
An Experimental Note on Graham’s Tree
Reconstruction Conjecture

Kaylee Weatherspoon and Doron Zeilberger

June 2025

1 Introduction

Graph reconstruction questions, increasingly relevant to bioinformatics, net-
work science, and cybersecurity, ask whether a given set of information suf-
fices to uniquely determine a graph. Often, as is the case in the venerable
Graph Reconstruction Conjecture ([3], 1957), the given information is a set
of subgraphs. For example, it is well known that any tree is uniquely deter-
mined by its “deck,” the multiset of subgraphs obtained by deleting a single
vertex ([3]).

Graham’s Tree Reconstruction Conjecture stands out among these prob-
lems in that it asks if a tree is reconstructible from a specific integer sequence,
rather than a collection of subgraphs ([2]). Letting L(G) denote the line
graph of G, we refer to the following as the Graham sequence of a tree:

|V (G)|, |V (L(G))|, |V (L(L(G))|,

Graham’s Tree Reconstruction Conjecture asks whether a tree is uniquely
determined by its Graham sequence.

It is easy to see that for a tree on n vertices, the first two terms are n and
n − 1. In 2018, it was shown that the number of n-vertex trees which can
be distinguished by their associated Graham sequence is eΩ((logn)3/2) (see [1]).
In this note, we rely on purely computational techniques to verify Graham’s
conjecture for Graham sequences of length 5 of trees on up to 14 vertices.
We also carry out a statistical analysis of

1

2 Computation and Data

2.1 Code and Computation

Using Python, the authors obtained a list of all unlabeled trees on up to 16
vertices. The following two Maple functions were key to the data discussed
below:

LineGraph:=proc(G) local E, i, taggededges, tag_e, ledges,

n, m, j, k, L:

n:=G[1]:

E:=G[2]:

taggededges:=[]:

for k from 1 to nops(E) do:

tag_e:=convert(E[k], list):

taggededges:=[op(taggededges),[op(tag_e), k]]:

od:

#now I have a list of tagged edges

#if two edges {x,y}, {x,z} share an endvertex in G, then find the

#edges [x,y,i] and [x,z, j] and add the edge {i,j} to the edges of #L(G)

ledges:=[]:

m:=nops(E):

for i from 1 to m do

for j from i+1 to m do

if taggededges[i][1]=taggededges[j][1] or

taggededges[i][1]=taggededges[j][2] or

taggededges[i][2]=taggededges[j][1] or

taggededges[i][2]=taggededges[j][2]

then ledges:=[op(ledges), {taggededges[i][3], taggededges[j][3]}]:

fi:

od:

od:

2

ledges:=convert(ledges, set):

L:=[nops(E), ledges]:

end:

GClist:=proc(T,k) local i, iterlist, newT, countlist, newG:

iterlist:=[T]:

newT:=T:

for i from 1 to k do

newT:=LineGraph(newT):

iterlist:=[op(iterlist), newT]:

od:

countlist:=[]:

for i from 1 to nops(iterlist) do

countlist:=[op(countlist), iterlist[i][1]]:

od:

countlist;

end:

2.2 Integer Sequences

From the number of distinct Graham sequences of depth k on n-vertex
graphs, we obtain several integer sequences. For example, thes quantities
for k = 3 and n from 1 to 16 are

[1, 1, 1, 2, 3, 6, 11, 20, 37, 68, 114, 188, 300, 462, 702, 1041].

We plot this and the number of unlabeled trees on n vertices below.

3

Another sequence of interest is the sequence Dk of discrepancies between
the number of trees and the number of Graham sequences of length k. From
the above,

D3 = [0, 0, 0, 0, 0, 0, 0, 3, 10, 38, 121, 363, 1001, 2697, 7039, 18279, . . .]

We have computed the following portion of the Graham sequence discrep-
ancy matrix, which we define to beD(i, j) = |{unlabled trees on j vertices}|−
|{distinct Graham Sequences of depth i}|.

5 6 7 8 9 10 11 12 13 14 15 16
length 3 0 1 4 14 34 88 214 524 1267 3120 7695 19266
length 4 0 0 0 3 10 38 121 363 1001 2697 7039 18279
length 5 0 0 0 0 0 5 20 86 321 1148

2.3 Statistical Analysis

In this section, we utilize randomness and generating functions to compute
some statistics related to Graham sequences of graphs of large order.

3 Appendix: SageMath Computation of Trees

on n Vertices

The following code was created using SageMath ([4]).

4

import time

from sage.graphs.graph_generators import graphs

def UnlabeledUnrootedTrees(n):

start = time.time()

Generate trees using Nauty

trees = [G for G in graphs.nauty_geng(f"{n} {n-1}:c") if G.is_tree()]

canonical_graph_set = set()

for G in trees:

canonical form of the graph

canonical_graph = G.canonical_label()

in python/sage the graph must be immutable

#before it can be added to a set, manipulated

immutable_graph = canonical_graph.copy(immutable=True)

canonical_graph_set.add(immutable_graph)

end = time.time()

#print(f"Generated {len(canonical_graph_set)} unique

#trees on {n} vertices in {end - start:.2f} seconds")

Return the unique canonical graphs (graph objects)

return list(canonical_graph_set) # Return as a list of graphs

References

[1] Joshua Cooper, Bill Kay, and Anton Swifton. “Graham’s Tree Recon-
struction Conjecture and a Waring-Type Problem on Partitions”. In:
arXiv preprint arXiv:1109.0522 (2011).

[2] Chris Godsil and Gordon F Royle. Algebraic graph theory. Vol. 207.
Springer Science & Business Media, 2013.

[3] Paul J Kelly. “A congruence theorem for trees.” In: Pacific Journal of
Mathematics 7 (1957).

[4] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version x.y.z). https://www.sagemath.org. YYYY.

5

	Introduction
	Computation and Data
	Code and Computation
	Integer Sequences
	Statistical Analysis

	Appendix: SageMath Computation of Trees on n Vertices

