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1 Introduction

Graph reconstruction questions, increasingly relevant to bioinformatics, net-
work science, and cybersecurity, ask whether a given set of information suf-
fices to uniquely determine a graph. Often, as is the case in the venerable
Graph Reconstruction Conjecture ([3], 1957), the given information is a set
of subgraphs. For example, it is well known that any tree is uniquely deter-
mined by its “deck,” the multiset of subgraphs obtained by deleting a single
vertex ([3]).

Graham’s Tree Reconstruction Conjecture stands out among these prob-
lems in that it asks if a tree is reconstructible from a specific integer sequence,
rather than a collection of subgraphs (]2]). Letting L(G) denote the line
graph of GG, we refer to the following as the Graham sequence of a tree:
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Graham’s Tree Reconstruction Conjecture asks whether a tree is uniquely
determined by its Graham sequence.

It is easy to see that for a tree on n vertices, the first two terms are n and
n — 1. In 2018, it was shown that the number of n-vertex trees which can
be distinguished by their associated Graham sequence is e2(1°8™m**) (see [1]).
In this note, we rely on purely computational techniques to verify Graham’s
conjecture for Graham sequences of length 5 of trees on up to 14 vertices.
We also carry out a statistical analysis of



2 Computation and Data

2.1 Code and Computation

Using Python, the authors obtained a list of all unlabeled trees on up to 16
vertices. The following two Maple functions were key to the data discussed
below:

LineGraph:=proc(G) local E, i, taggededges, tag_e, ledges,
n, m, j, k, L:

n:=G[1]:

E:=G[2]:

taggededges:=[]:

for k from 1 to nops(E) do:
tag_e:=convert(E[k], list):
taggededges:=[op(taggededges), [op(tag_e), kl]:
od:

#now I have a list of tagged edges

#if two edges {x,y}, {x,z} share an endvertex in G, then find the
#edges [x,y,i] and [x,z, j] and add the edge {i,j} to the edges of #L(G)

ledges:=[]:
m:=nops(E) :
for i from 1 to m do
for j from i+1 to m do
if taggededges([i] [1]=taggededges[j][1] or
taggededges[i] [1]=taggededges[j] [2] or
taggededges[i] [2]=taggededges[j] [1] or
taggededges[i] [2]=taggededges[j] [2]
then ledges:=[op(ledges), {taggededges[i] [3], taggededges[j][3]}]:
fi:
od:
od:



ledges:=convert(ledges, set):
L:=[nops(E), ledges]:

end:

GClist:=proc(T,k) local i, iterlist, newT, countlist, newG:
iterlist:=[T]:
newT:=T:

for i from 1 to k do
newT:=LineGraph (newT) :
iterlist:=[op(iterlist), newT]:
od:

countlist:=[]:

for i from 1 to nops(iterlist) do
countlist:=[op(countlist), iterlist([i][1]]:
od:

countlist;

end:

2.2 Integer Sequences

From the number of distinct Graham sequences of depth k& on n-vertex
graphs, we obtain several integer sequences. For example, thes quantities
for k =3 and n from 1 to 16 are

[1,1,1,2,3,6,11,20, 37,68, 114, 188, 300, 462, 702, 1041].

We plot this and the number of unlabeled trees on n vertices below.
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Another sequence of interest is the sequence Dy, of discrepancies between
the number of trees and the number of Graham sequences of length k. From
the above,

D; =[0,0,0,0,0,0,0,3, 10, 38,121, 363, 1001, 2697, 7039, 18279, . . ]

We have computed the following portion of the Graham sequence discrep-
ancy matriz, which we define to be D(i, 7) = [{unlabled trees on j vertices}|—
[{distinct Graham Sequences of depth i}|.

5167|189 (1011 | 12 | 13 14 15 16
length 3|0 1|4 14|34 |88 214|524 | 1267 | 3120 | 7695 | 19266
length 4|0 (0|0 3 |10 |38 |121 363 | 1001 | 2697 | 7039 | 18279
length 5000 0| 0|5 |20 | 8 | 321 | 1148

2.3 Statistical Analysis

In this section, we utilize randomness and generating functions to compute
some statistics related to Graham sequences of graphs of large order.

3 Appendix: SageMath Computation of Trees
on n Vertices

The following code was created using SageMath ([4]).



import time
from sage.graphs.graph_generators import graphs

def UnlabeledUnrootedTrees(n):
start = time.time()

# Generate trees using Nauty
trees = [G for G in graphs.nauty_geng(f"{n} {n-1}:c") if G.is_tree()]
canonical_graph_set = set()
for G in trees:
# canonical form of the graph
canonical_graph = G.canonical_label()
# in python/sage the graph must be immutable
#before it can be added to a set, manipulated
immutable_graph = canonical_graph.copy(immutable=True)
canonical_graph_set.add(immutable_graph)

end = time.time()
#print (f"Generated {len(canonical_graph_set)} unique
#trees on {n} vertices in {end - start:.2f} seconds")
# Return the unique canonical graphs (graph objects)
return list(canonical_graph_set) # Return as a list of graphs
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