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Abstract: We use Experimental Mathematics and Symbolic Computation (with Maple), to search

for lots and lots of Perrin- and Lucas- style primality tests, and try to sort the wheat from the chaff.

More impressively, we find quite a few such primality tests for which we can explicitly construct

infinite families of pseudo-primes, rather, like in the cases of Perrin pseudo-primes and the famous

Carmichael primes, proving the mere existence of infinitely many of them.

Preface: How it all Started thanks to Vince Vatter

It all started when we came across Vince Vatter’s delightful article [V], where he gave a cute

combinatorial proof, inspired by COVID, and social distancing, of the following fact that goes back

to Raoul Perrin [P] (See also [Sl1], [Sl2], [St], [W]).

Perrin’s Observation: Let the integer sequence A(n) defined by:

A(1) = 0 , A(2) = 2 , A(3) = 3 , A(n) = A(n− 2) +A(n− 3) (for n > 3) ,

then for every prime p, we have:

p|A(p) .

Perrin, back in 1889, was wondering whether the condition is sufficient, i.e. whether there are

any pseudo-primes, i.e. composite n such that A(n)/n is an integer. He could not find any, and as

late as 1981, none was found ≤ 140000 (see [AS]). In 1982, Adams and Shanks [AS] rather quickly

found the smallest Perrin pseudo prime, 271441, followed by the next-smallest, 904631, and then

they found quite a few other ones. Jon Grantham [Gr] proved that there are infinitely many Perrin

pseudo-primes, and finding as many as possible of them, became a computational challenge, see

Holger’s paper [H].

Another, older, primaility test is that based on the Lucas numbers ([Sl3], [Sl4]).

Vince Vatter’s Combinatorial Proof

Vatter first found a combinatorial interpretation of the Perrin numbers, as the number of

circular words of length n in the alphabet {0, 1}, that avoid the consecutive subwords (aka

factors in formal language lingo), {000, 11}.

More formally: words w = w1, . . . , wn in the alphabet {0, 1}, such that for 1 ≤ i ≤ n − 2,

wiwi+1wi+2 6= 000, and also wn−1wnw1 6= 000 and wnw1w2 6= 000 as well as for 1 ≤ i ≤ n − 1,

wiwi+1 6= 11, and wnw1 6= 11.

Then he argued that if p is a prime, all the p circular shifts are different, since otherwise there

would be a non-trivial period, that can’t happen since p is prime. Since the constant words 0p and

1p obviously can’t avoid both 00 and 111, Perrin’s theorem follows.
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This proof is reminiscent of Solomon Golomb’s [G] snappy combinatorial proof of Fermat’s little

theorem [G] that argued that there are ap − a non-monochromatic straight necklaces with p beads

of a colors, and for each such necklace, the p rotations are all different (see also [Z1], p. 560).

When we saw Vatter’s proof we got all excited. Vatter’s argument transforms verbatim to counting

circular words in any (finite) alphabet, and any (finite) set of forbidden (consecutive) patterns!

More than twenty years ago one of us (DZ) wrote a paper, in collaboration with his then PhD

student, Anne Edlin [EZ], that automatically finds the (rational) generating function in any such

scenario, hence this is a cheap way to manufacture lots and lots of Perrin-style primality tests. We

already had a Maple package https://sites.math.rutgers.edu/~zeilberg/tokhniot/CGJ to

handle it, so all that remained was to experiment with many alphabets and many sets of forbidden

patterns, and search for those that have only few small pseudo-primes.

This inspired us to write our first Maple package, PerrinVV.txt, available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/PerrinVV.txt .

See the front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/perrin.html ,

for many such primality tests, inspired by sets of forbidden patterns, along with all the pseudoprimes

less than a million.

An even better way to manufacture Perrin-style Primality tests

After the initial excitement we got an epiphany, and as it turned out, it was already made, in 1990,

by Stanley Gurak [Gu]. Take any polynomial Q(x) with integer coefficients, and constant term

1, and write it as

Q(x) = 1 − e1 x + e2x
2 − . . .+ (−1)k ekx

k .

Factorize it over the complex numbers

Q(x) = (1− α1x)(1− α2x) · · · (1− αkx) .

Note that e1, e2, . . . are the elementary symmetric functions in α1, . . . , αk.

Defining

a(n) := αn
1 + αn

2 + . . . + αn
k ,

it follows thanks to Newton’s identities ([M]) that {a(n)} is an integer sequence. The generating

function
∞∑

n=0

a(n)xn =
1

1− α1x
+

1

1− α2x
+ . . . +

1

1− αkx
,

has denominator Q(x) and some numerator, let’s call it P (x), with integer coefficients, that

Maple can easily find all by itself.
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So we can define an integer sequence {a(n)} in terms of the rational function P (x)/Q(x), where

Q(x) is any polynomial with constant term 1, and P (x) comes out as above:

∞∑
n=0

a(n)xn =
P (x)

Q(x)
.

We claim that each such integer sequence engenders a Perrin-style primality test, namely

a(p) ≡ e1(mod p).

To see this, note that

(α1 + · · ·+ αk)p = a(p) + pA(p),

where

A(p) =
∑

i1+i2+···+ik=p

i1,i2,...ik<p

(p− 1)!

i1! · · · ik!
αi1
1 · · ·α

ik
k

is a symmetric polynomial in the αi. The fundamental theorem of symmetric functions [M] implies

that A(p) is an integer. Fermat’s little theorem then gives

a(p) ≡ (α1 + · · ·+ αk)p = ep1 ≡ e1(mod p).

So this is an even easier way to manufacture lots and lots of Perrin-style primality tests, and we

can let the computer search for those that have as few small pseudo-primes as possible.

This is implemented in the Maple package Perrin.txt, available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/Perrin.txt .

Again, see the front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/perrin.html ,

for many such primality tests, inspired by this more general method (first suggested by Stanley

Gurak [Gu]).

Searching for such primality tests with as few pseudo-primes less than a million, we stumbled on

the following:

The DB-Z Primality Test

Let
∞∑

n=0

a(n)xn :=
−3x4 − 5x2 − 6x+ 7

−4x7 − x4 − x2 − x+ 1
,
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or equivalently, the integer sequence defined by

a(1) = 1 , a(2) = 3 , a(3) = 4 , a(4) = 11 , a(5) = 16 , a(6) = 30 , a(7) = 78,

a(n) = a(n− 1) + a(n− 2) + a(n− 4) + 4 a(n− 7) (for n > 7) ,

then if p is prime, we have

a(p) ≡ 1 (mod p) .

Manuel Kauers kindly informed us that the seven smallest DB-Z pseudo-primes are

• 1531398 = 2 · 3 · 11 · 23203 ,

• 114009582 = 2 · 3 · 17 · 1117741 ,

• 940084647 = 3 · 47 · 643 · 10369 ,

• 4206644978 = 2 · 97 · 859 · 25243 ,

• 7962908038 = 2 · 191 · 709 · 29401 ,

• 20293639091 = 11 · 3547 · 520123 ,

• 41947594698 = 2 · 3 · 19 · 523 · 703559 .

[This was a computational challenge posed by us to Manuel Kauers, and we offered to donate 100 dollars to the

OEIS in his honor. The donation was made].

An even better Primality Test

After the first version of this paper was written, with the help of Manuel Kauers, we discovered an

even better primality test.

The DB-Kauers primality test

Let
∞∑

n=0

a(n)xn :=
−9x5 − 16x4 − 10x+ 6

−3x6 − 9x5 − 8x4 − 2x+ 1
,

or equivalently, the integer sequence defined by

a(1) = 2 , a(2) = 4 , a(3) = 8 , a(4) = 48 , a(5) = 157 , a(6) = 382 ,

a(n) = 2a(n− 1) + 8 a(n− 4) + 9 a(n− 5) + a(n− 6) (for n > 6) ,

then if p is prime, we have

a(p) ≡ 2 (mod p) .
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The smallest pseudoprime happens to be 2, 260, 550, 373 = 3 · 103 · 107 · 68371.

Perrin-Style Primality Tests with Explicit Infinite Families of Pseudo-Primes

We are particularly proud of the next primality test, featuring the Companion Pell numbers

https://oeis.org/A002203. These numbers have been studied extensively, but as far as we know

using them as a primality test is new. It is not a very good one, but the novelty is that it has an

explicit doubly-infinite set of pseudo-primes.

The Companion Pell Numbers Primality Test Let

∞∑
n=0

a(n)xn :=
2− 2x

−x2 − 2x+ 1
,

or equivalently,

a(1) = 2 , a(2) = 6 , a(n) = a(n− 1) + 2a(n− 2) (for n > 2) ,

then if p is a prime, we have

a(p) ≡ 2 (mod p) .

Theorem 1; The following doubly-infinite family

{ 2i · 3j | i ≥ 3 , j ≥ 0 } ,

are Companion-Pell pseudoprimes, in other words,

a(2i · 3j)− 2

2i3j
,

are always integers, if i ≥ 3 and j ≥ 0.

Proof: let

α1 := 1 +
√

2 , α2 := 1−
√

2 ,

then, since
2− 2x

−x2 − 2x+ 1
=

1

1− α1 x
+

1

1− α2 x
,

we have the Binet-style formula

a(n) = αn
1 + αn

2 .

Since α1 · α2 = −1, we have the following two recurrences (check!)

a(2n) = a(n)2 + 2(−1)n+1 ,

a(3n) = a(n)3 + 3(−1)n+1a(n) .
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Let

b(n) = a(n)− 2 ,

hence we have

Fact 1: If n is even then

b(2n) = b(n)(b(n) + 4) .

It follows immediately that:

if n is even and b(n)/n is an integer then b(2n)/(2n) is also an integer.

It remains to prove that b(8 3j)/(8 3j) is an integer, for all j ≥ 0.

Thanks to the second recurrence we have

b(3n) + 2 = (b(n) + 2)3 + 3(−1)n+1(b(n) + 2) .

Hence

Fact 2: If n is even then

b(3n) = b(n)(b(n)2 + 6 b(n) + 12) .

It follows immediately that:

if n is divisible by 6 and b(n)/n is an integer then b(3n)/(3n) is also an integer.

Since b(24)/24 is an integer, the theorem follows by induction.

We now state without proofs (except for Theorem 4, where we give a sketch) a few other primality

tests that have explicit infinite families of pseudoprimes.

Theorem 2: Let
∞∑

n=0

a(n)xn :=
2− x

−2x2 − x+ 1
,

or equivalently,

a(1) = 1 , a(2) = 5 , a(n) = a(n− 1) + 2a(n− 2) (for n > 2) ,

then if p is a prime, we have

a(p) ≡ 1 (mod p) .

Furthermore, {2i |i ≥ 2} are all pseudo-primes, in other words

a(2i) ≡ 1 (mod 2i) , i ≥ 2.
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Theorem 3: Let
∞∑

n=0

a(n)xn :=
2− 2x

−2x2 − 2x+ 1
,

or equivalently,

a(1) = 2 , a(2) = 8 , a(n) = 2a(n− 1) + 2a(n− 2) (for n > 2) ,

then if p is a prime, we have

a(p) ≡ 2 (mod p) .

Furthermore, the following infinite families are all pseudo-primes:

{3i |i ≥ 2} , {2 · 3i |i ≥ 1} , {11 · 81i |i ≥ 1}, {23 · 35i |i ≥ 1} , {29 · 34+12i |i ≥ 0} ,

{31 · 316i |i ≥ 1} .

Theorem 4: Let
∞∑

n=0

a(n)xn :=
2x2 + 3

2x3 + 2x2 + 1
,

or equivalently,

a(1) = 0 , a(2) = −4 , a(3) = −6 , a(n) = −2a(n− 2) − 2a(n− 3) (for n > 2) ,

then if p is a prime, we have

a(p) ≡ 0 (mod p) .

Furthermore, the following infinite families are all pseudo-primes:

{2i |i ≥ 2} , {3 · 24i |i ≥ 2} , {11 · 218i |i ≥ 2} , {13 · 217+20i |i ≥ 2} .

Sketch of Proof: We use the C-finite ansatz [Z2]. Let

b(n) = a(2n)− a(n)2 ,

then it follows from the C-finite anzatz that b(n) satisfies some recurrence, that turns out to be

b(1) = −4 , b(2) = −8 , b(3) = −40 , b(n) = 2b(n− 1) + 4b(n− 3) (for n > 3)

We now define

c(n) :=
b(n)

2bn/2c
,

and once again it follows that c(n) satisfies the recurrence,

c(1) = −4 , c(2) = −4 , c(3) = −20, c(4) = −24, c(5) = −56, c(6) = −76

c(n) = 2c(n− 2) + 4c(n− 4) + 2c(n− 6) (for n > 6) .

7



Note that c(n) are manifestly integers. Going back to a(n) we have the recurrence

a(2n) = a(n)2 + 2bn/2cc(n) ,

and it follows by induction that a(2i)/2i are all integers. A similar argument goes for the other

infinite families claimed.

Theorem 5: Let
∞∑

n=0

a(n)xn :=
−2x2 − 2x+ 3

−x3 − 2x2 − x+ 1
,

or equivalently,

a(1) = 1 , a(2) = 5 , a(3) = 10 , a(n) = a(n− 1) + 2a(n− 2) + a(n− 3) (for n > 2) ,

then if p is a prime, we have

a(p) ≡ 1 (mod p) .

Furthermore, the following infinite families are all pseudo-primes:

{3i |i ≥ 2} , {5 · 36+10 i |i ≥ 0} , {5 · 38+10 i |i ≥ 0} , {7 · 34+6 i |i ≥ 0} ,

We found 9 other such primality tests, with infinite explicit families of presodoprimes, that can be

viewed by typing

PDB(x); ,

in the Maple package Perrin.txt.

For fast computations and explorations using C programs, readers are welcome to explore RDB’s

github site:

https://github.com/rwbogl/pt .

Acknowledgment: Many thanks to Manuel Kauers for his computational prowess, and to the

referee for a helpful remark.
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