
    m[0] += 1
    s = C(m)
    for i in range(1, len(m)):
        if m[i] > 0:
            m[i] -= 1
            s += -G(m)
            m[i] += 1
    m[0] -= 1
    return s

```

4 Caching

At those speeds we do not have much hope to compute $G[1000, 1000, 1000, 1000]$ in a timely manner. For our first speedup attempt, we add caches to save evaluations of G and C .

There was substantial experimentation at this stage. It turns out the C cache is unnecessary; each C element is only used once in the calculation of $H(n)$.

We see each Geode calculation touches three Geode neighbors on a 4 dimensional lattice. So, except for edge cases, each calculated Geode element is used three times. We experimented with deleting each Geode cache entry after it was no longer required, assuming memory was a bottleneck, but it did not seem to make any difference, at least up to $H(300)$.

We also experimented using Sympy's fallingfactorial rather than the ratio of factorials in calculating C . That was less effective than adding a factorial cache to the Geode cache, and dividing cached values. The factorial cache was well-utilized; for $H(300)$ there were 164 million calls to factorial, but only 700 distinct inputs.

We can see that the Geode cache for one n does not help for different ns . That is obvious from our observation about the sum of the indices $m_2 + m_3 + m_4 + m_5$; for the G s of interest in calculation $H(n)$, that sum is always $4n$. Similarly, for the C s the sum is $4n + 1$.

Figure 2 shows the changes to add the caches; unchanged functions are not repeated. Naive caching was able to compute $H(200)$, 1201 digits, in 27 minutes on my aging, and $H(250)$ 1503 digits, in 20 hours. The code shown completed $H(300)$, 1805 digits, in 5.9 hours, $H(400)$, 2409 digits, 25.6 hours, and $H(500)$, 3014 digits, 82 hours.

Fig. 2 Calculation with cached Geode and factorials

```

def MYfactorial(n):
    global Fcache
    if n not in Fcache:
        Fcache[n] = factorial(n)
    return Fcache[n]
def Fact(m):
    return prod(MYfactorial(m[i]) for i in range(len(m)))
def C(m):
    return MYfactorial(E(m)-1)/(MYfactorial(V(m)-1)*Fact(m))
def mstr(m): # turn array indices into a dictionary key
    return ', '.join([str(mi) for mi in m])
def G(m):
    global Gcache
    key = mstr(m)
    if key in Gcache:
        return Gcache[key]
    m[0] += 1
    s = C(m)
    for i in range(1, len(m)):
        if m[i] > 0:
            m[i] -= 1
            s += -G(m)
            m[i] += 1
    m[0] -= 1
    Gcache[key] = s
    return s

```

Manuel Kauers (personal communication) asserts this implementation of $H(n)$ is of complexity $\mathcal{O}(n^5)$. The arithmetic operations grow $\mathcal{O}(n^3)$ but the length of the numbers in the computation is proportional to n , so we get an additional factor of n^2 due to the bignum multiplication calculations. Scaling up the $H(500)$ time by 2^5 means we expect $H(1000)$ to take around 109 days with this code, not out of the question, but we want something faster.

5 Geode Racks for Computational Efficiency

It was clear to make a major speedup, it would be necessary to understand the calculation in more detail. Each Geode calculation uses three other Geode elements, neighbors in the 4D Geode lattice, and one hyper-Catalan element.

Figure 3 shows the Geode elements involved in computing $G[2, 2, 2, 2]$, a small case to be sure, but sufficiently illustrative. We see we get a $3 \times 3 \times 3$ lattice; in general the lattice for $H(n)$ will be $(n+1) \times (n+1) \times (n+1)$. The figure follows the convention that trailing zeros of the type are omitted.

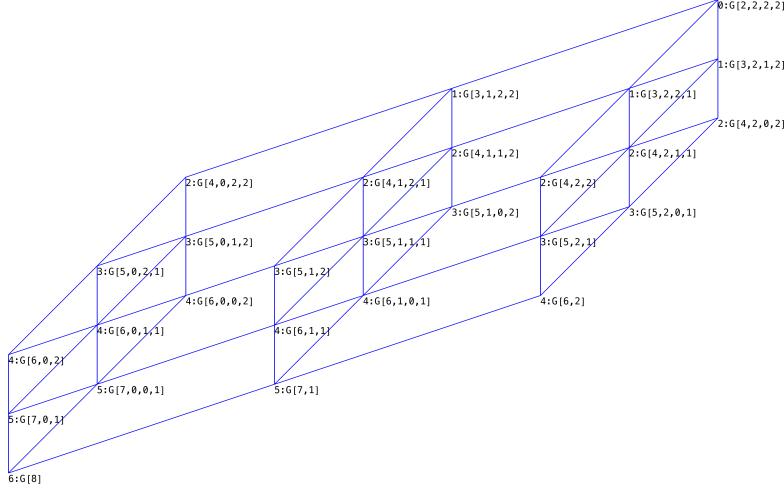


Fig. 3 The lattice of Geode elements used to compute $G[2, 2, 2, 2]$; the number before the colon is the initial recursion depth

Each Geode element requires three Geode elements to compute, the one below it, the one to the left (and a bit down) and the one diagonally down. The lattice confusingly has lines through nodes that are not necessarily connections, e.g. $G[3, 2, 1, 2]$ is only connected to nodes more toward the origin $G[8]$, namely $G[4, 1, 2, 2]$, $G[4, 2, 0, 2]$, and $G[4, 2, 1, 1]$, and not connected to $G[3, 2, 2, 1]$.

We define a **rack** as one of the two dimensional slices of the lattice with a constant m_3 ; Rack r has $m_3 = r$. The important observation is to compute Geode elements in rack r on requires two ‘lower’ Geode elements in rack r and one Geode element in rack $r - 1$. Our plan is forming: compute one rack at a time, use it to incrementally compute the next rack.

We’ll divide the code into multiple parts; figure 4 shows the Geode computation logic. The goal is to produce a Gcache, a Python dictionary of the entire rack’s Geode values. The input is the rack number r , the hyper-Catalan cache for that rack Ccache, and the Geode rack cache from rack $r-1$, called oldGcache. We could be slightly cleverer here, as $i = 1$ (decrementing m_3) will always come from oldGcache; $i = 2$ or $i = 3$ correspond to decrementing m_4 or m_5 , so we access Gcache. The for loop over types \mathbf{m} generates all the \mathbf{ms} in the current Geode rack in the order we need to calculate them without any recursion, bottom left to top right in each rack; we note the m_k always sum to $4n$. The code would fail with index errors if the order was incorrect.

The rest is the usual Geode Recurrence, getting the hyper-Catalan elements from the Ccache and the Geode dependencies from one of the two Gcache.

6 Hyper-Catalan Ratios

We need to efficiently calculate the hyper-Catalans as they contribute to the Geode elements. Again we do it on a rack by rack basis.

Fig. 4 Geode Rack Calculation

```

def MakeGRackDict(r, n, Ccache, oldGcache):
    Gcache = {}
    for m in [ [4*n - (r + m4 + m5), r, m4, m5]
                  for m4 in range(n+1) for m5 in range(n+1)]:
        me = mstr(m)
        m[0] += 1
        s = Ccache[mstr(m)]
        for i in range(1, len(m)):
            if m[i] > 0:
                m[i] -= 1
                k = mstr(m)
                s -= Gcache[k] if k in Gcache else oldGcache[k]
                m[i] += 1
        m[0] -= 1
        Gcache[me] = s
    return Gcache

```

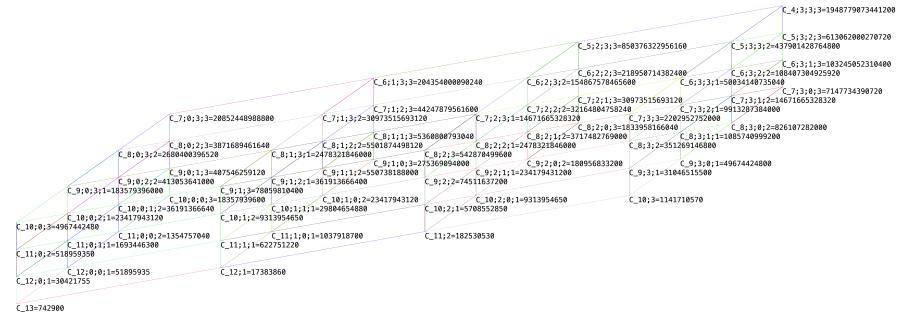


Fig. 5 The hyper-Catalan Rack structure for $G[3,3,3,3]$

The lattice in the hyper-Catalan figure is almost identical to the lattice shown for the Geode, except now the indices add up to $4n + 1$ because m_2 is one higher than its respective Geode element.

We have two tasks ahead of us: Efficiently computing hyper-Catalan Rack 0, an $(n+1) \times (n+1)$ array, and efficiently computing hyper-Catalan Rack r from hyper-Catalan Rack $r-1$. Both rely on the same, more general code, but to avoid new notation here we write out the three cases separately:

Theorem 6

$$\frac{C[m_2 - 1, m_3 + 1, m_4, m_5]}{C[m_2, m_3, m_4, m_5]} = \frac{m_2 E_{\mathbf{m}}}{(m_3 + 1) V_{\mathbf{m}}} \quad (8)$$

$$\frac{C[m_2 - 1, m_3, m_4 + 1, m_5]}{C[m_2, m_3, m_4, m_5]} = \frac{m_2 E_{\mathbf{m}} (E_{\mathbf{m}} + 1)}{(m_4 + 1) V_{\mathbf{m}} (V_{\mathbf{m}} + 1)} \quad (9)$$

Fig. 6 Ratio of hyper-Catalan neighbors

```

def Crat(m, j, k): # ratio of  $C(m - e[j] + e[k]) / C_m$ 
    Em, Vm = E(m), V(m)
    return RisingFactorial(Em, k - j) * m[j - 2] /
        ( RisingFactorial(Vm, k - j) * (1 + m[k - 2]) )

```

$$\frac{C[m_2 - 1, m_3, m_4, m_5 + 1]}{C[m_2, m_3, m_4, m_5]} = \frac{m_2 E_{\mathbf{m}} (E_{\mathbf{m}} + 1) (E_{\mathbf{m}} + 2)}{(m_5 + 1) V_{\mathbf{m}} (V_{\mathbf{m}} + 1) (V_{\mathbf{m}} + 2)} \quad (10)$$

Proof We do the middle one and leave the others as exercises.

We abbreviate $\mathbf{n} = [m_2 - 1, m_3, m_4 + 1, m_5]$. We have:

$$E_{\mathbf{n}} = 1 + 2(m_2 - 1) + 3m_3 + 4(m_4 + 1) + 5m_5 = 2 + E_{\mathbf{m}}, \quad (11)$$

$$V_{\mathbf{n}} = 2 + (m_2 - 1) + 2m_3 + 3(m_4 + 1) + 4m_5 = 2 + V_{\mathbf{m}}, \quad (12)$$

$$\mathbf{n}! = (m_2 - 1)! m_3! (m_4 + 1)! m_5 = (m_4 + 1) \mathbf{m}! / m_2 \quad (13)$$

$$C_{\mathbf{n}} = \frac{(E_{\mathbf{n}} - 1)!}{(V_{\mathbf{n}} - 1)! \mathbf{n}!} = \frac{m_2 (E_{\mathbf{m}} + 1)!}{m_4 (V_{\mathbf{m}} + 1)! \mathbf{m}!} \quad (14)$$

$$\frac{C_{\mathbf{n}}}{C_{\mathbf{m}}} = \frac{(E_{\mathbf{m}} + 1)! m_2}{(V_{\mathbf{m}} + 1)! \mathbf{m}! m_4} \cdot \frac{(V_{\mathbf{m}} - 1)! \mathbf{m}!}{(E_{\mathbf{m}} - 1)!} = \frac{m_2 E_{\mathbf{m}} (E_{\mathbf{m}} + 1)}{m_4 V_{\mathbf{m}} (V_{\mathbf{m}} + 1)} \quad (15)$$

□

We capture the general result in the code in figure 6; the subtractions of 2 adjust the index given as parameters (starting at 2) to the internal representation starting at zero.

The function allows us to calculate hyper-Catalans while avoiding factorials of large numbers; in practice $1 \leq k - j \leq 3$ so the rising factorials are at most two multiplications.

7 Efficiently Calculating Hyper-Catalan Racks

Now that we have access to the ratios between nearby hyper-Catalan elements in the lattice, it is relatively straightforward to calculate the needed hyper-Catalans. Figure 7 shows how the first hyper-Catalan rack, Rack 0, is calculated. The if statement chooses the most efficient neighbor for the calculation.

The next piece of the puzzle calculates the general hyper-Catalan rack from the previous one (figure 8); for successive racks we're always incrementing m_3 for the most efficient calculation, as then the Rising Factorials only have a single factor.

That is pretty much it; it is just a question of putting it all together, see figure 9.

8 G[1000,1000,1000,1000]

With the Rack-based implementation, $H(100)$ took 0.01 hours, $H(200)$ took 0.098 hours, $H(500)$ took 3.9 hours and $H(1000)$ took 35.9 hours, coming in at 6303 digits. We report the value as

Fig. 7 Creating hyper-Catalan Rack 0

```

def MakeCRack0Dict(n):
    cr0 = [ [1 + 4*n - (m4 + m5), 0, m4, m5]
            for m4 in range(n+1) for m5 in range(n+1) ]
    firstm = cr0[0]
    Ccache = { }
    Ccache[mstr(firstm)] = C(firstm)
    for m in cr0[1:]:
        m2, m3, m4, m5 = m[0], m[1], m[2], m[3]
        if (m4 == 0):
            om = [m2+1, m3, m4, m5-1]
            oms = mstr(om)
            crat = Crat(om, 2, 5)
        else:
            om = [m2+1, m3, m4-1, m5]
            oms = mstr(om)
            crat = Crat(om, 2, 4)
        Ccache[mstr(m)] = Ccache[oms] * crat
    return Ccache

```

Fig. 8 Creating hyper-Catalan Rack r

```

def MakeCRackDict(r, n, oldCcache):
    if r==0:
        return MakeCRack0Dict(n)
    Ccache = { }
    cr = [ [1 + 4*n - (r + m4 + m5), r, m4, m5]
           for m4 in range(n+1) for m5 in range(n+1) ]
    for m in cr:
        om = [m[0]+1, m[1]-1, m[2], m[3]]
        oms = mstr(om)
        crat = Crat(om, 2, 3)
        Ccache[mstr(m)] = oldCcache[oms] * crat
    return Ccache

```

Fig. 9 Efficient Calculation of Geode Diagonal Elements via Geode and hyper-Catalan racks

```

def H(n):
    Ccache = { }
    Gcache = { }
    for i in range(n+1):
        Ccache = MakeCRackDict(i, n, Ccache)
        Gcache = MakeGRackDict(i, n, Ccache, Gcache)
    return Gcache[mstr([n, n, n, n])]

```

$$\begin{aligned}
G[1000, 1000, 1000, 1000] = & \\
14060489925985310384567683471257481046085323473622173023625636541299683501 \\
31358560064413195104569382858642875687344501357248486851822278520363296308 \\
17239601420905927701870187661110631936586189788184954823392652746425867144 \\
99740192712938410496233133028148017321476442946400435590685418980052303187 \\
10220841269218073233254944073846699279281161215532579306255026293890850781 \\
02583931806230141348175588783571473308262539688853463304259592404017092301 \\
04053409468867117200343966411655979535056954771471846907050474149163511462 \\
9029579382847965813461698227276988417019745638633875765491351133724612031 \\
67145626597243401369052257725928780008822810342230174508686655925179948869 \\
96960054060183135235850745032638114363941001775342670896504043756034159994 \\
0781153997270789865972953566837161217112534101525884541870316720863811480 \\
04444503331286985075614635134579715605324549132491425209355090931770155348 \\
69502093521459732639753588156608978346053475447692793460763624760200873497 \\
31364073996138143569193490960604238858610641272097337886111493927911550463 \\
52241002596206352678058868697116210485667865768727138158349842089850815429 \\
18204938371515545248231409942268135603908336666720637182937468040086399434 \\
01853370244283212946712782602482734857847531327758575231065224292248188985 \\
03958765097426127156859278072896344144860138862083397784918024637751245622 \\
59543681200898139630565492870029578728538641352406409166563929852560714486 \\
39069959701646814942421675513431387515391040133989141355197526937598155000 \\
39688686904364745136102594311961512437677655841847751273736238050932997917 \\
58216212117100790907370641146777383600241156055559881868520220743286498849 \\
12770604007364408237945057448921907273197987153418931145704790404071254365 \\
82220522541754888900927283933318540829135440295031956055975464860389827610 \\
20520390064014353325847695074151268400011183726281426667513378020368434355 \\
70739898552930173027104515331420680853726357098713604238622750104074342054 \\
81390367417715912403798288034215716231688609673455417950565607963300641584 \\
41203375228158418063265499594734056548974156787263529732668489093609901059 \\
76278653186647347362727083453998404425298356982098135813137657340631475076 \\
4600370800006449174505580949458028870600357200205015345663976862763316766 \\
3314873168457720640373365122856650131508516142743865729823094495242939097 \\
92921382981668285167612244553313109324189819249506637447031209132555667499 \\
07294781811708155999126804710197336531329033262697682256137102635788787585 \\
78728703239370165790166268142688170581557962265129621696188239191583872377 \\
7243415809080896700338488033053462525162966441103317686377045499114461239 \\
94893842308252159361001750284477664678298574312630390055150154862428967682 \\
72092724835415091915924940258362580551724056484075616514371064592705525644 \\
9816532331135164310410236440073956354540208910481068211596024059942337784 \\
92835210222091266792900201362803641542579386136972503389245386037382408661 \\
90532363666910855935764039878018218272212169732307972721679199924193313910 \\
08549354163675120332292931906887186722059102737639570840071957661011393655 \\
44105361149356604607216470711927133730760059757754081290275944384321738357 \\
17279057436398546062592850235734202588396637352375566179783968552987511429 \\
79408012461815757981074602492325592890675331302353304416074715703706660044 \\
96847057556976257149067353883004273784329669544947008750262805244973275950
\end{aligned}$$

94566935351018528594277899706120066177855591192080381875567311737752801020
 24803463355039873464408468180359071764670285045717708579837218006818659960
 92508643963452913949120073960181721453521181436423996919635288221719762597
 33953736600534315745828515122823625395233160201512404431506641064306794805
 77774846680060898242291194963356061703748958110682505552640512552730752121
 77057223205732458897280228654899396597246078280898233970055239924278112016
 5422511017586363962194973822286989280045625423378496696506934223154413747
 86047847938534816404619595962474550965631806995286308692186833187855810029
 11035031671947228466605574733129250185243351913746070349291657885361550859
 60735399347149535326969824152042131504195839452056104844742133641760217950
 50419302471098887150085303895541358095790692734529703592978580049109024880
 2842376462401158707377916886794237696783246830200280726711102456454812577
 25666272655494904728552280525025448329480513520468000591386093012805716263
 13390381616794635668651976946956214161014486849630720554532470698889658191
 53787162929350597302748153868937615165344438496566730249578084632791178468
 63763422056218885387971448910691431659267653978016075943904925077258720203
 80120974129302170808425383617170798267419520829309396791658771023103373573
 48657199073614314055610136594258676650887940206191102246782916881635894091
 89853136410627983071013466432151986164524409944295853815046129334132915312
 93780140027674607743596223849919703905701112520526118153150961252515494520
 87798688047265944186689690368282502861420583644556147894931907287540527231
 63842371249679919970568834098143655697756648909912319912695136653948146917
 78583211309682412838030321632295307710374285808660185300425909213735807970
 09300674696864904720866416852283321993700355402475805999761808751715742023
 52091216586756664028856438273371275829144859517637477605607090492962295303
 03526791195366872891487249098570623652497023608045477402047185225035314527
 63024182117324718121267287547520332772497984152283204843771526656614306791
 48325285653219795721315698648224927300044840516957095477069750335519245268
 09926318606132038016217152287984676471117777671293341689305979049481324412
 33768057031586482713250596652011956905761019477980316024037377774231001542
 19367865902496256576465936210668252826904659713475493623684406212735193910
 7622346889113843502847363331799429088549951067705211683524610943951517219
 97522049227689119961010362176818658777492219959692050037613226880245832364
 55130996560051489999717800051609148501018276145263016442896892623402981871
 22820562484378744614527306062143685682235045898872061352478250039012176056
 8002230625192582768952734978580259542328964519136205365029414092102503833
 549476633414239544648341512407713629184000

9 Conclusion

Computing large four dimensional Geode diagonal elements is quite a challenge. By understanding the recurrence lattice as a layering of racks, we are able to make the calculation of $G[1000, 1000, 1000, 1000]$ tractable.

Note the calculation presented here is not the recurrence sought by Amderberhan, Kauers and Zeilberger, which I believe would only involve an unknown number of

smaller 4D diagonal Geode elements. We expect each lagged diagonal element to have a quite complicated polynomial factor in such a recurrence.

For the four dimensional calculation, the rack structure makes the $\mathcal{O}(n^3)$ arithmetic operations apparent, and we still have an additional factor of n^2 to handle the large big number arithmetic, so complexity $\mathcal{O}(n^5)$.

The remaining challenge is to compute the the five dimensional diagonal element $G[1000, 1000, 1000, 1000, 1000]$. That adds another dimension to the lattice, so another factor of n to the complexity, now $\mathcal{O}(n^5)$, so with the current technology would take 1000 times more than the 4d calculation. New innovations are required to make that calculation tractable in a reasonable amount of time.

Acknowledgements

The author thanks Doron Zeilberger, Manuel Kauers and Norman Wildberger for their encouragement and assistance.

Declarations

The author has no competing interests to declare that are relevant to the content of this article. No funds, grants, or other support was received. No datasets were generated or analyzed during the current study.

References

- [1] Erdélyi, A., Etherington, I.M.H.: Some problems of non-associative combinations (2). Edinburgh math notes **32**, (1940)
- [2] Tewodros Amdeberhan, D.Z. Manuel Kauers: The Challenge of Computing Geode Numbers. <https://arxiv.org/abs/2508.10245> (2025) [arXiv:https://arxiv.org/abs/2508.10245](https://arxiv.org/abs/2508.10245) [math.CO]
- [3] Rubine, D.: Hyper-catalan and geode recurrences and three conjectures of wildberger. arXiv preprint arXiv:2507.04552 (2025) [arXiv:https://arxiv.org/abs/2507.04552](https://arxiv.org/abs/2507.04552) [math.CO]
- [4] Wildberger, N.J., Rubine, D.: A hyper-catalan series solution to polynomial equations, and the geode. The American Mathematical Monthly **132**(5), 383–402 (2025) <https://doi.org/10.1080/00029890.2025.2460966> <https://doi.org/10.1080/00029890.2025.2460966>
- [5] Rubine, D.: Exercises for a hyper-catalan series solution to polynomial equations, and the geode (2025) [arXiv:https://arxiv.org/abs/2507.13045](https://arxiv.org/abs/2507.13045) [math.CO]
- [6] Gessel, I.M.: Lattice paths and the Geode. arXiv preprint arXiv:2507.09405 (2025) [arXiv:https://arxiv.org/abs/2507.09405](https://arxiv.org/abs/2507.09405) [math.CO]

- [7] Amdeberhan, T., Zeilberger, D.: Proofs of three Geode conjectures. arXiv preprint arXiv:2506.17862 (2025) [arXiv:https://arxiv.org/abs/2506.17862](https://arxiv.org/abs/2506.17862) [math.CO]
- [8] Gossow, F.: Ordered trees and the Geode. arXiv preprint arXiv:2507.18097 (2025) [arXiv:https://arxiv.org/abs/2507.18097](https://arxiv.org/abs/2507.18097) [math.CO]