An Experimental Note on Graham’s Tree
Reconstruction Conjecture

Kaylee Weatherspoon and Doron Zeilberger
June 2025

1 Introduction

Graph reconstruction questions, increasingly relevant to bioinformatics, net-
work science, and cybersecurity, ask whether a given set of information suf-
fices to uniquely determine a graph. Often, as is the case in the venerable
Graph Reconstruction Conjecture ([3], 1957), the given information is a set
of subgraphs. For example, it is well known that any tree is uniquely deter-
mined by its “deck,” the multiset of subgraphs obtained by deleting a single
vertex ([3]).

Graham’s Tree Reconstruction Conjecture stands out among these prob-
lems in that it asks if a tree is reconstructible from a specific integer sequence,
rather than a collection of subgraphs (]2]). Letting L(G) denote the line
graph of GG, we refer to the following as the Graham sequence of a tree:

V(O] VLG VLG -

Graham’s Tree Reconstruction Conjecture asks whether a tree is uniquely
determined by its Graham sequence.

It is easy to see that for a tree on n vertices, the first two terms are n and
n — 1. In 2018, it was shown that the number of n-vertex trees which can
be distinguished by their associated Graham sequence is e2(1°8™m**) (see [1]).
In this note, we rely on purely computational techniques to verify Graham’s
conjecture for Graham sequences of length 5 of trees on up to 14 vertices.
We also carry out a statistical analysis of

2 Computation and Data

2.1 Code and Computation

Using Python, the authors obtained a list of all unlabeled trees on up to 16
vertices. The following two Maple functions were key to the data discussed
below:

LineGraph:=proc(G) local E, i, taggededges, tag_e, ledges,
n, m, j, k, L:

n:=G[1]:

E:=G[2]:

taggededges:=[]:

for k from 1 to nops(E) do:
tag_e:=convert(E[k], list):
taggededges:=[op(taggededges), [op(tag_e), kl]:
od:

#now I have a list of tagged edges

#if two edges {x,y}, {x,z} share an endvertex in G, then find the
#edges [x,y,i] and [x,z, j] and add the edge {i,j} to the edges of #L(G)

ledges:=[]:
m:=nops(E) :
for i from 1 to m do
for j from i+1 to m do
if taggededges([i] [1]=taggededges[j][1] or
taggededges[i] [1]=taggededges[j] [2] or
taggededges[i] [2]=taggededges[j] [1] or
taggededges[i] [2]=taggededges[j] [2]
then ledges:=[op(ledges), {taggededges[i] [3], taggededges[j][3]}]:
fi:
od:
od:

ledges:=convert(ledges, set):
L:=[nops(E), ledges]:

end:

GClist:=proc(T,k) local i, iterlist, newT, countlist, newG:
iterlist:=[T]:
newT:=T:

for i from 1 to k do
newT:=LineGraph (newT) :
iterlist:=[op(iterlist), newT]:
od:

countlist:=[]:

for i from 1 to nops(iterlist) do
countlist:=[op(countlist), iterlist([i][1]]:
od:

countlist;

end:

2.2 Integer Sequences

From the number of distinct Graham sequences of depth k& on n-vertex
graphs, we obtain several integer sequences. For example, thes quantities
for k =3 and n from 1 to 16 are

[1,1,1,2,3,6,11,20, 37,68, 114, 188, 300, 462, 702, 1041].

We plot this and the number of unlabeled trees on n vertices below.

20000

15000

10000

5000

2500 5000 7500 10000 12500 15000 17500

Another sequence of interest is the sequence Dy, of discrepancies between
the number of trees and the number of Graham sequences of length k. From
the above,

D; =[0,0,0,0,0,0,0,3, 10, 38,121, 363, 1001, 2697, 7039, 18279, . .]

We have computed the following portion of the Graham sequence discrep-
ancy matriz, which we define to be D(i, 7) = [{unlabled trees on j vertices}|—
[{distinct Graham Sequences of depth i}|.

5167|189 (1011 | 12 | 13 14 15 16
length 3|0 1|4 14|34 |88 214|524 | 1267 | 3120 | 7695 | 19266
length 4|0 (0|0 3 |10 |38 |121 363 | 1001 | 2697 | 7039 | 18279
length 5000 0| 0|5 |20 | 8 | 321 | 1148

2.3 Statistical Analysis

In this section, we utilize randomness and generating functions to compute
some statistics related to Graham sequences of graphs of large order.

3 Appendix: SageMath Computation of Trees
on n Vertices

The following code was created using SageMath ([4]).

import time
from sage.graphs.graph_generators import graphs

def UnlabeledUnrootedTrees(n):
start = time.time()

Generate trees using Nauty
trees = [G for G in graphs.nauty_geng(f"{n} {n-1}:c") if G.is_tree()]
canonical_graph_set = set()
for G in trees:
canonical form of the graph
canonical_graph = G.canonical_label()
in python/sage the graph must be immutable
#before it can be added to a set, manipulated
immutable_graph = canonical_graph.copy(immutable=True)
canonical_graph_set.add(immutable_graph)

end = time.time()
#print (f"Generated {len(canonical_graph_set)} unique
#trees on {n} vertices in {end - start:.2f} seconds")
Return the unique canonical graphs (graph objects)
return list(canonical_graph_set) # Return as a list of graphs

References

[1] Joshua Cooper, Bill Kay, and Anton Swifton. “Graham’s Tree Recon-
struction Conjecture and a Waring-Type Problem on Partitions”. In:
arXiv preprint arXiv:1109.0522 (2011).

[2] Chris Godsil and Gordon F Royle. Algebraic graph theory. Vol. 207.
Springer Science & Business Media, 2013.

3] Paul J Kelly. “A congruence theorem for trees.” In: Pacific Journal of
Mathematics 7 (1957).

[4] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version x.y.z). https://www.sagemath.org. YYYY.

	Introduction
	Computation and Data
	Code and Computation
	Integer Sequences
	Statistical Analysis

	Appendix: SageMath Computation of Trees on n Vertices

