
von Neumann and Newman Pokers with Finite Decks

Tipaluck Krityakierne Thotsaporn Aek Thanatipanonda
Doron Zeilberger

Abstract

John von Neumann studied a simplified version of poker where the “deck” consists
of infinitely many cards, in fact, all real numbers between 0 and 1. We harness
the power of computation, both numeric and symbolic, to investigate analogs with
finitely many cards. We also study finite analogs of a simplified poker introduced
by D.J. Newman, and conclude with a thorough investigation, fully implemented in
Maple, of the three-player game, doing both the finite and the infinite versions. This
paper is accompanied by two Maple packages and numerous output files; however,
no knowledge of Maple is needed, as all relevant information is provided within the
paper.

1 Prelude

Welcome to the world of poker, where strategy and probability rule. Picture yourself at
the poker table, every decision a crucial step toward victory or defeat. Poker has intrigued
mathematicians for decades as a window into decision-making and game theory. Pioneers
like Émile Borel, John von Neumann, Harold W. Kuhn, John Nash, and Lloyd Shapley
([1],[5],[3],[4]) who believed that real-life scenarios mirror poker with their elements of
bluffing and strategic thinking, have simplified the complexities of the game, making it
tractable for game theoretic analysis.

Quick Refresher: Game Theory

In game theory, a game refers to any situation where players make decisions that result
in outcomes based on the choices of all involved. A strategy is a complete plan of action
a player will follow in various situations throughout the game. A pure strategy is a
strategy in which a player makes a specific choice or takes a specific action with certainty
whenever a particular situation arises in the game. When players use a mixed strategy,
they randomize over possible moves, assigning a probability to each move, instead of
choosing a single, deterministic action. A Nash Equilibrium (NE) occurs when no player
can benefit from changing their strategy while the other players keep theirs unchanged. A
mixed Nash Equilibrium is a type of NE where at least one player uses a mixed strategy,
ensuring no player can improve their payoff by individually changing their strategy.

von Neumann Poker

In the original version [5], von Neumann proposed, and solved, the following game of
poker with an uncountably infinite deck, namely all the real numbers between 0 and 1.
Fix a bet size, b. Player I and Player II are dealt (uniformly at random) two “cards”,

1

Figure 1: The betting tree and Nash equilibrium strategies for von Neumann Poker

real numbers x and y, in the interval [0, 1]. They each see their own card, but have no
clue about the opponent’s card. At the start they each put one dollar into the pot (the
so called ante), so now the pot has two dollars.

Figure 1 illustrates the “betting tree” of this game. Here, Player I looks at his card,
and decides whether to check, in which case each of the players shows their cards, and
whoever has the largest card wins the pot. On the other hand he has an option to bet,
putting b additional dollars in the pot. Now the game turns to Player II. She can decide
to fold, in which case player I gets the pot, resulting in a gain of 1 dollar for Player I,
(and a loss of 1 dollar for player II), or be brave and call, putting her own b dollars
into the pot, that now has 2b + 2 dollars. The cards are compared in a showdown and
whoever has the larger card, wins the whole pot, resulting in a gain of b + 1 dollars for
the winner, and a loss of b+ 1 for the loser.

von Neumann proved that the following pair of strategies is a pure Nash Equilibrium,
i.e. if the players both follow their chosen strategy, neither of them can do better (on
average) by doing a different strategy.

The von Neumann advice

von Neumann identified the cuts A,B and C in the right panel of Figure 1, and proposed
the following strategies.

• Player I: If 0 < x <
b

(b+ 4) (b+ 1)
or

b2 + 4b+ 2

(b+ 4) (b+ 1)
< x < 1 you should bet,

otherwise check.

• Player II: If 0 < y <
b (b+ 3)

(b+ 4) (b+ 1)
you should fold, otherwise call.

Note that Player II’s strategy corresponds to honest common sense, there is some
cut-off that below it you should be conservative, and “cut your losses” giving up the one
dollar, and not risking losing b additional dollars, and above it, be brave, and go for it.

Now an honest common sense would tell you that Player I would also have his own
cutoff, check if his card is below it, and bet if it exceeds it. But this is not optimal.
If Player I has a low card, he should bluff, and ‘pretend’ that he has a high card, and
player II would be intimidated into folding.

2

Sad but true, “honesty is not the best policy”. Indeed the game favors Player I,

and his expected gain is
b

(b+ 4) (b+ 1)
.

When b = 2, the advice spells out as follows:

• Player I: if 0 < x < 1
9 or 7

9 < x < 1 you should bet, otherwise check.

• Player II: If 0 < y < 5
9 you should fold, otherwise call.

The expected value, i.e. the value of the game (for Player I) is 1
9 . It can be shown that

b = 2 maximizes Player I’s payoff under the Nash equilibrium strategies.

Finitely Many Cards

What we don’t like about the original von Neumann version is that the deck is infinite.
In real life there are only finitely many cards, and in fact, not that many. We were
wondering whether there exists pure Nash equilibria when there are only finitely many
cards.

For interested readers, we hope you will download the Maple package FinitePoker.txt,
available, free of charge, at https://sites.math.rutgers.edu/˜zeilberg/tokhniot/
FinitePoker.txt . Once you downloaded our Maple package to your laptop, that has
Maple, and set the directory to be the one where the package resides, start a worksheet
and type read ‘FinitePoker.txt‘ .

We wrote procedure vnNE(n,b), that inputs

• a positive integer n, at least 2, standing for the number of cards in the deck, that
are numbered 1, 2, . . . , n.

• a positive integer b, at least 1, denoting the (fixed) bet size.

It outputs the set of all pure Nash equilibria. This set may be empty, since we are
talking about pure NEs (from now on NE:=Nash Equilibrium). Recall that thanks to
John Nash, we are only guaranteed the existence of mixed NEs. We will talk about
mixed NEs later on. But for now, let’s explore the pure ones.

Finding all pure Nash Equilibria via the “Vanilla” approach

We did not make any assumptions about ‘plausible’ strategies, so a priori, a strategy
for player I can be any subset, S1, of {1, . . . , n}, that advises: ‘If your card belongs to
S1 you should bet, otherwise, check’. Similarly a strategy for player II, S2, can be any
such subset, that tells her to call iff her card j ∈ S2. For each conceivable strategy pair
[S1, S2] we can easily compute the expected payoff following these strategies. This is
implemented in procedure EnS1S2(n,S1,S2,b) .

Using this, we can construct the paytable, implemented in procedure PayTable(n,b),
that is a 2n by 2n matrix. Now we look for pure NEs, the usual way, by finding, for each
strategy of each player the best response of the other player, and looking for pairs [S1, S2]
that are best responses to each other.

Let’s fix the bet size b = 2. If the card has only 2 cards, vnNE(2,2); gives

{[{}, {2}, 0], [{2}, {2}, 0]} ,

3

https://sites.math.rutgers.edu/~zeilberg/tokhniot/FinitePoker.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/FinitePoker.txt

so there are two pure NEs. In both of them Player II bets if her card is 2 and folds if
her card is 1, while Player I always checks in the first strategy, and checks if his card is
1 in the second strategy.

This is not very interesting, since the expected gain (value of the the game) is 0.
vnNE(3,2) is equally boring, giving the two trivial pairs [ϕ, {3}] and [{3}, {3}] .
vnNE(4,2), vnNE(5,2), and vnNE(6,2) are even more boring, they are empty!
But now comes a nice surprise, vnNE(7,2) gives three pure, non-trivial, NEs.
For all of them Player I bets iff his card belongs to {1, 6, 7}, but Player II calls if her

card is in either {3, 6, 7}, {4, 6, 7}, or {5, 6, 7}. The value of the game is 2
21 .

So with 7 cards we already have bluffing! If Player I has the card labeled 1, he should
bet even though he would definitely lose the bet if Player II calls.

Moving right along, vnNE(8,2); also gives you three pure NEs.
For all of them Player I bets iff his card belongs to {1, 7, 8}, but Player II calls if

her card is in either {4, 7, 8}, {5, 7, 8}, or {6, 7, 8}. The value of the game is 3
28 , getting

tantalizingly close to von Neumann’s 1
9 .

Since the sizes of the payoff matrices grow exponentially, and we did not make any
plausibility assumptions, there is only so far we can go with this naive vanilla approach.
But nine cards are still doable. Indeed there are seven pure NEs in this case. For all of
them S1 = {1, 8, 9}, but Player II has seven choices, all with four members, including, of
course, {6, 7, 8, 9}.

For all pure NEs for n from 2 to 10 and bet-sizes from 1 to 5 look at the output file:
https://sites.math.rutgers.edu/˜zeilberg/tokhniot/oFinitePoker1.txt.

To overcome the exponential explosion, we can stipulate that Player I’s strategy must
be of the form:

“Check iff i ∈ {A,A+ 1, . . . , B} for some 1 ≤ A < B ≤ n, ”
while Player II’s must be of the form:
“Call iff j ∈ {C,C + 1, . . . , n} for some 1 ≤ C ≤ n.”
Now we can go much further, see the output file at

https://sites.math.rutgers.edu/˜zeilberg/tokhniot/oFinitePoker1A.txt

for pure NEs for n up to 27.
If n is a multiple of 9 then the (restricted) pure NEs are as expected, namely the value

of the game is 1
9 and the strategy for player I is: check if 1

9n < i ≤ 7
9n, bet otherwise and

for Player II: call iff j > 5
9n.

If n is not a multiple of 9, then the values are close, but a little less. For example
for n = 26 the value is 36

325 = 0.110769. For n = 25 the value is 11
100 = 0.11, for

n = 24 it is 61
552 = 0.1105072464, for n = 23 it is 28

253 = 0.1106719368, for n = 22 it is
17
154 = 0.1103896104.

2 Mixed NEs via Linear Programming

The study of mixed strategies in two-person zero-sum games can be elegantly formu-
lated as a primal-dual linear programming (LP) problem. A mixed strategy involves
each player choosing optimal actions according to a probability distribution, introducing
uncertainty. An equilibrium solution to this dual pair of linear programs reveals optimal
mixed strategies (mixed NE) for both players.

4

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oFinitePoker1.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oFinitePoker1A.txt

Slow LPs for mixed NE

Recall our scenario: the pot starts at 1+1, with only Player I able to bet a fixed amount b.
Given the 2n by 2n payoff matrix (mij) as input, Player I aims to maximize his worst-case
expected gain, minimizing over all possible actions of Player II. This objective is framed as
an LP by introducing variable v1 to represent this minimum, ensuring Player I’s expected
gain is at least v1 for every action of Player II, and maximizing v1. Similarly, from Player
II’s viewpoint, the goal is to minimize her worst-case expected loss, maximizing over all
actions of Player I. This involves introducing variable v2 to represent this maximum, and
setting the objective to minimize v2.

To formulate the primal-dual LP, let x = (x1, . . . , x2n) be the mixed strategy proba-
bility of Player I to maximize v1. Let y = (y1, . . . , y2n) be the mixed strategy probability
of Player II to minimize v2.

Primal: Maximize v1

s.t.
2n∑
i=1

xi ·mij ≥ v1 for j = 1, ..., 2n

2n∑
i=1

xi = 1

xi ≥ 0 for i = 1, ..., 2n.

Dual: Minimize v2

s.t.
2n∑
j=1

mij · yj ≤ v2 for i = 1, ..., 2n

2n∑
j=1

yj = 1

yj ≥ 0 for j = 1, ..., 2n.

By the minimax theorem at an equilibrium, v1 = v2 = v∗, which represents the value
of the game. We can use the commands maximize and minimize in the Maple package
simplex, to find one mixed NE. However, due to the exponentially large size of the
matrix, practical limitations arise, restricting us from considering more than 6-7 cards
without the inconvenience of reducing the dominated rows/columns of the payoff matrix
(worse than the vanilla approach in the previous section).

We have implemented the above Slow LP procedures in MNE(M,S1,S2). Typing
M := PayTable(4,2)[1]:

S1 := Stra1(4):

S2 := Stra2(4):

MNE(M,S1,S2); gives outputs:
[{[{4}, 1/2], [{1,4}, 1/2]}, {[{4}, 1/2], [{2,4}, 1/2]}, 1/12] .

Translation:

• The value of the game is 1
12 (last entry).

• Player I has two strategies specified within the first set of braces: (1.1) with prob-
ability 1/2, raise if his card is 4 and fold if his cards are 1, 2, or 3; and (1.2) with
probability 1/2, raise if his card is 1 or 4 and fold if his cards are 2 or 3.

• Player II has two strategies specified within the second set of braces: (2.1) with
probability 1/2, call if her card is 4 and fold if her cards are 1, 2, or 3; and (2.2)
with probability 1/2, call if her cards are 2 or 4 and fold if her cards are 1 or 3.

5

Fast LPs for mixed NE

The NE can be considered from another point of view, whereby focusing on the card each
player receives can reduce the number of constraints from exponential to linear. With
this formulation, we can handle more than 200 cards now.

A strategy for Player I is given by a vector P = [p1, . . . , pn] that tells him: if his card
is i, bet with probability pi, and check with probability 1− pi.

A strategy for Player II is given by a vector Q = [q1, . . . , qn] that tells her: if her card
is j, call with probability qj , and fold with probability 1− qj .

Before we discuss the Fast LP formulation, let’s mention that given card-by-card
strategies, P and Q, it is easy to compute the expected payoff (for Player I). This is
implemented in procedure PayOffP1P2(n,b,P1,P2), as a bilinear form in the pi’s
and qj ’s:

1

n(n− 1)

(
n∑

i=1

i−1∑
j=1

(1− pi) −
n∑

i=1

n∑
j=i+1

(1− pi) +

n∑
i=1

i−1∑
j=1

pi(1− qj)

+

n∑
i=1

n∑
j=i+1

pi(1− qj) + (b+ 1)

n∑
i=1

i−1∑
j=1

piqj − (b+ 1)

n∑
i=1

n∑
j=i+1

piqj

)
.

Let’s now get back to the Fast LP for Player I, which contains two sets of constraints.
Each set corresponds to the expected payoff (over distribution P), conditioned on the
card that Player II has and whether she calls or folds:

Maximize
1

n

n∑
j=1

vj

s.t.
1

n− 1

∑
i ̸=j

(Call(i, j, b+ 1) · pi + Call(i, j, 1) · (1− pi)) ≥ vj j = 1, . . . , n (Player II calls)

1

n− 1

∑
i ̸=j

(pi + Call(i, j, 1) · (1− pi)) ≥ vj j = 1, . . . , n (Player II folds)

0 ≤ pi ≤ 1 i = 1, . . . , n, (VN-I)

where the procedure Call(i, j, R) is defined based on whether the card i is larger than
card j or not:

Call(i, j, R) =

{
R if i > j

−R if i < j.

Similarly, for the Fast LP for Player II, the constraints are calculated based on the
expected loss (over distributionQ), conditioned on the card that Player I has and whether

6

he raises or checks:

Minimize
1

n

n∑
i=1

vi

s.t.
1

n− 1

∑
j ̸=i

(Call(i, j, b+ 1) · qj + (1− qj)) ≤ vi i = 1, . . . , n (Player I raises)

1

n− 1

∑
j ̸=i

Call(i, j, 1) ≤ vi i = 1, . . . , n (Player I checks)

0 ≤ qj ≤ 1 j = 1, . . . , n. (VN-II)

The procedure for the Fast LPs is vnMNE(n,b). Now things get interesting sooner.
Already with three cards, we have bluffing!

With bet size 1, typing lprint(vnMNE(3,1)); outputs:
[1/18, .5555555556e-1, [1/3, 0, 1], [0, 1/3, 1]] .

Translation:

• The value of the game is 1
18 .

• Its value in decimals is 0.055555

• Player I’s strategy is: If your card is 1, bet with probability 1
3 and check with

probability 2
3 . If your card is 2 then definitely check, while if your card is 3 then

you should definitely bet.

• Player II’s strategy is: If your card is 1, definitely fold, if your card is 2, call with
probability 1

3 and fold with probability 2
3 , while if your card is 3 then definitely

call.

So already with three cards, Player I should sometimes bluff if his card is 1, but only
with probability 1

3 .
The output file https://sites.math.rutgers.edu/˜zeilberg/tokhniot/oFinitePoker3.

txt contains one mixed NE for each of the cases n (size of the deck) from 2 to 40, and b
(size of the bet) from 1 to 10.

The verbose form of vnMNE(n,b); is vnMNEv(n,b);, spelling out the advice.
Note that a pure NE is also a mixed one, and indeed sometimes we get pure NEs.

For example,
lprint(vnMNE(9,2)); gives:
[1/9, .1111111111, [1, 0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 1, 1,

1, 1]].

Translation:

• The value of the game is 1
9 .

• The value of the game in floating-point is 0.111111111

• Player I: Bet iff your card is in {1, 8, 9}.

• Player II: Call iff your card is in {6, 7, 8, 9}.

7

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oFinitePoker3.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oFinitePoker3.txt

This was so much faster than vnNE(9,2).
While vnNE(18,2) would take centuries (and run out of memory), lprint(vnMNE(18,2));

gives you right away:
[1/9, .1111111111, [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,

1], [0,0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]].
Again a pure NE, exactly as in the von Neumann model.
One more example before we move on to DJ Newman’s poker.
With 28 cards and bet size 4, lprint(vnMNE(28,4)); gives:
[113/1134, .9964726631e-1, [1, 1, 2/3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/3, 1, 1, 1, 1, 1, 1, 1, 1]].
We will let you, dear reader, do the translation.

3 DJ Newman Poker

Not as famous as John von Neumann, but at least as brilliant, is Donald J. Newman,
the third person to be Putnam fellow in three consecutive years. He was a good friend
of John Nash. In a fascinating four-page paper [6] in Operations Research, he proposed
his own version of poker, where the bet size is not fixed, but can be decided by Player
I, including betting 0, that is the same as checking.

In his own words (now the players are A and B) :
A and B each ante 1 dollar and are each dealt a ‘hand,’ namely a randomly chosen

real number in (0, 1). Each sees his, but not the opponent’s hand. A bets any amount
he chooses (≥ 0); B ‘sees’ him (i.e. calls, betting the same amount) or folds. The
payoff is as usual.

But in real life, there is always a finite number of cards, and no one can bet arbitrarily
large amounts. Once again, we focus on the finite deck version, which is set up as follows:
The inputs are integers n ≥ 2 and b ≥ 1, where each player is dealt a different card from
{1, . . . , n}, and Player I’s decision, upon seeing his card i, is to choose an amount s from
{0, . . . , b} to bet, where s = 0 corresponds to checking.

In this game the number of strategies are even larger, and we will not bother with the
‘vanilla’ approach to find pure NEs. Instead, we will look for (Fast LP) mixed strategies
right away.

Player I’s payoff maximization

Player I’s strategy space consists of n× (b+1) matrix, (pi[s]), where pi[s] (1 ≤ i ≤ n, 0 ≤
s ≤ b) is the probability that if he has card i, he would bet s dollars (of course, the
row-sums should add-up to 1). The LP formulation is analogous to that of (VN-I) in the
previous section. Let’s point out the differences to gain some insights. Recall that each
constraint corresponds to the card that Player II has and her choice of action. In (VN-I),
Player II can either call or fold, and she can have one of the n cards. Hence, there are a
total of 2n constraints.

In our current scenario, however, Player II’s decision depends on both her card and
Player I’s proposed bet amount s. Let Sb := {0, . . . , b}. We define P(Sb) as the set
containing all possible strategies of Player II regarding whether to call or fold. That is,
each Y ∈ P(Sb) represents a strategy where Player II will call if s ∈ Y . Therefore, for a
fixed card j and strategy Y ∈ P(Sb) of Player II, the constraint is: “Player II calls if she

8

holds card j and the proposed s ∈ Y ; otherwise, she folds.” The total number of these
constraints amounts to n · 2b.

For example, when b = 4,

P(S4) ={{0}, {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 1, 2}, {0, 1, 3}, {0, 1, 4}, {0, 2, 3}, {0, 2, 4}
{0, 3, 4}, {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 3, 4}, {0, 2, 3, 4}, {0, 1, 2, 3, 4}}.

With this setup, we derive the following LP:

Maximize
1

n

n∑
j=1

vj

s.t.
1

n− 1

∑
i ̸=j

∑
s∈Y

Call(i, j, s+ 1) · pi[s] +
∑

s∈(Sb\Y)

pi[s]

 ≥ vj j = 1, . . . , n; Y ∈ P(Sb)︸ ︷︷ ︸
total n·2b constraints

b∑
s=0

pi[s] = 1, i = 1, . . . , n

pi[s] ≥ 0, s = 0, . . . , b; i = 1, . . . , n (DJN-I)

Player II’s loss minimization

While Player’s II’s strategy is also an n × (b + 1) matrix, formulating the LP is much
simpler. Let’s denote the matrix by (qj [s]) where qj [s] is the probability of calling if her
card is j and the bet proposed by Player I is s (and as usual 1−qj [s] is the corresponding
probability of folding). In this case, there are a total of n(b + 1) constraints (not expo-
nential as in the case of Player I). Also, the LP formulation straightforwardly extends
from (VN-II):

Minimize
1

n

n∑
i=1

vi

s.t.
1

n− 1

∑
j ̸=i

(Call(i, j, s+ 1) · qj [s] + (1− qj [s])) ≤ vi s = 0, . . . , b; i = 1, . . . , n︸ ︷︷ ︸
total n(b+1) constraints

qj [0] = 1 j = 1, . . . , n

0 ≤ qj [s] ≤ 1 s = 0, . . . , b; j = 1, . . . , n. (DJN-II)

These LPs are implemented in procedure djnMNE(n,b); and the verbose version is
djnMNEv(n,b);.

We noticed that for any given n, there exists a maximal bet size after which the game
has the same value. The output file
https://sites.math.rutgers.edu/˜zeilberg/tokhniot/oFinitePoker4a.txt

contains one mixed NE for 1 ≤ n ≤ 14 and for all b until it ‘saturates’. As n grows
larger, and b reaches its saturation value, the value of the game seems to converge to the
DJ Newman ‘continuous’ value 1

7 .

9

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oFinitePoker4a.txt

Figure 2: Three-player poker. Left: The betting tree. Right: Conjectured Nash equilib-
rium strategies for a continuous deck.

4 Three-player Poker Game

As early as 1950, future Economics Nobelists, John Nash and Lloyd Shapley [4], pioneered
the analysis of a three-player poker game. They explored a simplified version where the
deck contains only two kinds of cards, High and Low, in equal numbers. However, today,
eighty years after von Neumann’s 1944 analysis of poker, the dynamics of the three-
player game therein remain unexplored. We now take the opportunity to analyze these
dynamics in both their finite and infinite versions.

Finite deck

The three players each put 1 dollar into the pot. Player I acts first, choosing either to
check or to bet a fixed integer amount b > 0. If Player I checks, the three hands are
immediately compared, and the player with the highest hand wins the pot. However, if
Player I bets, Players II and III have two choices: call or fold. The reader is invited to
refer to the left panel of Figure 2, which depicts the betting tree for three players. (The
right panel shows the conjectured Nash equilibrium strategies to be used in the next
section for the continuous version of the game.)

Assume we are given three-dimensional payoff matrices (Ml, l = 1, 2, 3) for the three
players:

Ml =
(
ml

ijk

)
,

where i, j, k = 1, 2, . . . , 2n.
While its counterpart two-player game can be solved using linear programming, here

we require nonlinear programming (NLP) [2]. The NLP formulation for the three-player
game closely follows the LP model for the two players discussed in the previous section.
Each player aims to minimize their expected loss, or the expected gain of the other
players. For instance, given Player I’s payoff matrix M1, the other two players attempt
to minimize the maximum potential loss incurred due to Player I’s choices. This involves
constraints that utilize matrix M1 and the probability distributions y = (y1, . . . , y2n) and
z = (z1, . . . , z2n) of Players II and III. These are embedded in the first set of constraints
in the NLP formulation, which we will now formulate.

10

The Slow NLP for three players is given by:

Minimize

3∑
l=1

vl

s.t.

2n∑
j,k=1

m1
ijk · yj · zk ≤ v1 for i = 1, 2, ..., 2n

2n∑
i,k=1

m2
ijk · xi · zk ≤ v2 for j = 1, 2, ..., 2n

2n∑
i,j=1

m3
ijk · xi · yj ≤ v3 for k = 1, 2, ..., 2n

2n∑
i=1

xi = 1,
2n∑
j=1

yj = 1,
2n∑
k=1

zk = 1

xi, yj , zk ≥ 0 for i, j, k = 1, 2, ..., 2n.

Note that if there are only two players, zk in the above NLP formulation disappears,
and the constraint functions become linear in the variables xi and yj . Thus, the problem
can be decomposed into two separate LP (primal-dual) problems, as discussed earlier.

Programs related to three players can be found at https://sites.math.rutgers.
edu/˜zeilberg/tokhniot/ThreePersonPoker.txt. The Slow NLP is implemented
in the procedure MNE(n,b), which is, of course, very slow even for small n.

We now shift our focus to the Fast NLP formulation for three players, which aligns
with the Fast LP formulation for two players, considering on the card each player receives.
Recall a strategy for Player I is given by a vector P = [p1, . . . , pn], indicating that if his
card is i, he bets with probability pi, and checks with probability 1− pi. A strategy for
Player II is given by a vector Q = [q1, . . . , qn], indicating that if her card is j, she calls
with probability qj , and folds with probability 1− qj . Similarly, a strategy for Player III
is represented by a vector R = [r1, . . . , rn], following the same interpretation as Player
II.

We first define two procedures:

• Call2 is used to calculate the payoff if either Player II or Player III decides to
fold, leaving only two players (one of whom is Player I) to compare their cards. Let
us assume that Player III folds. Then,

Call2(i, j, R) =

{
R+ 1 if i > j

−R if i < j.

• Call3 is used to calculate the payoff when all the three players are comparing
their cards:

Call3(i, j, k,R) =

{
2R if i > j and i > k

−R if i < j or i < k.

The Fast NLP contains three sets of constraints, one set for each player, corresponding
to the expected payoff over the pairs of distributions Q−R, P −R, or P −Q. For each

11

https://sites.math.rutgers.edu/~zeilberg/tokhniot/ThreePersonPoker.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/ThreePersonPoker.txt

player l = 1, 2, 3, there are two sets of constraints depending on the card that Player l
has and whether they follow their first strategy or the second strategy:

Minimize
1

n

n∑
c=1

v1c +
1

n

n∑
c=1

v2c +
1

n

n∑
c=1

v2c

subject to

1

(n− 1)(n− 2)

∑
j ̸=i

∑
k ̸=i,j

Call3(i, j, k, 1) ≤ v1i i = 1, . . . , n (Player I checks)

1

(n− 1)(n− 2)

(∑
j ̸=i

∑
k ̸=i,j

Call3(i, j, k, b+ 1) · qk · rk

+ Call2(i, j, b+ 1) · qj · (1− rk) + Call2(i, k, b+ 1) · (1− qj) · rk

+ 2(1− qj) · (1− rk)

)
≤ v1i i = 1, . . . , n (Player I bets)

1

(n− 1)(n− 2)

∑
i ̸=j

∑
k ̸=i,j

(−pi + Call3(j, i, k, 1) · (1− pi)) ≤ v2j j = 1, . . . , n

(Player II folds)

1

(n− 1)(n− 2)

(∑
i ̸=j

∑
k ̸=i,j

Call3(j, i, k, b+ 1) · pi · rk

+ Call2(j, i, b+ 1) · pi · (1− rk) + Call3(j, i, k, 1) · (1− pi)

)
≤ v2j j = 1, . . . , n

(Player II calls)

1

(n− 1)(n− 2)

∑
i ̸=k

∑
j ̸=i,k

(−pi + Call3(k, i, j, 1) · (1− pi)) ≤ v3k k = 1, . . . , n

(Player III folds)

1

(n− 1)(n− 2)

(∑
i ̸=k

∑
j ̸=i,k

Call3(k, i, j, b+ 1) · pi · qj

+ Call2(k, i, b+ 1) · pi · (1− qj) + Call3(k, i, j, 1) · (1− pi)

)
≤ v3k k = 1, . . . , n

(Player III calls)

0 ≤ pi, qj , rk ≤ 1 i, j, k = 1, . . . , n.

The Fast NLP for three players is implemented in procedure FastMNE(n,b), which
returns one solution to mixed NE. Here, we assume that Players II and III adopt identical
strategies. For example, with bet size 1, typing

12

M := FastMNE(4,1):

[ListCF(M[1]),ListCF(M[2]),ListCF(M[3]),ListCF(M[4])];

gives
[[0, 1/24, -1/48, -1/48], [2/3, 0, 0, 1], [0, 0, 1/4, 1], [0, 0, 1/4, 1]].

Translation:

• The value of the game (for Player 1) is 1
24 , while for Players II and III are − 1

48
each.

• Player I’s strategy is: If your card is 1, bet with probability of 2
3 and check with

probability 1
3 . If your card is 2 or 3, then definitely checks; if your card is 4,

definitely bet.

• Player II’s and III’s strategies are: If their card is 1 or 2, they definitely fold. If
their card is 3, they call with probability of 1

4 and fold with probability 3
4 . If their

card is 4, they definitely call.

Another example,
M := FastMNE(10,2):

[ListCF(M[1]),ListCF(M[2]),ListCF(M[3]),ListCF(M[4])];

produces
[[0, 106/1125, -53/1125, -53/1125], [16/19, 0, 0, 0, 0, 0, 0, 0, 0, 1],

[0, 0, 0, 0, 0, 0, 3/25, 1, 1, 1], [0, 0, 0, 0, 0, 0, 3/25, 1, 1, 1]],
which we leave for the reader to interpret.

The verbose form of FastMNE(n,b); is FastMNEVerbose(n,b);, spelling out the
advice. The output file https://sites.math.rutgers.edu/˜zeilberg/tokhniot/

oThreePersonPoker1.txt contains one mixed NE for each of the cases n (size of the
deck) from 5 to 15, and b (size of the bet) from 1 to 3.

Extension of von Neumann’s continuous model to three players

As you may recall, we introduced this work with von Neumann’s concept of an uncount-
ably infinite deck, contrasting it with the finite nature of real-world card games. We
proceeded by solving the finite deck games for two players and extended our analysis
to include three players. Now that we have solved the finite version, the solutions ef-
fortlessly transition us to the continuous version of the three-player game, as we will
demonstrate—a fitting conclusion to our study.

As in the von Neumann model for two players, each of the three players contributes
1 dollar to the pot and receives independent uniform(0,1) hands. As a reminder, Player
I has the option to check or bet a fixed amount b, while Players II and III can only
call or fold. The betting tree remains the same as that of the finite deck model. The
conjectured Nash equilibrium strategies for three players, guided by the data generated
from the finite deck model, are illustrated in the right panel of Figure 2. Please scroll up
a few pages.

We now determine the NE strategies.

Our advice

For numbers A,B,C, yet to be determined,

13

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oThreePersonPoker1.txt
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oThreePersonPoker1.txt

• Player I: If 0 < x < A or B < x < 1 he should bet, otherwise check.

• Players II and III: If 0 < y < C they should fold, otherwise call.

Assume 0 < A < C < B. To determine the cut points A,B and C we solve three
indifference equations as follows.

1. For Player I to be indifferent at A:

(a) If Player I checks at x = A, his expected payoff is

A∫
0

A∫
0

2dzdy +

A∫
0

1∫
A

−1dzdy +

1∫
A

1∫
0

−1dzdy

(b) If Player I bets at x = A, his expected payoff is

C∫
0

C∫
0

2dzdy +

C∫
0

1∫
C

−(b+ 1)dzdy +

1∫
C

1∫
0

−(b+ 1)dzdy

Equating the two expressions above yields the following equation:

3A2 − 1 = 3C2 + bC2 − b− 1. (Eq. A)

2. For Player I to be indifferent at B:

(a) If Player I checks at x = B, his expected payoff is

A∫
0

A∫
0

2dzdy +

A∫
0

1∫
A

−1dzdy +

1∫
A

1∫
0

−1dzdy

(b) If Player I bets at x = B, his expected payoff is

C∫
0

C∫
0

2dzdy +

C∫
0

B∫
C

(b+ 2)dzdy +

B∫
C

C∫
0

(b+ 2)dzdy +

B∫
C

B∫
C

2(b+ 1)dzdy

+

1∫
B

B∫
0

−(b+ 1)dzdy +

B∫
0

1∫
B

−(b+ 1)dzdy +

1∫
B

1∫
B

−(b+ 1)dzdy

Equating the two expressions above yields the following equation:

3B2 − 1 = −2bCB + 3bB2 + 3B2 − b− 1. (Eq. B)

3. For Player II (or Player III) to be indifferent at C:

(a) If Player II folds at y = C, her expected payoff is

A∫
0

1∫
0

−1dzdx+

1∫
B

1∫
0

−1dzdx

14

(b) If Player II calls at y = C, her expected payoff is

A∫
0

C∫
0

(b+ 2)dzdx+

A∫
0

1∫
C

−(b+ 1)dzdx+

1∫
B

1∫
0

−(b+ 1)dzdx

Equating the two expressions above yields the following equation:

−A+B − 1 = 2bCA+ 3CA− bA−A− b+ bB +B − 1. (Eq. C)

Solving the above non-linear system of three equations in three unknowns gives
us the solutions for A,B and C for the Nash equilibrium strategies. The procedure
Optimal(b); returns these solutions, with the verbose version OptimalVerbose(b);.

In particular, when b = 2, Optimal(2); returns:

A = 0.137058194328370

B = 0.829422249795391

C = 0.641304115985175.

This results in the value of the game (for Player I) being 0.122557074714865.
We can also determine the best bet amount b, that maximizes Player I’s payoff under

the Nash equilibrium strategies. Approximately, b∗ ≈ 2.07, resulting in Player I achieving
a maximum payoff of 0.122590664136184. Therefore, we observe that the highest payoff
for Player I in the three-player game exceeds that of the von Neumann’s two-player game,
which is 1/9 = 0.111111 achieved at b∗ = 2.

One final remark is that the Nash equilibrium for the three-player continuous game re-
sembles those observed in the discrete model when n is large. In our experiments with the
finite deck model, we can simulate up to n = 65 in Maple, by executing FastMNE(65,2);,
which yields:
[[0, 974/8121, -487/8121, -487/8121], [1, 1, 1, 1, 1, 1, 1, 1, 14/23, 0,

0, 0,

0, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0,

0, 189/205, 1,

1, 1], [0, 0,

0, 189/205, 1,

1, 1]] .

Translation:

• The value of the game (for Player I) is 974
8121 = 0.119935968476789.

• The cuts are: A = (8 + 14/23) /65 = 0.132441471571906

B = 1− 11/65 = 0.830769230769231

C = 1− (22 + 189/205) /65 = 0.647354596622889.

For more examples, please visit https://sites.math.rutgers.edu/˜zeilberg/
mamarim/mamarimhtml/poker.html to explore the input-output files of the Maple pro-
grams implemented in this work.

15

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/poker.html
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/poker.html

References

[1] Borel, Émile. Traitédu Calcul des Probabilités et ses Applications, Volume IV, Fas-
cicule 2. Applications aux jeux des hazard, 1938.

[2] Rentsen Enkhbat, Sukhee Batbileg, Tungalag Natsagdorj, Anton Anikin and Alexan-
der Gornov, A computational method for solving N-person game, The Bulletin of
Irkutsk State University, Series Mathematics 20 (2017), 109–121.

[3] Harold W. Kuhn, A simplified two-person poker, Contributions to the Theory of
Games 1, Ann. Math. Stud 24 (1950), 97-103.

[4] John F. Nash and Lloyd S. Shapley, A simple three-person poker game, Contributions
to the Theory of Games 1, Ann. Math. Stud 24 (1950), 105-116.

[5] John von Neumann and Oskar Morgenstern, Theory of Games and Economic Be-
havior, Princeton University Press, 1944.

[6] Donald J. Newman, A model for ‘real’ poker, Oper. Res. 7 (1959), 557-560.

Tipaluck Krityakierne, Department of Mathematics, Faculty of Science, Mahidol University, 272 Rama
VI Rd., Ratchathewi, Bangkok 10400, Thailand
Email: tipaluck.kri at mahidol dot edu

Thotsaporn Aek Thanatipanonda, Science Division, Mahidol University International College, 999 Phut-
thamonthon 4 Rd., Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
Email: thotsaporn at gmail dot com

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch

Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Email: DoronZeil at gmail dot com

The authors are pictured in front of John von Neumann’s former residence at 26 Westcott Road in

Princeton. The photo, taken on May 31, 2024, was captured by Karen Reid, the current owner, who

kindly permitted us to take it.

16

	Prelude
	Mixed NEs via Linear Programming
	DJ Newman Poker
	Three-player Poker Game

