Taylor \& Francis
Taylor \& Francis Group

On a Conjecture of R. J. Simpson About Exact Covering Congruences Author(s): Doron Zeilberger
 Source: The American Mathematical Monthly, Vol. 96, No. 3 (Mar., 1989), p. 243 Published by: Taylor \& Francis, Ltd. on behalf of the Mathematical Association of America Stable URL: https://www.jstor.org/stable/2325213
 Accessed: 25-01-2020 14:21 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

Taylor \& Francis, Ltd., Mathematical Association of America are collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly
with the property that no open connected subset of Y contains a cut point. Let A be a subset of X consisting of isolated points. Assume that the map $f: X \rightarrow Y$ is continuous, and that $f \upharpoonright X-A$ is an open map.

Then f is an open map.
Proof. It will suffice to show that f is open at x for each $x \in A$. Assume that there is an $x_{0} \in A$ such that f is not open at x_{0}. Then there are open sets N and V, with \bar{N} compact, such that $x_{0} \in N \subset \bar{N} \subset V$, and $f\left(x_{0}\right) \notin f(V)^{0}$. Since the points in A are isolated, we may assume that $V \cap A=\left\{x_{0}\right\}$. Then since $f \upharpoonright X-A$ is an open map, $f\left(V-\left\{x_{0}\right\}\right)$ is an open subset of $f(V)$, so $f\left(x_{0}\right) \notin f\left(V-\left\{x_{0}\right\}\right)$.

Since $\bar{N}-\left\{x_{0}\right\} \subset V-\left\{x_{0}\right\}, f\left(x_{0}\right) \notin f\left(\bar{N}-\left\{x_{0}\right\}\right)$, and $f\left(N-\left\{x_{0}\right\}\right)$ is open. Since $f \upharpoonright N$ is continuous and $\left\{x_{0}\right\}$ is not an open subset of $N, f\left(x_{0}\right)$ $\in \overline{f\left(N-\left\{x_{0}\right\}\right)}$. On the other hand, $f(\bar{N})$ is closed, so

$$
\overline{f\left(N-\left\{x_{0}\right\}\right)} \subset f\left(N-\left\{x_{0}\right\}\right) \cup f(\bar{N}-N) \cup\left\{f\left(x_{0}\right)\right\}
$$

and since $f(\bar{N}-N)$ is closed and does not contain $f\left(x_{0}\right)$, it follows that $f\left(x_{0}\right)$ is an isolated point in the boundary of the open set $f\left(N-\left\{x_{0}\right\}\right)$. We have $f\left(x_{0}\right)$ $\notin \overline{f\left(N-\left\{x_{0}\right\}\right)}$, because $\overline{f\left(N-\left\{x_{0}\right\}\right)} \subset f(\bar{N}) \subset f(V)$, and $f\left(x_{0}\right) \notin f(V)^{0}$. Therefore, (ii) in Lemma 1 is false for Y, so (i) must also be false, contradicting our hypothesis. This concludes the proof of Theorem 1.

REFERENCES

1. John L. Kelley, General Topology, D. Van Nostrand, Princeton, 1955.
2. Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology, Springer-Verlag, New York, 1970.

On a Conjecture of R. J. Simpson About Exact Covering Congruences

Doron Zeilberger ${ }^{1}$
Department of Mathematics, Drexel University, Philadelphia, PA 19104

The following is a counterexample ${ }^{2}$ to Simpson's conjecture [2]: $D=$ $\{6,15,35,14,210$ (140 times) $\}$. It was concocted using the elegant and powerful approach of [1].

REFERENCES

1. Marc A. Berger, Alexander Felzenbaum, and Aviezri S. Fraenkel, New results for covering systems of residue sets, Bulletin (New Series) of the Amer. Math. Soc., 14 (1986) 121-125.
2. R. J. Simpson, Disjoint covering systems of congruences, this Monthly, 94 (1987) 865-868.
[^0]
[^0]: ${ }^{1}$ Supported in part by NSF grant DMS 8800663.
 ${ }^{2}$ Another counterexample was found later, and independently, by John Beebee.

