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Abstract

Using the theoretical basis developed by Yao and Zeilberger in [5] and some of their accompanying packages,
we consider certain graph families whose structure results in rational generating function for sequences related
to spanning tree enumeration. Said families are Powers of Cycles, Powers of Paths, and (later) Torus graphs and
Grid graphs. As in the Yao and Zeilberger paper [5], the sequences we will consider are C-finite in nature and
hence their (rational) generating function can be computed by finding a large number of terms in the sequence.
For each graph family, we consider: the sequence of the number of spanning trees and the sequence of the total
number of leaves across all spanning trees.

1 Introduction and Background

A subgraph T of a graph G such that T is a tree with V (T ) = V (G) is called a spanning tree of G. If G is connected,
simple, and not a tree, then it will contain several spanning trees. When we count the number of spanning trees
of a graph in this paper, we will consider two isomorphic trees with different vertex labels to be different trees; for
example, the complete graph on three vertices K3 has three spanning trees, not one. For a connected graph G, we
denote its number of spanning trees of G by τ(G). Cayley’s formula counts the number of spanning of a complete
graph on n vertices to be nn−2 = τ(Kn).

The generating function f(x) for a sequence (a0, a1, . . .) is the formal power series given by taking the sequence
terms as its coefficients:

f(x) :=

∞∑
n=0

anx
n.

Whenever a sequence has a recurrence of finite length, with constant coefficients, it is called C-finite. In other
words, (a0, a1, . . .) is C-finite (of order r) if there is a fixed r and coefficients c0, . . . , cr−1 with c0 ̸= 0 such that

an+r = cr−1an+r−1 + . . .+ c0an

for all n ≥ 0.

The following will be a useful property of C-finite sequences:

Theorem 1.0.1. [2][Kauers-Paule, Thm. 4.3] A sequence (a0, a1, . . .) is C-finite (of order r) with recurrence

an+r = cr−1an+r−1 + . . .+ c0an

if and only if ∑
anx

n =
p(x)

1− cr−1x+ . . .− c1xr−1 − c0xr

for some polynomial p(x) of degree at most r − 1.

In fact, the polynomial p(x) in the previous Theorem is determined by the initial values (a0, . . . , ar−1) of the
sequence. Later, we will state the value a0 of our sequence to disambiguate p(x) in the sequence’s rational generating
function.
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For the graph families we will be considering, we can presume that there is a finite Transfer Matrix which describes
the corresponding sequence (see [5] for more details). Thanks to this, we can find the sequence’s rational generating
function by computing a large number of terms in the sequence. The guessing will be done in a Maple procedure,
described in the same paper [5], called GuessRec.

To generate the terms of whichever sequence we consider, we will apply Kirchhoff’s Matrix Tree Theorem, which
allows us to compute the number of spanning trees of a(n n-vertex graph) graph by looking at its Laplacian matrix,
taking an n − 1 by n − 1 (matrix) minor, and computing its determinant. Below, we define the Laplacian matrix
of a graph for the reader’s convenience.

If G is a (simple) graph with vertices v1, . . . , vn, its Laplacian matrix is a symmetric matrix with its entries defined
by

ai,j :=

{
−1 if vi ∼ vj and i ̸= j

deg(vi) if i = j
.

Afterwards, we will describe similar methods that we used to counting total number of leaves (across all spanning
trees) for members in the same families. In addition, we consider an asymptotic constant relating total leaves to total
spanning trees in any families (for which the constant is well-defined). Finally, we include experimental verification
of our results’ correctness and a description of the accompanying Maple package that we used. Additional outputs
and code will be available at [1].

2 Preliminaries and Graph Families

For ease of notation, we assume all graphs are simple.

Definition. For a graph G, the distance |u, v| between two vertices u, v is the length of the shortest path between
them. If u and v are in different components of G, we say |u, v| = ∞ and say the distance between them is infinite.

Definition. Let G be a graph. For an integer k ≥ 1, the k-th power of G, denoted Gk, is the graph obtained from
G such that V (Gk) := V (G) and E(Gk) := {uv : u, v ∈ V (G), 1 ≤ |u, v| ≤ k}. See Figure 1.

From the definition, we see that if d is the diameter of a connected graph G, that is d := maxu,v∈V (G) |u, v|. Then,
Gd is the complete graph on |V (G)| vertices. Later in the paper, we will only consider Gk where k < d for this
reason.

Notation. We denote the path graph on n vertices by Pn and the cycle graph on n vertices by Cn.

In subsequent sections, we state the generating functions for the number of spanning trees in the graph families

Gr := {Cn
r : r < diam Cn}

Hr := {Pn
r : r < diam Pn}.

The condition in each construction ensures that our graph families do not contain any "unnatural" complete graphs.
The number of spanning trees in a complete graph on n vertices is given by Cayley’s formula to be nn−2. Since
the diameter of a cycle (resp. path) increases with the number of vertices, the condition r < diam Cn = ⌊n/2⌋ is
implicitly a lower bound on the number of vertices. Explicitly,

Gr = {Cn
r : n ≥ 2r + 1}

Hr = {Pn
r : n ≥ r + 2}.

As discussed in the introduction, the initial values of a C-finite sequence determines the numerator in its rational
generating function. Hence, for the generating functions below in the rest of the paper, we will begin every sequence
at n = 2r + 1 for Gr and at n = r + 2 for Hr.
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Figure 1: On the left, C7
2. On the right, P6

3. The thicker edges represent the edges from
the corresponding original graph.

Since paths and cycles are ubiquitous objects in graph theory, ou. Let G be a connected graph. Suppose that we
wish to estimate the complexity (number of spanning trees) of its k-th power graph, τ(Gk). One way to estimate
τ(Gk) is to fix a vertex v ∈ V (G), let H1, . . . ,HN be the components of G− v and mi(v) := maxu∈Hi

|u, v|. Then,
deduce the bound:

τ(Gk) ≥
N∏
i=1

τ(Pmi(v)
k)

for all v. In particular,

τ(Gk) ≥ max
v∈V (G)

N∏
i=1

τ(Pmi(v)
k).

There are a few questions that arise from this type of estimate: Given a graph G, what choice of v maximizes the
bound? Which graphs have a "good" choice of v? [To Z: Could we try answering this later?]

3 Counting Total Number of Leaves Across All Spanning Trees

Let G be a graph and T be a spanning tree of G. A leaf of a tree T is a vertex with degree exactly 1 in the tree.
Denote by L(T ), the set of leaves of T . For ease of notation, we will write T (G) for the set of (labeled) spanning
trees of G and will shorten this as T whenever G is clear from context. Cite [3] (where?).

The next proposition plays a key role in our implementation for computing a parameter of a graph we later call
the B-Z constant. The idea is to count the total number of leaves (of all spanning trees) in a graph by removing a
vertex and finding a spanning tree of the resulting graph.

Proposition 3.0.1. If G is a labeled connected simple graph and for v ∈ V (G), then∑
T∈T

|L(T )| =
∑

v∈V (G)

degG(v) · |Tv|

where T := T (G) and Tv := T (G− v).

Proof. Fix v ∈ V (G). Write Ev := {e ∈ E(G) : v ∈ e}. There is a bijection between Ev × Tv and the spanning
trees of T which contain v as a leaf. Hence, we use indicators to obtain∑

v∈V (G)

degG(v) · |Tv| =
∑

v∈V (G)

|{T ∈ T : v ∈ L(T )|

=
∑

v∈V (G)

∑
T∈T

1v∈L(T ) =
∑
T∈T

|L(T )|.

We say G is vertex-transitive if for any u, v ∈ V (G) there is an automorphism φ of G such that φ(u) = v and
φ(v) = u.
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Corollary 3.0.2. If G is vertex-transitive, then∑
T∈T

|L(T )| = n · degG(v) · |Tv|

for any v ∈ V (G).

Next, we introduce a parameter for graph families whose member graphs are indexed by number of vertices. For
such a graph family, our parameter represents the number of times (on average) that a vertex appears as a leaf in
a spanning tree, averaged across all spanning trees, (asymptotically).

For a graph family indexed by number of vertices, G, where Gn represents the n-th graph in the family, we call the
following the B-Z constant for G:

lim
n→∞

∑
T∈T (Gn)

|L(T )|
n · τ(Gn)

whenever the limit exists. Since the bound
∑

|L(T )|
nτ(G) ≤ 1 holds for all G, we see that the B-Z constant only fails to

exist for those graph families with members whose underlying spanning trees are radically different.

Thanks to Corollary 3.0.2, computation of the B-Z constant for vertex-transitive graphs is made easier. Our
implementation uses this optimization when appropriate. Incidentally, it’s easy to compute the B-Z constant for
complete graphs by using Corollary 3.0.2 in conjunction with Cayley’s Theorem:

Proposition 3.0.3. The B-Z constant for the graph family {Kn : n ≥ 3} is 1
e .

Proof. Recall Cayley’s formula, which states τ(Kn) = nn−2 for n ≥ 2. With T := T (Kn), Corollary 3.0.2 tells us
that

∑
|L(T )| = n · (n− 1)n−2. Hence,∑

|L(T )|
n · τ(Kn)

=

(
n− 1

n

)n−2

=

(
1− 1

n

)n−2

which approaches e−1 as n → ∞.

4 Powers of a Cycle: Experimental Results

Note that the denominator of RGF for Hi is always a factor of the denom of RGF for Fi. Likely due to the former
being a subgraph of the latter.

4.1 Generating Functions for the Number of Spanning Trees

In this section, we include our results for the Number of Spanning Trees of the class Gr, with 2 ≤ r ≤ 5.

Theorem 4.1.1. The generating function f(t) for the number of spanning trees in G2 is

−36t5 + 132t4 + 46t3 − 353t2 − 116t+ 125

(t+ 1)2(t2 − 3t+ 1)2

Theorem 4.1.2. The generating function f(t) for the number of spanning trees in G3 is

N3

(t− 1)2(t4 + 3t3 + 6t2 + 3t+ 1)2(t4 − 4t3 − t2 − 4t+ 1)2

where

N3 := −3072t17 + 11683t16 + 26868t15 + 60636t14 − 356682t13 − 844329t12 − 1651344t11 − 104646t10 + 813834t9+

3128248t8 + 1452330t7 + 512250t6 − 1392528t5 − 1049445t4 − 579514t3 − 54068t2 + 15716t+ 16807.
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Theorem 4.1.3. The generating function f(t) for the number of spanning trees in G4 is

N4

D4

where N4 is a polynomial of degree 53 and

D4 = (t+ 1)2(t6 − 3t5 + 6t4 − 10t3 + 6t2 − 3t+ 1)2(t8 − 4t7 − 17t6 + 8t5 + 49t4 + 8t3 − 17t2 − 4t+ 1)2

(t12 + 3t11 + 12t10 + 28t9 − 27t8 + 36t7 − 81t6 + 36t5 − 27t4 + 28t3 + 12t2 + 3t+ 1)2.

Theorem 4.1.4. The generating function f(t) for the number of spanning trees in G5 is

N5

D5

where N5 is a polynomial of degree 161 and

D5 = (t− 1)2(t8 + 3t7 + 6t6 + 10t5 + 15t4 + 10t3 + 6t2 + 3t+ 1)2(t8 + 3t7 + 6t6 − t5 + 15t4 − t3 + 6t2 + 3t+ 1)2

(t16 − 5t15 + 10t14 − 10t13 − 28t12 + 10t11 + 110t10 + 110t9 + 88t8 + 110t7 + 110t6 + 10t5 − 28t4 − 10t3 + 10t2

− 5t+ 1)2(t16 − 5t15 − 23t14 − 10t13 − 94t12 − 485t11 + 242t10 + 110t9 + 649t8 + 110t7 + 242t6 − 485t5 − 94t4

− 10t3 − 23t2 − 5t+ 1)2(t32 + t31 + 12t30 + 45t29 + 45t28 − 1561t27 + 3917t26 − 3222t25 − 3981t24 + 7745t23

+ 26379t22 − 88937t21 + 84093t20 + 63864t19 − 153881t18 − 202281t17 + 550163t16 − 202281t15 − 153881t14

+ 63864t13 + 84093t12 − 88937t11 + 26379t10 + 7745t9 − 3981t8 − 3222t7 + 3917t6 − 1561t5 + 45t4 + 45t3

+ 12t2 + t+ 1)2

4.2 Generating functions for the Total Number of Leaves

Theorem 4.2.1. The generating function for the total number of leaves (across all spanning trees of a member) in
G2 is

−8(10t7 − 67t6 + 109t5 + 99t4 − 282t3 − 30t2 + 145t− 40)

(t+ 1)2(t2 − 3t+ 1)3
.

Theorem 4.2.2. The generating function for the total number of leaves (across all spanning trees of a member) in
G3 is

A3

(t− 1)3(t4 + 3t3 + 6t2 + 3t+ 1)3(t4 − 4t3 − t2 − 4t+ 1)3

where

A3 := −8820t26 + 51390t25 + 61812t24 + 2088t23 − 2539950t22 − 2981160t21 + 2492784t20 + 45845688t19

+ 83018808t18 + 107694630t17 − 44892840t16 − 166389300t15 − 333210654t14 − 121438506t13 + 42702660t12

+ 312824052t11 + 213402930t10 + 100784592t9 − 77616756t8 − 90041700t7 − 62209728t6 − 13836186t5

+ 276924t4 + 2761596t3 + 501534t2 + 32592t− 54432.

As the reader might have noticed, the numerators for these generating functions become too cumbersome to write
(and more quickly than in the previous section). Henceforth, we omit the numerator and will eventually refer the
reader to this website [1] for detailed results when 4 ≤ r ≤ 5.

Theorem 4.2.3. The generating function for the total number of leaves (across all spanning trees of a member) in
G4 is

A4

B4
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where A4 is a polynomial of degree 80 and

B4 = (t+ 1)3(t6 − 3t5 + 6t4 − 10t3 + 6t2 − 3t+ 1)3(t8 − 4t7 − 17t6 + 8t5 + 49t4 + 8t3 − 17t2 − 4t+ 1)3

(t12 + 3t11 + 12t10 + 28t9 − 27t8 + 36t7 − 81t6 + 36t5 − 27t4 + 28t3 + 12t2 + 3t+ 1)3

4.3 B-Z Constants

5 Powers of a Path: Experimental Results

5.1 Generating functions for the Number of Spanning Trees

In this section, we include our results for the Number of Spanning Trees of the class Hr, with 2 ≤ r ≤ 6.

Theorem 5.1.1. The generating function f(t) for the number of spanning trees in H2 is

−3t+ 8

t2 − 3t+ 1
.

Theorem 5.1.2. The generating function f(t) for the number of spanning trees in H3 is

−16t4 + 77t3 − 33t2 + 39t− 75

(t− 1)(t4 − 4t3 − t2 − 4t+ 1)
.

Theorem 5.1.3. The generating function f(t) for the number of spanning trees in H4 is

M4

(t6 − 3t5 + 6t4 − 10t3 + 6t2 − 3t+ 1)(t8 − 4t7 − 17t6 + 8t5 + 49t4 + 8t3 − 17t2 − 4t+ 1)
.

where

M4 = −125t13 + 859t12 − 13t11 − 3141t10 + 3475t9 − 5968t8 − 11312t7

+ 36080t6 − 5597t5 − 7893t4 + 2435t3 − 2741t2 − 413t+ 864

We know the generating functions for larger r values, but there are many terms with longer coefficients. So, we do
not state them in the paper. They are stated in this website [1].

Theorem 5.1.4. The generating function f(t) for the number of spanning trees in H5 is

M5

E5
.

where M5 is a degree 40 polynomial in t and

E5 = (t− 1)(t8 + 3t7 + 6t6 − t5 + 15t4 − t3 + 6t2 + 3t+ 1)(t16 − 5t15 + 10t14 − 10t13 − 28t12

+ 10t11 + 110t10 + 110t9 + 88t8 + 110t7 + 110t6 + 10t5 − 28t4 − 10t3 + 10t2 − 5t+ 1)(t16

− 5t15 − 23t14 − 10t13 − 94t12 − 485t11 + 242t10 + 110t9 + 649t8 + 110t7 + 242t6 − 485t5

− 94t4 − 10t3 − 23t2 − 5t+ 1)

Seq. of span. trees for H3,H4 not found in OEIS.
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5.2 Generating functions for the Total Number of Leaves

Theorem 5.2.1. The generating function for the total number of leaves (across all spanning trees of a member) in
H2 is

−2(2t3 − 15t2 + 27t− 9)

(t2 − 3t+ 1)2

Note: the numerator and denominator in the following have the same degree.

Theorem 5.2.2. The generating function for the total number of leaves in H3 is

2(16t10 − 154t9 + 403t8 − 340t7 + 963t6 − 768t5 + 1109t4 − 788t3 + 509t2 − 470t+ 96)

(t− 1)2(t4 − 4t3 − t2 − 4t+ 1)2

Theorem 5.2.3. The generating function for the total number of leaves in H4 is

C4

(t6 − 3t5 + 6t4 − 10t3 + 6t2 − 3t+ 1)2(t8 − 4t7 − 17t6 + 8t5 + 49t4 + 8t3 − 17t2 − 4t+ 1)2

where C4 is a degree 29 polynomial. Note that the degree of the numerator is 28.

5.3 B-Z Constants

6 Verification of Results by Random Sampling

In our implementation, we wrote a procedure to compute the total number of leaves of a graph (NumLeaves or
VtxTransNumLeaves) and another to compute the number of spanning trees (NumSpanTree). The ratio between the
outputs of these procedures is the average number of leaves of a graph.

To verify the accuracy of these procedures, we selected a large member from each of our graph families (at least
100 vertices) and then sampled a large number of spanning trees from that graph (at least 100 and usually more
than 200). After doing so, we computed the average number of leaves of the graph in the sample and compared it
to our procedures’ exact computation. In all cases, we found that the estimate and the true values were similar.
For more detailed results on this verification, we direct the reader to [1].

The algorithm we used to sample uniformly random spanning trees is Wilson’s Algorithm, as described in [4].

7 Accompanying Maple package

Our Maple package broadly depends on the LinearAlgebra library. The RandomTree procedure also makes use of
the GraphTheory library. Below we list some key procedures along with their descriptions:

NumSpanTree(n,E) given a positive integer n and a set of edges E on the set {1, . . . , n}, the procedure returns the
number of spanning trees of the corresponding graph n,E.

NumSpanTreeSeq(F, arguments, a,b)

NumLeaves

NumLeavesSeq

VtxTransNumLeavesSeq

Hnr

Gnr
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