
HITTING THE PRIMES FOR THE k-TH TIME TAKES k log(k) DICE ROLLS

(ON AVERAGE)

NOGA ALON, YAAKOV MALINOVSKY, LUCY MARTINEZ, AND DORON ZEILBERGER

Abstract. Abstract goes here

1. Results

Let S = (d1, d2, d3, . . .) be an infinite sequence of rolls of independent fair dice. Thus the di are
independent, identically distributed random variables, each uniformly distributed on the integers
{1, 2, . . . , 6}. For each i ≥ 1 put si =

∑i
j=1 dj . The sequence S hits a positive integer x if there

exists an i so that si = x. In that case it hits x in step i.
For any positive integer k, let Lk = Lk(S) be the random variable whose value is the smallest i

so that the sequence S hits k primes during the first i steps (∞ is there is no such i, but it is easy
to see that with probability 1 there is such i). The random variable L1 is introduced and studied
by Alon Noga and Yaakov Malinovsky [1], see also Lucy Martinez and Doron Zeilberger’s work
for several generalizations [4]. Shane Chern obtained the asymptotic expected hit time of the first
prime for dice with a sufficiently large number of faces [3].

Here we consider the random variable Lk for larger values of k, focusing on the estimate of its
expectation.

1.1. Computational results. The value of the expectation of Lk for k ≤ 30 is given in the
following table.

k Lk k Lk k Lk

1 2.428497914 11 48.14320555 21 106.3962997
2 5.712240468 12 53.61351459 22 112.5650207
3 9.498878119 13 59.16406655 23 118.7684092
4 13.65059271 14 64.79337350 24 125.0081994
5 18.05408931 15 70.50517127 25 131.2881683
6 22.64615402 16 76.30284161 26 137.6114097
7 27.42115902 17 82.18566213 27 143.9783110
8 32.37752852 18 88.14757626 28 150.3859881
9 37.50029903 19 94.17811256 29 156.8292462
10 42.76471868 20 100.2648068 30 163.3025173

The table suggests that the asymptotic value of this expectation is (1+o(1))k log k, where the o(1)-
term tends to zero as k tends to infinity, and the logarithm here and throughout the manuscript is
in the natural basis. This is confirmed in the results stated and proved in Section 2.
The value of the standard deviation of Lk for k ≤ 30 is given in the following table.
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k Lk k Lk k Lk

1 2.4985553 11 14.9184147 21 23.3873070
2 4.2393979 12 15.8185435 22 24.0816339
3 5.7679076 13 16.7109840 23 24.7769981
4 7.1185391 14 17.6115574 24 25.4821834
5 8.3598784 15 18.5197678 25 26.1952166
6 9.5715571 16 19.4227324 26 26.9055430
7 10.7618046 17 20.3022748 27 27.5997195
8 11.9062438 18 21.1419697 28 28.2678482
9 12.9824596 19 21.9329240 29 28.9080719
10 13.9823359 20 22.6771846 30 29.5276021

The value of the skewness of Lk for k ≤ 30 is given in the following table.

k Lk k Lk k Lk

1 3.3904247 11 0.7569428 21 0.5205173
2 2.1496468 12 0.7362263 22 0.5148284
3 1.6420771 13 0.7250716 23 0.5134409
4 1.3892778 14 0.7131387 24 0.5108048
5 1.2554076 15 0.6939289 25 0.5029053
6 1.1503502 16 0.6657344 26 0.4888319
7 1.0474628 17 0.6307374 27 0.4707841
8 0.9487703 18 0.5936550 28 0.4528198
9 0.8625227 19 0.5601812 29 0.4391145
10 0.7974496 20 0.5351098 30 0.4324204

The value of the kurtosis of Lk for k ≤ 30 is given in the following table.

k Lk k Lk k Lk

1 20.6214485 11 3.9630489 21 3.4553514
2 10.0475452 12 3.9427896 22 3.4675149
3 7.2098904 13 3.9031803 23 3.4566369
4 6.1044828 14 3.8308431 24 3.4199435
5 5.5085380 15 3.7314241 25 3.3679599
6 5.0273441 16 3.6223695 26 3.3183350
7 4.6151697 17 3.5254483 27 3.2873677
8 4.2993763 18 3.4590869 28 3.2835481
9 4.0978890 19 3.4312823 29 3.3051186
10 3.9989275 20 3.4359883 30 3.3414988

1.2. Asymptotic results.

Theorem 1.1. For any fixed positive reals ε, δ there exists k0 = k0(ε, δ) so that for all k > k0 the
probability that |Lk − k log k| > εk log k is smaller than δ.

Theorem 1.2. For any fixed ε > 0 and any k > k0(ε), the expected value of the random variable
Lk satisfies |E(Lk)− k log k| < εk log k.
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2. Proofs

Lemma 2.1. There are fixed positive C and µ so that the following holds. Let S = (d1, d2, . . .) be
a random sequence as above. For any positive integer x, let p(x) denote the probability that S hits
x. Then |p(x)− 2/7| ≤ C(1− µ)x, that is, as x grows, p(x) converges to the constant 2/7 with an
exponential rate.

Proof. Define p(−5) = p(−4) = p(−3) = p(−2) = p(−1) = 0, p(0) = 1 and note that for every
i ≥ 1,

p(i) =
1

6

6∑
j=1

p(i− j)

Indeed, S hits i if and only if the last number it hits before i is i− j for some j ∈ {1, . . . , 6}, and
the die rolled after that gives the value j. The probability of this event for each specific value of
j is p(i− j) · (1/6), providing the equation above. (Note that the definition of the initial values is
consistent with this reasoning, as before any dice rolls the initial sum is 0). Thus, the sequence (p(i))
satisfies the homogeneous linear recurrence relation given above. The characteristic polynomial of
that is

P (z) = z6 − 1

6
(z5 + z4 + z3 + z2 + z + 1).

One of the roots of this polynomial is z = 1, and its multiplicity is 1 as the derivative of P (z)
does not vanish at 1. It is also easy to check that the absolute value of each of the other roots λj ,
2 ≤ j ≤ 6 of P (z) is at most 1 − µ for some absolute positive constant µ. Therefore, there are
constants cj so that

p(i) = c1 · 1i +

6∑
j=2

cjλ
i
j ,

implying that
|p(i)− c1| ≤ C(1− µ)i

for some absolute constant C. It remains to compute the value of c1. By the last estimate, for any
positive n,

|
n∑

i=1

p(i)− c1n| ≤ C/(1− µ).

Note that the sum
∑n

i=1 p(i) is the expected number of integers in [n] = {1, 2, . . . , n} hit by
the sequence S. For large n, this number is clearly (1 + o(1))(2/7)n, by standard estimates for
distributions of sums of independent bounded random variables, see, e.g., [2], Theorem A.1.16.
Dividing by n and taking the limit as n tends to infinity shows that c1 = 2/7, completing the
proof. �

The next simple lemma shows that for any integers x1 < x2 < . . . < xr that are far from each
other, the events that the random sequence S hits xi are nearly independent.

Lemma 2.2. For any positive integers x1 < x2 < . . . < xr, the probability that the random sequence
S hits all xi is exactly

p(x1)p(x2 − x1)p(x3 − x2) · · · p(xr − xr−1).

Therefore, if each difference (xi−xi−1) is at least s, then the probability of this event deviates from
(27)r by at most (27)r−1Cr(1− µ)s.

Proof. (Sketch) The conditional probability of the sequence to hit xi+1 given that it hit already
x1, . . . , xi is exactly p(xi+1 − xi), since the sequence starting at xi has the same distribution as S.
The desired estimate follows from the assertion of Lemma 2.1. �
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Using the two lemmas above we next show that the number of primes hit by the first f steps
of the random sequence S is close to 2/7 times the number of primes smaller than 3.5f with high
probability.

Theorem 2.3. Let π(x) denote the number of primes smaller than x, and let Y (f) denote the
number of primes hit by the random sequence S during the first f steps. Then, for any fixed
ε > 0 and any (large) constant t, and for any f > f0(ε, t), the probability that Y (f) deviates from
(2/7)π(3.5f) by more than ε(2/7)π(3.5f) is smaller than f−t.

Proof. (rough sketch) For large f , with probability larger than 1 − f−t the sum
∑f

i=1 di deviates
from its expectation 3.5f by less than (ε/3)3.5f . Split all the primes smaller than (1−ε/3)3.5f into,
say,
√
f groups of nearly equal sizes, where the difference between any two elements in the same

group is at least
√
f . Using Lemma 2.2 it follows that for each fixed group of size g, the number of

primes of the group hit by S is within an ε-fraction of its expectation. This is done by computing,
say, the first 4t moments of this random variable, observing that these are very close to the same
moments of a random variable which is the sum of g independent indicator random variables, each
being 1 with probability 2/7. By considering the expectation of the 4t-th power of the difference
between this random variable and its expectation, this implies the desired concentration within each
group, and the triangle-inequality supplies the required estimate for the union of all groups. The
contribution of the primes between (1− ε/3)3.5f and (1 + ε/3)3.5f is small, by the known results
about the distribution of primes, and the contribution of the primes larger than (1 + ε/3)3.5f to
the expectation is negligible, since the probability that the sequence reaches these numbers within
the first f steps is tiny. This implies the assertion of the Theorem. �

The assertions of Theorem 1.1 and Theorem 1.2 can be easily deduced from that of Theorem
2.3.

3. Concluding remarks and extensions

• Extensions for biased r-sided dice and arbitrary subsets of the integers. The
proofs in the previous section use very little of the specific properties of the primes and the
specific distribution of each di. It is easy to extend the result to any r-sided dice with an
arbitrary discrete distribution on [r] in which the values obtained with positive probabilities
do not have any nontrivial common divisor. The constants 3.5 and 2/7 will then have to be
replaced by the expectation of the random variable di and by its reciprocal, respectively.
Similarly, we can replace the set of integers in which we count hits by an arbitrary set of
positive integers, as long as its distribution satisfies some mild smoothness assumptions.
We omit the details.
• Heuristic suggestion for a more precise expression for E(Lk). We may state here a

possible more precise expression for E(Lk), which may be close to k(log k+log log k+c1)+c2.
This is justified very loosely by the heuristic argument described here together with the
behavior of π(n), and is also roughly consistent with the experimental evidence. Better to
state it only as a possible guess and mainly raise the question of finding a more accurate
estimate for the error term in the expectation.
• Can add the definition and conjecture that there are infinitely many AMMZ integers (after

deciding if this is indeed the name we want to suggest). The known results and conjec-
tures about prime gaps (specifically Cramér’s Conjecture) and the fact that the difference
between E(Lk+1) and E(Lk) is close to log k (at least by our heuristics, supported by the
computation), suggest that the function 2π(trunc(72 ·L[i])) will stay an even constant integer
for some (2/7) log(L[i]) = (1 + o(1))(2/7) log i consecutive values of i around i for infinitely
many values of i. As the denominator 7i will go through some (2/7) log i consecutive even
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values for this range, there is, possibly, a non-negligible chance that one of these will be
equal to the numerator. Of course this depends on quite a few heuristic conjectures, includ-
ing Cramér’s. The computational results in the table we have do not handle sufficiently
large i to test if this heuristics is valid. In particular, I think that in the range in the table
there are no two consecutive values in which the numerator in our formula is the same -
this should happen later infinitely often.
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