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Abstract: We use the Almkvist-Zeilberger algorithm, combined with a weighted version of the

Even-Gillis Laguerre integral due to Foata and Zeilberger, in order to efficiently compute weight

enumerators of multiset derangements according to the number of cycles. The present paper is

inspired by important previous work by Mourad Ismail and his collaborators, done in the late

1970s, but still useful after all these years.

Multiset Derangements

The (generalized) Laguerre polynomials, L
(α)
k (x), are defined as follows:

L
(α)
k (x) :=

n∑
i=0

(−1)i
(α+ i+ 1)(α+ i+ 2) . . . (α+ n)

i!(n− i)!
xi .

Let A1, A2, . . . , An be n pairwise-disjoint sets of cardinalities k1, . . . , kn respectively. A permutation

π of A := A1∪. . .∪An is a multiset derangement if for every 1 ≤ i ≤ n, whenever x ∈ Ai, π(x) 6∈ Ai.
Let D(k1, . . . , kn) be the set of such multiset derangements.

As usual, for any finite set S, let |S| denote its number of elements.

Shimon Even and Joe Gillis [EvG] (see also [As], [G], and [Z]) proved that

|D(k1, . . . , kn)| = (−1)k1+...+kn

(
n∏
i=1

ki!

)∫ ∞
0

(
n∏
i=1

L
(0)
ki

(x)

)
e−x dx . (1)

Comment: Usually the elements of each Ai are identified, and the formula then does not have

(
∏n
i=1 ki!) in front, but for the purpose of the present paper, as was done in [FZ], we have k1+. . .+kn

distinct elements, all preserving their individuality.

For a permutation π, let cyc(π) denote its number of cycles. For example cyc(1234) = 4, and

cyc(2341) = 1. Recall that, famously,∑
π∈Sn

αcyc(π) = α(α+ 1) · · · (α+ n− 1) .

This is easily proved by considering how to form permutations of {1, ..., n} out of those of {1, ..., n− 1}. Denote

the left side by fn(α). Given a permutation of {1, ..., n− 1} we can insert n inside any of the existing cycles, and
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there are n − 1 ways of doing it, preserving the number of cycles, or else create a brand-new cycle with n alone,

increasing the number of cycles by one. Hence fn(α) = ((n− 1) + α)fn−1(α).

Let A(k1, . . . , kn)(α) be the weight enumerator, according to the number of cycles, of the set of

multiset derangements, D(k1, . . . , kn), in other words

A(k1, . . . , kn)(α) :=
∑

π∈D(k1,...,kn)

αcyc(π) .

In 1988, Dominique Foata and one of us (DZ) [FZ], inspired by the work of Mourad Ismail and his

collaborators ([AsIs], [AsIsRa], [AsIsKo]) proved the following α-analog of the Even-Gillis theorem:

A(k1, . . . , kn)(α) =
(−1)k1+...+kn

(α− 1)!

(
n∏
i=1

ki!

)∫ ∞
0

(
n∏
i=1

L
(α−1)
ki

(x)

)
xα−1e−x dx . (2)

Note that this is a polynomial of degree (k1 + . . . + kn)/2 rather than k1 + . . . + kn, since every

cycle is at least of length 2.

In this paper we will focus on efficient computations of many terms of the sequencesA(k, k, . . . , k)(α),

where k is repeated n times, for specific (small, and not so small) k, but arbitrarily large n. In

other words, our goal is to compute as many as possible terms of the sequences

Fk(n)(α) := A(k, . . . , k)(α) , (k repeated n times) ,

for k = 1, k = 2, etc.

By (2) we have

Fk(n)(α) =
(−1)knk!n

(α− 1)!

∫ ∞
0

(L
(α−1)
k (x))nxα−1e−x dx . (3)

Using the Almkvist-Zeilberger algorithm [AlZ] (see [D] for a lucid and engaging account), one

of us (SBE), using our Maple package Mourad.txt, available from the front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/mourad.html ,

discovered (and proved) the following recurrences for Fk(n) = Fk(n)(α) for 1 ≤ k ≤ 10. They get

increasingly complicated, and we will only state the first two in the body of this paper.

−α (n+ 1)F1(n)− (n+ 1)F1(n+ 1) + F1(n+ 2) = 0 . (4)
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4α (2n+ 5) (n+ 2) (n+ 1) (α+ 1)
2
F2(n)

+2 (n+ 2) (α+ 1)
(
4αn2 + 12αn− 4n2 + 7α− 14n− 10

)
F2(n+ 1)

−2 (n+ 2)
(
4αn+ 4n2 + 8α+ 16n+ 17

)
F2(n+ 2) + (2n+ 3)F2(n+ 3) = 0 . (5)

For linear recurrences for Fk(n) for 3 ≤ k ≤ 10 see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oMourad1.txt .

We observe that the order of the recurrence for Fk(n) is k + 1 and its degree in n is
(
k+1
2

)
.

These recurrences enable very fast computation of quite a few terms of these sequences. It is all

implemented in the already mentioned Maple package Mourad.txt. The direct url of this package

is:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/Mourad.txt .

A User’s Manual to the Maple package Mourad.txt

To use it first download it to your favorite directory (usually Downloads). Start a Maple worksheet,

make sure that the directory is the right one, and then type

read ‘Mourad.txt‘ ; .

To get a list of the procedures, type ezra(); . The main procedures are:

• Wder(L,a), that inputs a list of positive integers, L = [k1, . . . , kn] and implements Equation (2).

This is very slow, and should not be used for large L.

• Operk(k,a,n,N), that inputs a positive integer k, and outputs the recurrence operator (where N

is the shift operator in n) annihilating the sequence Fk(n). These get very complicated for human

eyes, but the computer does not mind and it enables a fast computation of many terms.

• SeqkF(k,K,α): inputs a positive integer k and a positive integer K and a symbol α and outputs

the first K terms of the sequence of polynomials Fk(n) = Fk(n)(α). For example, to get the weight

enumerator of the set of permutations of a standard deck of cards where no card can wind up at a

location that originally was occupied by the same number (1 through 13, where Jack, Queen, and

King stand for 11, 12, 13 respectively) but it is OK to have the same suit, type:

SeqkF(4,13,α)[13]; ,

and you would get, in a few seconds, the following polynomial in α of degree 26
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626486325682388256883179081695232α26+

3948815860811007759557670403206807552α25+

4226160446928101410675933447042193424384α24+

1829313185198525509532452983498671376039936α23+

425955227133577312273392421310068029118218240α22+

61568711382255715699343414832865761752795578368α21+

6015599331237497842549834616372527226200006852608α20+

420030513102996289545618495318355347968579239673856α19+

21779385529606788308065066752435641655566027030790144α18+

861931009463580565142515454351924475556603802576486400α17+

26556926811772603306934511893782498309330811792400580608α16+

646219419386602045907824228576682527851206056554484727808α15+

12544166147808400841334081628081554018739662394272604225536α14+

195525408546538912690378251287680488219792943092212919435264α13+

2455695605166443718371007842011087818790955115435503879454720α12+

24867048146672227309345666989913796704728810126752820020379648α11+

202569793911613274182929019082185092261014157201085369153486848α10+

1320388339665569428585764027609539765653334771119656423470923776α9+

6825167923093955037138102373992833000704975000443998456569135104α8+

27602809328921835313793682068121303712142304270099611821308641280α7+

85647342705993322148148235777401007447932223607159691210985046016α6+

198159663830900044042641789039253865122617020230065397080602443776α5+

327547473685724687587188995032714624999930689030717701980120154112α4+

361148215004517312493645900517444844168859774724070502768740139008α3+

234426065400514976953417524798811902707109969381695319447196139520α2+

66394948050946830932484058263644488672722608355067055619597926400α .

Plugging-in α = 1 and dividing by 4!13 (to get derangements where members of the same set are

identified) gives you:

1493804444499093354916284290188948031229880469556 ,
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agreeing with the title of [EkKZ], that handled the straight, rather than the weighted, enumeration

of multiset derangements.

Note that the largest coefficient in the above polynomial is that of a3, hence the mode of the

random variable ‘number of cycles’ in a random multi-set derangement of a standard deck is 3.

The average happens to be 3.586337835 . . . while the standard-deviation (the squre-root of the

variance) is 1.412546929 . . .

Acknowledgment: Many thanks to the two anonymous referees for very helpful suggestions and

corrections on the first draft.
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