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Abstract
The closed form for the hyper-Catalan number C[ma,ms,my,...], which
counts the number of subdivisions of a roofed polygon into mso triangles, mg
quadrilaterals, etc., has been known since 1940. In 2025, Wildberger and Rubine
showed its generating series S[ta,ts,t4,...] is a zero of the general geometric
univariate polynomial. They note the factorization S—1 = (t2+ts+ts+...)G,
where the factor G is called the Geode. Later in 2025, Amderberhan, Kauers and
Zeilberger issued a challenge to compute G[1000,1000,1000,1000], the coefficient
of t;oootéoootioootéooo in G, the reward a donation to OEIS. We describe the

computation, give the value and claim the reward.
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1 The Geometric Polynomial Formula

Erdélyi and Etherington, 1940 [1] appear to be the first to give a combinatorial inter-
pretation of the hyper-Catalan coefficient Cy, = Clmg, ms,...]. The combinatorial
object being counted is a roofed polygon subdivided by non-crossing diagonals, which
we call a subdigon. Cy, counts the number of subdigons with mq triangular faces, ms
quadrilateral faces, etc., i.e. the number of subdigons of type m = [ma, m3, my,...].
We agree that appending zeros does not change the type.

The indexing starting at two is a bit awkward; Amderberhan et al. [2] renotate to
start at one. We retain the indexing starting at two, as there are times in which we need
the array slighly more general than the hyper-Catalans (see [3]) . That array includes
m1, which somewhat problematically refers to 2-gons in the context of subdivided



polygons. The generalized array also counts plane trees of a type; there m; refers to
the number of unary nodes.

Our computation of G[1000,1000, 1000, 1000] requires computing over a billion
hyper-Catalan numbers, so the details of their calculation will be important to
efficiency.

We may restrict ourselves to fifth degree polynomials, which means we are only
concerned with non-zero ms, ms, my, ms. In this paper m will always be a vector of
four elements, m = [mgy, m3, my, ms]. We will restrict our theorems to this special case.

Theorem 1 (Hyper-Catalan Closed Form, Erdélyi and Etherington, 1940 [1]) The number
of subdigons of type m = [ma, m3, myg, ms] is
(2mg 4 3m3 + 4my + 5ms)! (Em —1)!

Cm = = .
m (1 + ma + 2m3 + 3mg + 5ms)! mal ms! my! ms! (Vm—l)! m!

where Em = 1+ 2mo 4 3ms + 4my + 5ms is the number of edges in a subdigon of type m,
Vin = 2 4+ ma + 2m3 + 3myg + 5ms is the number of vertices in a subdigon of type m, and
m! = mo! mg!my!ms!.

Wildberger and Rubine’s [4] main theorem is that the generating series for the
hyper-Catalan numbers is a formal power series solution of the general geometric
polynomial, which means general except for a constant of 1 and a linear coefficient
of —1.

Theorem 2 (The geometric polynomial formula, Wildberger and Rubine, 2025) The
generating sum for the four dimensional hyper-Catalan numbers:

S= Y Y Y S Clhmsmgma mel e = Y Ct™ (1)
mo>0m3>0myg>0ms>0 m>0
is a formal series zero of the fifth degree univariate geometric polynomial:

gla)=1—a+ taa® + tzad + tyat + t5a° (2)

Please see their paper for the generalization, detailed definitions and the proof.

2 The Geode

Wildberger and Rubine uncover the Geode while examining a face layering of S, which
they call Sp = S[fta, fts, fta, ft5] (when restricted to four dimensions). Expanding,
they get a layering of S into ongoing power series of a given total degree, accounting
for subdigons with a given number of faces, and they notice a factorization at each
face level:

+ (2t3 + Btots + 3t3 + Gtots + Ttsty +4t5 + -+ ) f°
+ (5t3 + 21t5t5 + 28tat3 + 12t5 + 28t5t, + T2tatsty



+ 45tot2 + 45t3t, + 55tst2 + 2263 4+ - ) f 4 -
Srp=1+S1f+S; (2ts + 3t3 + 4t4 + 5t5) f? (4)
+ Sy (53 + 16tats + 12t5 + 23taty + 33taty + 2265 + -+ ) f2 + -

where S; = to + t3 + t4 + t5. That leads them to:

Theorem 3 (The Geode factorization, Wildberger and Rubine, 2025) There is a unique
polyseries G satisfying S — 1 = S1G.

That concludes the summary of Wildberger and Rubine’s 2025 paper. We refer
readers there for the inductive proof of the Geode factorizaton.

Much of the research attention since the publication of Wildberger and Rubine [4]
has been focused on the Geode [2, 3, 5-8]. In particular, the conjectures in the paper
have all been resolved (all but one true), and combinatorial interpretations of the
Geode have been given by Gessel [6] in terms of lattice paths, and Gossow [8] in terms
of subdivided polygons.

The closed form for the general Geode element remains an open problem. The
current author believes that such a form is unlikely to exist.

3 The Geode Recurrence

The challenge from Amderberhan, Kauers and Zeilberger [2] is to compute
G[1000, 1000, 1000, 1000] = [¢3000¢100041000410001G.

A straightforward calculation of (G[1000,1000,1000,1000] from its definition
involves generating the sum of all the terms of S[ta, t3, ¢4, 5] up to C1001, 1001, 1001,
1001]¢3001¢10014100141001 © dividing that (without the constant) by to + t3 +t4 +t5, and
picking out the coefficient of the appropriate term. That is prima facie an onerous
calculation, involving the construction and division of a four variable polynomial with
over a trillion terms.

Rubine, 2025 [3] takes the first step toward making the calculation of a single
Geode element more efficient with the following theorem.

Theorem 4 (The hyper-Catalan / Geode sum) For a non-degenerate type vector
[ma, ms3, mqg,ms] # [0,0,0,0] (at least one non-zero component),

Clma, m3, mg, ms] = Glma — 1,m3, my, ms] + G[ma, m3 — 1, my, ms)
+ G[m27m37m4 - 17m5] + G[m27m37m47m5 - 1]

where G[mg, m3, my, ms) = [ty 2t 2ty 4L ]G.

Clearly we have only natural powers in G, so if mj = 0, then any G indexed with
my, — 1 will be zero, and may be omitted from the sum.

Proof Theorem 3 says
—1+ S[ta, t3,t4,t5) = (t2 + t3 + t4 + t5)Glt2, t3, 4, t5].



Extracting the coefficient from both sides,

[ty 2ty 5 1] 105 S[ta, ts, t3, ta] = [t 2155 4] 0] D t;Glta, ts, ta, t5]

2<;5<5
e A [ B e et e
+ [ty ey T G [ TG (5)

Clma, m3,mg, ms] = Glma — 1,m3, mg, ms] + G[ma, m3 — 1, my, ms]
+ G[ma,m3, ma — 1,ms] + G[ma, m3, ma,ms — 1] (6)
O

Notice each G has the same sum of array indices, and that the sum for C' is one
more than that. We can solve for a Geode element; we add 1 to mgy while we’re at it:

Theorem 5 (The 4D Geode Recurrence)
G[ma,m3,mg, ms] = Clma + 1,m3, mq, ms] — G[ma + 1,m3 — 1, my, ms)
— G[ma +1,m3,myq — 1,ms] — G[ma + 1,m3, mg, ms — 1]

Rubine showed that when G[ms, ms,my4,m5] has (at least) three my = 0, then
the element is a Fuss number, which is a particular kind of hyper-Catalan number
that counts subdivisions into a single kind of shape (all quadrilaterals, for instance).
In particular, from Theorem 5 it is easy to see:

a Catalan number.

Rubine describes a general algorithm for computing Geode elements where the
index to be incremented is the index with the largest my, and the first such in the
event of a tie. In the special case when we start from a diagonal element G[n,n,n,n|,
that index will always be 2, the first element, which we assume here. For simplicity,
we assume in the code samples that it is always the first index we will be incrementing
(which is index 0 in the code; apologies for the mismatch).

The Python/Sympy code in figure 1 uses the general Geode recurrence to compute
arbitrary Geode elements (not just 4D). This code is obviously faster than the naive
polynomial division, but it is still rather slow. In all the code samples below, we
eliminate error checking and log printing for clarity and brevity.

Writing the repeated subscripts is getting old; let’s abbreviate the 4D diagonal
Geode elements as H(n) = G[n,n, n,n|. Using Python’s %%time, on my aging PC we
determine that computing H (1) = 12344 takes 0 seconds (i.e., is too small to measure),
H(2) = 2408941884 takes .004 seconds, H (3) = 894971463204720 takes .060 s, H(4) =
446324644841317281200 takes 1.26 s, H(5) = 263656050352833337510832640 takes
28.4 s, and H(6) = 173882340006327290808417397911384 takes 654 s. It is not that
obvious what the complexity of the computation of H(n) is, but it is obvious that this
implementation of the naive recurrence will not make it to H(1000) anytime soon.



Fig. 1 Straightforward hyper-Catalan and Geode calculation

def C(m):
return factorial (E(m)—1) / (Fact(m) * factorial (V(m)—1))
def V(m):
return 2 + sum((i+1)*m[i] for i in range(len(m)))
def E(m):
return 1 + sum((i+2)*sm[i] for i in range(len(m)))
def Fact(m):
return prod(factorial(m[i]) for i in range(len(m)))

def G(m):
m[0] +=1
s = C(m)

for i in range(1l,len(m)):
if m[i] > 0:

m[i] =1

s += —G(m)

m[i] +=1
m[0] =1

return s

4 Caching

At those speeds we do not have much hope to compute G[1000, 1000, 1000, 1000] in a
timely manner. For our first speedup attempt, we add caches to save evaluations of G
and C.

There was substantial experimentation at this stage. It turns out the C cache is
unnecessary; each C' element is only used once in the calculation of H(n).

We see each Geode calculation touches three Geode neighbors on a 4 dimensional
lattice. So, except for edge cases, each calculated Geode element is used three times.
We experimented with deleting each Geode cache entry after it was no longer required,
assuming memory was a bottleneck, but it did not seem to make any difference, at
least up to H(300).

We also experimented using Sympy’s fallingfactorial rather than the ratio of fac-
torials in calculating C. That was less effective than adding a factorial cache to the
Geode cache, and dividing cached values. The factorial cache was well-utilized; for
H(300) there were 164 million calls to factorial, but only 700 distinct inputs.

We can see that the Geode cache for one n does not help for different ns. That is
obvious from our observation about the sum of the indices mo + ms + my4 + ms; for
the Gs of interest in calculation H(n), that sum is always 4n. Similarly, for the C's the
sum is 4n + 1.

Figure 2 shows the changes to add the caches; unchanged functions are not
repeated. Naive caching was able to compute H(200), 1201 digits, in 27 minutes on
my aging, and H(250) 1503 digits, in 20 hours. The code shown completed H (300),
1805 digits, in 5.9 hours, H(400), 2409 digits, 25.6 hours, and H (500), 3014 digits, 82
hours.



Fig. 2 Calculation with cached Geode and factorials

def MYfactorial (n):
global Fcache
if n not in Fcache:
Fcache[n] = factorial (n)
return Fcache[n]
def Fact(m):
return prod (MYfactorial(m[i]) for i in range(len(m)))
def C(m):
return MYfactorial (E(m)—1)/(MYfactorial (V(m)—1)*Fact(m))
def mstr(m): # turn array indices into a dictionary key
return ’,’.join ([str(mi) for mi in m])
def G(m):
global Ccache
key = mstr(m)
if key in Gecache:
return Gcache[key]
m[0] +=1
s = C(m)
for i in range(1l,len(m)):
if m[i] > 0O:

m[i] =1
s += —G(m)
m[i] +=1
m[0] =1
Gceache [key] = s
return s

Manuel Kauers (personal communication) asserts this implementation of H(n) is
of complexity O(n°). The arithmetic operations grow O(n3) but the length of the
numbers in the computation is proportional to n, so we get an additional factor of
n? due to the bignum multiplication calculations. Scaling up the H(500) time by 2°
means we expect H(1000) to take around 109 days with this code, not out of the
question, but we want something faster.

5 Geode Racks for Computational Efficiency

It was clear to make a major speedup, it would be necessary to understand the cal-
culation in more detail. Each Geode calculation uses three other Geode elements,
neighbors in the 4D Geode lattice, and one hyper-Catalan element.

Figure 3 shows the Geode elements involved in computing G2, 2, 2, 2], a small case
to be sure, but sufficiently illustrative. We see we get a 3 x 3 x 3 lattice; in general the
lattice for H(n) will be (n+ 1) x (n+ 1) x (n+ 1). The figure follows the convention

that trailing zeros of the type are omitted.



p:6(2,2,2,2]

L:613,2,1,2]

6:G6(8]

Fig. 3 The lattice of Geode elements used to compute G[2,2,2,2]; the number before the colon is
the initial recursion depth

Each Geode element requires three Geode elements to compute, the one below it,
the one to the left (and a bit down) and the one diagonally down. The lattice confus-
ingly has lines through nodes that are not necessarily connections, e.g. G[3,2,1,2] is
only connected to nodes more toward the origin G[8], namely G[4,1,2,2], G[4,2,0, 2],
and G[4,2,1,1], and not connected to G[3,2,2,1].

We define a rack as one of the two dimensional slices of the lattice with a constant
mgs; Rack r has mg = r. The important observation is to compute Geode elements
in rack r on requires two ‘lower’ Geode elements in rack r and one Geode element in
rack r — 1. Our plan is forming: compute one rack at a time, use it to incrementally
compute the next rack.

We'll divide the code into multiple parts; figure 4 shows the Geode computation
logic. The goal is to produce a Gceache, a Python dictionary of the entire rack’s Geode
values. The input is the rack number r, the hyper-Catalan cache for that rack Ccache,
and the Geode rack cache from rack r-1, called 0ldGcache. We could be slightly
cleverer here, as ¢ = 1 (decrementing mg) will always come from oldGcache; i = 2
or i = 3 correspond to decrementing my4 or ms, so we access Gecache. The for loop
over types m generates all the ms in the current Geode rack in the order we need to
calculate them without any recursion, bottom left to top right in each rack; we note the
my, always sum to 4n. The code would fail with index errors if the order was incorrect.

The rest is the usual Geode Recurrence, getting the hyper-Catalan elements from
the Ccache and the Geode dependencies from one of the two Gcache.

6 Hyper-Catalan Ratios

We need to efficiently calculate the hyper-Catalans as they contribute to the Geode
elements. Again we do it on a rack by rack basis.



Fig. 4 Geode Rack Calculation

def MakeGRackDict(r,n, Ccache, oldGcache ):
Gcecache = { }
for m in [ [4#%n — (r + m4 + m5), r, m4, mb]
for m4 in range(n+1) for m5 in range(n+1)]:

me = mstr (m)
m[0] +=1
s = Ccache[mstr(m)]

for i in range(1l,len(m)):
if m[i] > 0:
m[i] =1
k = mstr(m)
s —= Gecache[k] if k in Gcache else oldGcache [k]
m[i] +=1
m[0] =1
Gceache [me] = s
return Geceache

€_4;3;3;3=1948779073441200

€_5;3;2;3-613062000270720
52 si3

€_6:3;1;3=103245052310400
€_6;2;2;3=218950714382400 C_6;3;2;2-108407304925920
33:37

€_6:1;3;3-204354000090240 o2
€_7;3;0;3=7147734390720
€_7;2;1;3-30973515693120 €_7:3;1;2-14671665328320
€ 7:152; € 7:2;27 €_7:3;2;1=0913287384000
€_7;0;3; 3208524898830 €_7;1;3;2=30973515693120 C_7:2:3;1=14671665328320 €_7:3;3=2202952752000
_ € 8;3;0;
L €_8;1;1;3=5360800793040. €_8;2;1;7=3717482769000. €_8;3;1;1=1085740999200
_8;0;2;3=3871689461640 €_8;1;2;2=5501874498120 €_8;2;2;1=2478321846000 €_8:3;2=351269146800
C_8:0;3;7-2680400396520 83 82
€9;1;0; (X €_9;3;0;1=49674424300
€_9;0;1;3=407546259120 €_9;1;1;2=550738188000 €_9:2;1;1=234179431200 €_9:3;1=31046515500
€_9;0;2;2=413053641000 €_9;1;2;1=361913666400 €9:2;2=74511637200
€_9;0;3;1=183579396000 €_9;1;3=78039810400
€_10;0;0;3=18357939600 €_10;1;0;2-23417943120 €_10;2;0;1=9313954650 €_10;3-1141710570
(= 6191366640 € 101515 c_10;2;
0;271=23" €_10;1;2-0313954650

€ 10;0;2;
€_10;0;324967442480
354757040

:1-1037918700 C_11;2-182530530

C11;0;0; iy
11;0;171=1693446300 € 1151;1-622751220

[
€_11;0;25516959350

€_12;0;0;1=51895935 €12;1-17383860
€12;0;1=30421755

13742000

Fig. 5 The hyper-Catalan Rack structure for G[3, 3, 3, 3]

The lattice in the hyper-Catalan figure is almost identical to the lattice shown for
the Geode, except now the indices add up to 4n + 1 because my is one higher than its
respective Geode element.

We have two tasks ahead of us: Efficiently computing hyper-Catalan Rack 0, an
(n+1) x (n+ 1) array, and efficiently computing hyper-Catalan Rack r from hyper-
Catalan Rack r — 1. Both rely on the same, more general code, but to avoid new
notation here we write out the three cases separately:

Theorem 6
Clma — 1,m3 + 1, my, ms] _ moBEm (8)
C[m27m3,m47m5] (mg + 1)V
Clma —1,m3,mg+1,ms]  moEm(Em + 1)

C[ma, ms, myg, ms] T (ma+ 1DV (Vim + 1) )




Fig. 6 Ratio of hyper-Catalan neighbors

def Crat(m,j,k): # ratio of C(m-e[j]+e[k])/On
Em, Vm = E(m), V(m)
return RisingFactorial (Em, k—j) % m[j—2] /
( RisingFactorial (Vm, k—j) % (1 + m[k—2]) )

Clma — 1,m3, mg, ms + 1] _ ma2Em(Em + 1)(Em + 2) (10)
C[m27m35 m47m5] (ms JF 1)Vm(Vm + 1)(Vm + 2)
Proof We do the middle one and leave the others as exercises.

We abbreviate n = [ma — 1, m3, ma + 1, ms5]. We have:
En:1+2(m2—1)+3m3+4(m4+1)+5m5:2+Em7 (11)
Va=2+(ma2—1)+2m3g+3(mg + 1) +4ms = 2 4+ Vi, (12)
n! = (mg — 1)Ima! (ma + 1) ms = (m4 + 1)m!/mo (13)

(En —1)! ma(Em + 1)!
Cn (Va—D!n! ~ mg(Vin+1)! m! (14)
Cn _ (BEm+1)!my  (Vm—1!m! _ moBEm(Em+1) (15)
Cm (Vm+D!'m!my (Em—1)! M4V (Vi + 1)
O

We capture the general result in the code in figure 6; the subtractions of 2 adjust
the index given as parameters (starting at 2) to the internal representation starting
at zero.

The function allows us to calculate hyper-Catalans while avoiding factorials of
large numbers; in practice 1 < k — j < 3 so the rising factorials are at most two
multiplications.

7 Efficiently Calculating Hyper-Catalan Racks

Now that we have access to the ratios between nearby hyper-Catalan elements in the
lattice, it is relatively straightforward to calculate the needed hyper-Catalans. Figure
7 shows how the first hyper-Catalan rack, Rack 0, is calculated. The if statement
chooses the most efficient neighbor for the calculation.

The next piece of the puzzle calculates the general hyper-Catalan rack from the
previous one (figure 8); for successive racks we're always incrementing mg for the most
efficient calculation, as then the Rising Factorials only have a single factor.

That is pretty much it; it is just a question of putting it all together, see figure 9.

8 G[1000,1000,1000,1000]

With the Rack-based implementation, H(100) took 0.01 hours, H(200) took 0.098
hours, H(500) took 3.9 hours and H(1000) took 35.9 hours, coming in at 6303 digits.
We report the value as



Fig. 7 Creating hyper-Catalan Rack 0

def MakeCRack0Dict (n):
cr0 = [ [1 + 4%n — (m4d + mb), 0, md, mb5]
for m4 in range(n+1) for m5 in range(n+1) |
firstm = cr0[0]
Ccache = { }
Ccache [mstr (firstm )] = C(firstm)
for m in cr0[1:]:
m2, m3, md, m5 =mf[0], m[1l], m[2], m[3]

if(md = 0):
om = [m2+1, m3, md4, mH—1]
oms = mstr (om)
crat = Crat(om, 2, 5)
else:
om = [m2+1, m3, md—1, mj]
oms = mstr (om)
crat = Crat(om, 2, 4)
Ccache [mstr (m)] = Ccache[oms]| * crat

return Ccache

Fig. 8 Creating hyper-Catalan Rack r

def MakeCRackDict(r,n, oldCcache):
if r==0:
return MakeCRack0Dict (n)
Ccache = { }
cr = [ [1 4+ 4%n — (r + m4 + mH), r, md, mj]
for m4 in range(n+1) for m5 in range(n+1) ]
for m in cr:
om = [m[0]+1, m[1]—1, m[2], m[3]]
oms = mstr(om)
crat Crat (om,
Ccache [mstr (m) |
return Ccache

2, 3)
= oldCcache[oms] * crat

Fig. 9 Efficient Calculation of Geode Diagonal Elements via Geode and hyper-Catalan racks

def H(n):
Ccache = { }
Gcecache = { }

for i in range(n+1):

Ccache = MakeCRackDict (i, n, Ccache)

Gcache = MakeGRackDict (i, n, Ccache, Gcache)
return Gceache[mstr ([n,n,n,n])]

10



([1000, 1000, 1000, 1000] =

14060489925985310384567683471257481046085323473622173023625636541299683501
31358560064413195104569382858642875687344501357248486851822278520363296308
17239601420905927701870187661110631936586189788184954823392652746425867144
99740192712938410496233133028148017321476442946400435590685418980052303187
10220841269218073233254944073846699279281161215532579306255026293890850781
02583931806230141348175588783571473308262539688853463304259592404017092301
04053409468867117200343966411655979535056954771471846907050474149163511462
90295793828479658134616982272769884170197456386338757654913511133724612031
67145626597243401369052257725928780008822810342230174508686655925179948869
96960054060183135235850745032638114363941001775342670896504043756034159994
07811539972707898659729535668371612171112534101525884541870316720863811480
04444503331286985075614635134579715605324549132491425209355090931770155348
69502093521459732639753588156608978346053475447692793460763624760200873497
31364073996138143569193490960604238858610641272097337886111493927911550463
52241002596206352678058868697116210485667865768727138158349842089850815429
18204938371515545248231409942268135603908336666720637182937468040086399434
01853370244283212946712782602482734857847531327758575231065224292248188985
03958765097426127156859278072896344144860138862083397784918024637751245622
59543681200898139630565492870029578728538641352406409166563929852560714486
3906995970164681494242167551343138751539104013398914135519752693 7598155000
39688686904364745136102594311961512437677655841847751273736238050932997917
58216212117100790907370641146777383600241156055559881868520220743286498849
12770604007364408237945057448921907273197987153418931145704790404071254365
82220522541754888900927283933318540829135440295031956055975464860389827610
20520390064014353325847695074151268400011183726281426667513378020368434355
70739898552930173027104515331420680853726357098713604238622750104074342054
81390367417715912403798288034215716231688609673455417950565607963300641584
41203375228158418063265499594734056548974156787263529732668489093609901059
76278653186647347362727083453998404425298356982098135813137657340631475076
46003708000064491745055809494580288706003572002050153455663976862763316766
33148731684577206403733651228566501315085161427443865729823094495242939097
92921382981668285167612244553313109324189819249506637447031209132555667499
07294781811708155999126804710197336531329033262697682256137102635788787585
78728703239370165790166268142688170581557962265129621696188239191583872377
72434158090808967003384880330534625251629664441103317686377045499114461239
94893842308252159361001750284477664678298574312630390055150154862428967682
72092724835415091915924940258362580551724056484075616514371064592705525644
98165323311351643104102364400739563545402089104810682115960240599423377784
92835210222091266792900201362803641542579386136972503389245386037382408661
90532363666910855935764039878018218272212169732307972721679199924193313910
08549354163675120332292931906887186722059102737639570840071957661011393655
44105361149356604607216470711927133730760059757754081290275944384321738357
17279057436398546062592850235734202588396637352375566179783968552987511429
79408012461815757981074602492325592890675331302353304416074715703706660044
96847057556976257149067353883004273784329669544947008750262805244973275950
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94566935351018528594277899706120066177855591192080381875567311737752801020
24803463355039873464408468180359071764670285045717708579837218006818659960
92508643963452913949120073960181721453521181436423996919635288221719762597
33953736600534315745828515122823625395233160201512404431506641064306794805
T77774846680060898242291194963356061703748958110682505552640512552730752121
77057223205732458897280228654899396597246078280898233970055239924278112016
54225110175863639621949738222286989280045625423378496696506934223154413747
86047847938534816404619595962474550965631806995286308692186833187855810029
11035031671947228466605574733129250185243351913746070349291657885361550859
60735399347149535326969824152042131504195839452056104844742133641760217950
50419302471098887150085303895541358095790692734529703592978580049109024880
28423764624011587073779168867942376967832468302002820726711102456454812577
25666272655494904728552280525025448329480513520468000591386093012805716263
13390381616794635668651976946956214161014486849630720554532470698889658191
53787162929350597302748153868937615165344438496566730249578084632791178468
63763422056218885387971448910691431659267653978016075943904925077258720203
80120974129302170808425383617170798267419520829309396791658771023103373573
48657199073614314055610136594258676650887940206191102246782916881635894091
89853136410627983071013466432151986164524409944295853815046129334132915312
93780140027674607743596223849919703905701112520526118153150961252515494520
87798688047265944186689690368282502861420583644556147894931907287540527231
63842371249679919970568834098143655697756648909912319912695136653948146917
78583211309682412838030321632295307710374285808660185300425909213735807970
09300674696864904720866416852283321993700355402475805999761808751715742023
52091216586756664028856438273371275829144859517637477605607090492962295303
03526791195366872891487249098570623652497023608045477402047185225035314527
63024182117324718121267287547520332772497984152283204843771526656614306791
48325285653219795721315698648224927300044840516957095477069750335519245268
09926318606132038016217152287984676471117777671293341689305979049481324412
33768057031586482713250596652011956905761019477980316024037377774231001542
19367865902496256576465936210668252826904659713475493623684406212735193910
76223468891138435028473633331799429088549951067705211683524610943951517219
97522049227689119961010362176818658777492219959692050037613226880245832364
55130996560051489999717800051609148501018276145263016442896892623402981871
22820562484378744614527306062143685682235045898872061352478250039012176056
80022306251925827689527344978580259542328964519136205365029414092102503833
549476633414239544648341512407713629184000

9 Conclusion

Computing large four dimensional Geode diagonal elements is quite a challenge. By
understanding the recurrence lattice as a layering of racks, we are able to make the
calculation of G]1000, 1000, 1000, 1000] tractable.

Note the calculation presented here is not the recurrence sought by Amderberhan,
Kauers and Zeilberger, which I believe would only involve an unknown number of
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smaller 4D diagonal Geode elements. We expect each lagged diagonal element to have
a quite complicated polynomial factor in such a recurrence.

For the four dimensional calculation, the rack structure makes the O(n?) arithmetic
operations apparent, and we still have an additional factor of n? to handle the large
big number arithmetic, so complexity O(n®).

The remaining challenge is to compute the the five dimensional diagonal element
(G[1000, 1000, 1000, 1000, 1000]. That adds another dimension to the lattice, so another
factor of n to the complexity, now O(n®), so with the current technology would take
1000 times more than the 4d calculation. New innovations are required to make that
calculation tractable in a reasonable amount of time.
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