
Automated Counting of Spanning Trees for Several Infinite families of
Graphs

Pablo Blanco Doron Zeilberger

Abstract

Using the theoretical basis developed by Yao and Zeilberger, we consider certain graph families whose struc-
ture results in rational generating function for sequences related to spanning tree enumeration. Said families are
Powers of Cycles, Powers of Paths, and (later) Torus graphs and Grid graphs. In each case we know, a priori,
that the set of spanning trees of the family of graphs can be described in terms of a finite-state-machine, and
hence there is a finite transfer-matrix that implies that the generating function is guaranteed to be a rational
function. Finding this “grammar”, and hence the transfer-matrix is very tedious, so a much more efficient ap-
proach is to use experimental mathematics. Since computing numerical determinants is so fast, one can generate
sufficiently many terms. and then fit the data into a rational function, and everything can be proved rigorously
a posteriori. We also construct generating functions for the quantity “total number of leaves” over all spanning
trees, and automatically derive the asymptotics for both number of spanning trees and the sum of the number
of leaves, enabling our computer to get the asympotic for the average number of leaves per vertex in a random
spanning tree in each family that always tends to a certain number, that we compute explicitly. This number,
that we chisten the B-Z constant of the infinite family is always a certain (often coplicated) algebraic number, in
contrast to the family of complete graphs (i.e. all trees) where this constant is (the transcedental number) 1/e.

1 Introduction and Background

A subgraph T of a graph G such that T is a tree with V (T) = V (G) is called a spanning tree of G. If G is connected,
simple, and not a tree, then it will contain several spanning trees. When we count the number of spanning trees
of a graph in this paper, we will consider two isomorphic trees with different vertex labels to be different trees; for
example, the complete graph on three vertices K3 has three spanning trees, not one. For a connected graph G, we
denote its number of spanning trees of G by τ(G). Cayley’s formula counts the number of spanning of a complete
graph on n vertices to be nn−2 = τ(Kn).

The generating function f(x) for a sequence (a0, a1, . . .) is the formal power series given by taking the sequence
terms as its coefficients:

f(x) :=

∞∑
n=0

anx
n.

Whenever a sequence has a recurrence of finite length, with constant coefficients, it is called C-finite. In other
words, (a0, a1, . . .) is C-finite (of order r) if there is a fixed r and coefficients c0, . . . , cr−1 with c0 6= 0 such that

an+r = cr−1an+r−1 + . . .+ c0an

for all n ≥ 0.

The following will be a useful property of C-finite sequences:

Theorem 1.0.1. [?][Kauers-Paule, Thm. 4.3] A sequence (a0, a1, . . .) is C-finite (of order r) with recurrence

an+r = cr−1an+r−1 + . . .+ c0an

if and only if ∑
anx

n =
p(x)

1− cr−1x+ . . .− c1xr−1 − c0xr

1

for some polynomial p(x) of degree at most r − 1.

In fact, the polynomial p(x) in the previous Theorem is determined by the initial values (a0, . . . , ar−1) of the
sequence. Later, we will state the value a0 of our sequence to disambiguate p(x) in the sequence’s rational generating
function.

Due to the recursive nature of the graph families we will be considering, we can presume that there is a finite
Transfer Matrix which describes the corresponding sequence (see [?] for more details). Thanks to this, we can find
the sequence’s rational generating function by computing a large number of terms in the sequence. The guessing
will be done in a Maple procedure, described in the same paper [?], called GuessRec.

To generate the terms of whichever sequence we consider, we will apply Kirchhoff’s Matrix Tree Theorem, which
allows us to compute the number of spanning trees of a(n n-vertex graph) graph by looking at its Laplacian matrix,
taking an n − 1 by n − 1 (matrix) minor, and computing its determinant. Below, we define the Laplacian matrix
of a graph for the reader’s convenience.

If G is a (simple) graph with vertices v1, . . . , vn, its Laplacian matrix is a symmetric matrix with its entries defined
by

ai,j :=

{
−1 if vi ∼ vj and i 6= j

deg(vi) if i = j
.

Afterwards, we will describe similar methods that we used to counting total number of leaves (across all spanning
trees) for members in the same families. In addition, we consider an asymptotic constant relating total leaves to total
spanning trees in any families (for which the constant is well-defined). Finally, we include experimental verification
of our results’ correctness and a description of the accompanying Maple package that we used. Additional outputs
and code will be available at [?].

2 Preliminaries and Graph Families

For ease of notation, we assume all graphs are simple.

Definition. For a graph G, the distance |u, v| between two vertices u, v is the length of the shortest path between
them. If u and v are in different components of G, we say |u, v| =∞ and say the distance between them is infinite.

Definition. Let G be a graph. For an integer k ≥ 1, the k-th power of G, denoted Gk, is the graph obtained from
G such that V (Gk) := V (G) and E(Gk) := {uv : u, v ∈ V (G), 1 ≤ |u, v| ≤ k}. See Figure 1.

From the definition, we see that if d is the diameter of a connected graph G, that is d := maxu,v∈V (G) |u, v|. Then,
Gd is the complete graph on |V (G)| vertices. Later in the paper, we will only consider Gk where k < d for this
reason.

Notation. We denote the path graph on n vertices by Pn and the cycle graph on n vertices by Cn.

In subsequent sections, we state the generating functions for the number of spanning trees in the graph families

Gr := {Cnr : r < diam Cn}
Hr := {Pnr : r < diam Pn}.

The condition in each construction ensures that our graph families do not contain any "unnatural" complete graphs.
The number of spanning trees in a complete graph on n vertices is given by Cayley’s formula to be nn−2. Since
the diameter of a cycle (resp. path) increases with the number of vertices, the condition r < diam Cn = bn/2c is
implicitly a lower bound on the number of vertices. Explicitly,

Gr = {Cnr : n ≥ 2r + 1}
Hr = {Pnr : n ≥ r + 2}.

2

As discussed in the introduction, the initial values of a C-finite sequence determines the numerator in its rational
generating function. Hence, for the generating functions below in the rest of the paper, we will begin every sequence
at n = 2r + 1 for Gr and at n = r + 2 for Hr.

Figure 1: On the left, C7
2. On the right, P6

3. The thicker edges represent the edges from
the corresponding original graph.

Since paths and cycles are ubiquitous in graph theory, we have focused on them in this paper. Let G be a connected
graph. Suppose that we wish to estimate the complexity (number of spanning trees) of its k-th power graph,
τ(Gk). One way to estimate τ(Gk) is to fix a vertex v ∈ V (G), let H1, . . . ,HN be the components of G − v and
mi(v) := maxu∈Hi |u, v|. Then, deduce the bound:

τ(Gk) ≥
N∏
i=1

τ(Pmi(v)
k)

for all v. In particular,

τ(Gk) ≥ max
v∈V (G)

N∏
i=1

τ(Pmi(v)
k).

There are a few questions that arise from this type of estimate: Given a graph G, what choice of v maximizes the
bound? Which graphs have a "good" choice of v?

Cite [?]

3 Counting Total Number of Leaves

Let G be a graph and T be a spanning tree of G. A leaf of a tree T is a vertex with degree exactly 1 in the tree.
Denote by L(T), the set of leaves of T . For ease of notation, we will write T (G) for the set of (labeled) spanning
trees of G and will shorten this as T whenever G is clear from context.

The next proposition plays a key role in our implementation for computing a parameter of a graph we later call the
B-Z constant. The idea is to count the total number of leaves (across all spanning trees) in a graph by removing a
vertex and finding a spanning tree of the resulting graph.

Proposition 3.0.1. If G is a labeled connected simple graph and for v ∈ V (G), then∑
T∈T
|L(T)| =

∑
v∈V (G)

degG(v) · |Tv|

where T := T (G) and Tv := T (G− v).

Proof. Fix v ∈ V (G). Write Ev := {e ∈ E(G) : v ∈ e}. There is a bijection between Ev × Tv and the spanning

3

trees of T which contain v as a leaf. Hence, we use indicators to obtain∑
v∈V (G)

degG(v) · |Tv| =
∑

v∈V (G)

|{T ∈ T : v ∈ L(T)|

=
∑

v∈V (G)

∑
T∈T

1v∈L(T) =
∑
T∈T
|L(T)|.

We say G is vertex-transitive if for any u, v ∈ V (G) there is an automorphism ϕ of G such that ϕ(u) = v and
ϕ(v) = u.

Corollary 3.0.2. If G is vertex-transitive, then∑
T∈T
|L(T)| = n · degG(v) · |Tv|

for any v ∈ V (G).

Next, we introduce a parameter for graph families whose member graphs are indexed by number of vertices. For
such a graph family, our parameter represents the number of times (on average) that a vertex appears as a leaf in
a spanning tree, averaged across all spanning trees, (asymptotically).

4 The B-Z Constant: Average Number of Leaves per Vertex

For a graph family indexed by number of vertices, G, where Gn represents the n-th graph in the family, we call the
following the B-Z constant for G:

lim
n→∞

∑
T∈T (Gn)

|L(T)|
n · τ(Gn)

whenever the limit exists. Since the bound
∑
|L(T)|
nτ(G) ≤ 1 holds for all G, we see that the B-Z constant only fails to

exist for those graph families with members whose underlying spanning trees are radically different. The rest of the
section provides a few examples of B-Z constants and our approach for computing them.

The B-Z constants for both the family of Cycles and the family of Paths is equal to 0. When G is the family of star
graphs, its B-Z constant is 1. [Include a brief interpretation/intuition]

Thanks to Corollary 3.0.2, computation of the B-Z constant for vertex-transitive graphs is made easier. Our
implementation uses this optimization when appropriate. Incidentally, it’s easy to compute the B-Z constant for
complete graphs by using Corollary 3.0.2 in conjunction with Cayley’s Theorem:

Proposition 4.0.1. The B-Z constant for the graph family {Kn : n ≥ 3} is 1
e .

Proof. Recall Cayley’s formula, which states τ(Kn) = nn−2 for n ≥ 2. With T := T (Kn), Corollary 3.0.2 tells us
that

∑
|L(T)| = n · (n− 1)n−2. Hence,∑

|L(T)|
n · τ(Kn)

=

(
n− 1

n

)n−2
=

(
1− 1

n

)n−2
which approaches e−1 as n→∞.

Earlier, we noted that star graphs have B-Z constant equal to 1. The next proposition observes that we can find
a graph family with B-Z constant equal to any rational number (in the interval [0, 1]) if we slightly modify star
graphs.

4

Proposition 4.0.2. For any positive rational number p
q < 1, there is an indexed graph family G which has B-Z

constant equal to p/q.

Proof. First, we introduce a graph operation called subdivision. Let e = uv be an edge of G, with u, v ∈ V (G).
Let w 6∈ V (G). The result of subdividing e in G is the graph G′ where V (G′) := V (G) ∪ {w} and E(G′) :=

(E(G) \ {e}) ∪ {uw,wv}.

We will construct G by constructing each member Gk ∈ G. For each integer k ≥ 1, begin with a star graph Spk
with pk leaves; then, subdivide (q− p)k edges in Spk and call this Gk. Note that |V (Gk)| = qk+ 1 and that Gk has
pk leaves. Furthermore, Gk is a tree so it has exactly one spanning tree. It follows that the B-Z constant for G is
limk→∞

pk
qk+1 = p

q .

Later, we will state the B-Z constants of several families we mentioned here. It’s possible, as we did in later
sections, to compute the B-Z constant of a graph family from its asymptotic behavior in the total number of leaves
and number of spanning trees (which can be obtained from their respective generating functions). We used our
Maple procedure BZc alongside our graph-generating procedures Hnr and Gnr to obtain the results in Section 5.3
and Section 6.3.

5 Powers of a Cycle: Experimental Results

5.1 Generating Functions for the Number of Spanning Trees

In this section, we include our results for the Number of Spanning Trees of the class Gr, with 2 ≤ r ≤ 5.

Theorem 5.1.1. The generating function f(t) for the number of spanning trees in G2 is

−36t5 + 132t4 + 46t3 − 353t2 − 116t+ 125

(t+ 1)2(t2 − 3t+ 1)2

Theorem 5.1.2. The generating function f(t) for the number of spanning trees in G3 is

N3

(t− 1)2(t4 + 3t3 + 6t2 + 3t+ 1)2(t4 − 4t3 − t2 − 4t+ 1)2

where

N3 := −3072t17 + 11683t16 + 26868t15 + 60636t14 − 356682t13 − 844329t12 − 1651344t11 − 104646t10 + 813834t9+

3128248t8 + 1452330t7 + 512250t6 − 1392528t5 − 1049445t4 − 579514t3 − 54068t2 + 15716t+ 16807.

Theorem 5.1.3. The generating function f(t) for the number of spanning trees in G4 is

N4

D4

where N4 is a polynomial of degree 53 and

D4 = (t+ 1)2(t6 − 3t5 + 6t4 − 10t3 + 6t2 − 3t+ 1)2(t8 − 4t7 − 17t6 + 8t5 + 49t4 + 8t3 − 17t2 − 4t+ 1)2

(t12 + 3t11 + 12t10 + 28t9 − 27t8 + 36t7 − 81t6 + 36t5 − 27t4 + 28t3 + 12t2 + 3t+ 1)2.

Theorem 5.1.4. The generating function f(t) for the number of spanning trees in G5 is

N5

D5

5

where N5 is a polynomial of degree 161 and

D5 = (t− 1)2(t8 + 3t7 + 6t6 + 10t5 + 15t4 + 10t3 + 6t2 + 3t+ 1)2(t8 + 3t7 + 6t6 − t5 + 15t4 − t3 + 6t2 + 3t+ 1)2

(t16 − 5t15 + 10t14 − 10t13 − 28t12 + 10t11 + 110t10 + 110t9 + 88t8 + 110t7 + 110t6 + 10t5 − 28t4 − 10t3 + 10t2

− 5t+ 1)2(t16 − 5t15 − 23t14 − 10t13 − 94t12 − 485t11 + 242t10 + 110t9 + 649t8 + 110t7 + 242t6 − 485t5 − 94t4

− 10t3 − 23t2 − 5t+ 1)2(t32 + t31 + 12t30 + 45t29 + 45t28 − 1561t27 + 3917t26 − 3222t25 − 3981t24 + 7745t23

+ 26379t22 − 88937t21 + 84093t20 + 63864t19 − 153881t18 − 202281t17 + 550163t16 − 202281t15 − 153881t14

+ 63864t13 + 84093t12 − 88937t11 + 26379t10 + 7745t9 − 3981t8 − 3222t7 + 3917t6 − 1561t5 + 45t4 + 45t3

+ 12t2 + t+ 1)2

5.2 Generating functions for the Total Number of Leaves

Theorem 5.2.1. The generating function for the total number of leaves (across all spanning trees of a member) in
G2 is

−8(10t7 − 67t6 + 109t5 + 99t4 − 282t3 − 30t2 + 145t− 40)

(t+ 1)2(t2 − 3t+ 1)3
.

Theorem 5.2.2. The generating function for the total number of leaves (across all spanning trees of a member) in
G3 is

A3

(t− 1)3(t4 + 3t3 + 6t2 + 3t+ 1)3(t4 − 4t3 − t2 − 4t+ 1)3

where

A3 := −8820t26 + 51390t25 + 61812t24 + 2088t23 − 2539950t22 − 2981160t21 + 2492784t20 + 45845688t19

+ 83018808t18 + 107694630t17 − 44892840t16 − 166389300t15 − 333210654t14 − 121438506t13 + 42702660t12

+ 312824052t11 + 213402930t10 + 100784592t9 − 77616756t8 − 90041700t7 − 62209728t6 − 13836186t5

+ 276924t4 + 2761596t3 + 501534t2 + 32592t− 54432.

As the reader might have noticed, the numerators for these generating functions become too cumbersome to write
(and more quickly than in the previous section). Henceforth, we omit the numerator and will eventually refer the
reader to this website [?] for detailed results when 4 ≤ r ≤ 5.

Theorem 5.2.3. The generating function for the total number of leaves (across all spanning trees of a member) in
G4 is

A4

B4

where A4 is a polynomial of degree 80 and

B4 = (t+ 1)3(t6 − 3t5 + 6t4 − 10t3 + 6t2 − 3t+ 1)3(t8 − 4t7 − 17t6 + 8t5 + 49t4 + 8t3 − 17t2 − 4t+ 1)3

(t12 + 3t11 + 12t10 + 28t9 − 27t8 + 36t7 − 81t6 + 36t5 − 27t4 + 28t3 + 12t2 + 3t+ 1)3

5.3 B-Z Constants

See Section 4 to read about our method for computing these constants. Let BZ(G) denote the B-Z constant of a
graph family G.

Theorem 5.3.1. The B-Z constant for G2 is

−6 +
14
√

5

5
.

6

Theorem 5.3.2. The B-Z constant for G3 is

3

7

(
45

2
+ 9
√

7− 1

2

√
3857 + 1684

√
7

)
.

Theorem 5.3.3. Let α be the smallest real root of z8 − 4z7 − 17z6 + 8z5 + 49z4 + 8z3 − 17z2 − 4z + 1. Then, the
B-Z constant for G4 is

1

2025

(
−216α7 − 2144α6 + 16344α5 + 41056α4 − 17064α3 − 87936α2 − 25304α+ 6944

)
.

Corollary 5.3.4.

BZ(G3) <
117451

355635
< BZ(G4) <

117452

355635

In the previous theorem, α ≈ 0.158778.

6 Powers of a Path: Experimental Results

6.1 Generating functions for the Number of Spanning Trees

In this section, we include our results for the Number of Spanning Trees in the class Hr, with 2 ≤ r ≤ 6.

Theorem 6.1.1. The generating function f(t) for the number of spanning trees in H2 is

−3t+ 8

t2 − 3t+ 1
.

Theorem 6.1.2. The generating function f(t) for the number of spanning trees in H3 is

−16t4 + 77t3 − 33t2 + 39t− 75

(t− 1)(t4 − 4t3 − t2 − 4t+ 1)
.

Theorem 6.1.3. The generating function f(t) for the number of spanning trees in H4 is

M4

(t6 − 3t5 + 6t4 − 10t3 + 6t2 − 3t+ 1)(t8 − 4t7 − 17t6 + 8t5 + 49t4 + 8t3 − 17t2 − 4t+ 1)
.

where

M4 = −125t13 + 859t12 − 13t11 − 3141t10 + 3475t9 − 5968t8 − 11312t7

+ 36080t6 − 5597t5 − 7893t4 + 2435t3 − 2741t2 − 413t+ 864

We know the generating functions for larger r values, but there are many terms with longer coefficients. So, we do
not state them in the paper. They are stated in this website [?].

Theorem 6.1.4. The generating function f(t) for the number of spanning trees in H5 is

M5

E5
.

where M5 is a degree 40 polynomial in t and

E5 = (t− 1)(t8 + 3t7 + 6t6 − t5 + 15t4 − t3 + 6t2 + 3t+ 1)(t16 − 5t15 + 10t14 − 10t13 − 28t12

+ 10t11 + 110t10 + 110t9 + 88t8 + 110t7 + 110t6 + 10t5 − 28t4 − 10t3 + 10t2 − 5t+ 1)(t16

− 5t15 − 23t14 − 10t13 − 94t12 − 485t11 + 242t10 + 110t9 + 649t8 + 110t7 + 242t6 − 485t5

− 94t4 − 10t3 − 23t2 − 5t+ 1)

7

6.2 Generating functions for the Total Number of Leaves

Theorem 6.2.1. The generating function for the total number of leaves (across all spanning trees of a member) in
H2 is

−2(2t3 − 15t2 + 27t− 9)

(t2 − 3t+ 1)2

Note: the numerator and denominator in the following have the same degree.

Theorem 6.2.2. The generating function for the total number of leaves in H3 is

2(16t10 − 154t9 + 403t8 − 340t7 + 963t6 − 768t5 + 1109t4 − 788t3 + 509t2 − 470t+ 96)

(t− 1)2(t4 − 4t3 − t2 − 4t+ 1)2

Theorem 6.2.3. The generating function for the total number of leaves in H4 is

C4

(t6 − 3t5 + 6t4 − 10t3 + 6t2 − 3t+ 1)2(t8 − 4t7 − 17t6 + 8t5 + 49t4 + 8t3 − 17t2 − 4t+ 1)2

where C4 is a degree 29 polynomial. Note that the degree of the numerator is 28.

6.3 B-Z Constants

See Section 4 to read about our method for computing these constants. Compare the results in this section to
Section 5.3.

Theorem 6.3.1. The B-Z constant for H2 is

−6 +
14
√

5

5
.

Theorem 6.3.2. The B-Z constant for H3 is

3

7

(
45

2
+ 9
√

7− 1

2

√
3857 + 1684

√
7

)
.

[The B-Z constants up to H5 and G5 are actually equal]

7 Verification of Results by Random Sampling

In our implementation, we wrote a procedure to compute the total number of leaves of a graph (NumLeaves or
VtxTransNumLeaves) and another to compute the number of spanning trees (NumSpanTree). The ratio between the
outputs of these procedures is the average number of leaves of a graph.

To verify the accuracy of these procedures, we selected a large member from each of our graph families (at least
100 vertices) and then sampled a large number of spanning trees from that graph (at least 100 and usually more
than 200). After doing so, we computed the average number of leaves of the graph in the sample and compared it
to our procedures’ exact computation. In all cases, we found that the estimate and the true values were similar.
For more detailed results on this verification, we direct the reader to [?].

The algorithm we used to sample uniformly random spanning trees is Wilson’s Algorithm, as described in [?].

8 Accompanying Maple package

In the following procedures, graphs will be represented as an exprseq type in Maple. Particularly, a graph is n,E,
where n is a positive integer and E is a set of edges on [n]. We assume all graphs are connected.

8

Our Maple package broadly depends on the LinearAlgebra library. The RandomTree procedure also makes use of
the GraphTheory library. Below we list some key procedures along with their descriptions:

NumSpanTree(n,E) given a positive integer n and a set of edges E on the set {1, . . . , n}, the procedure returns the
number of spanning trees of the corresponding graph n,E.

NumSpanTreeSeq(F, ArgList, a,b) given the name of a graph-generating procedure F and a list of arguments
ArgList, outputs a list of the number of spanning trees for the graphs F(a, op(ArgList)),. . .,F(b, op(ArgList)).

NumLeaves(n,E) given a graph n,E, returns the total number of leaves in such a graph across all its spanning trees.

NumLeavesSeq(F, ArgList, a,b) given the name of a graph-generating procedure F and a list of arguments
ArgList, outputs a list of the total number of leaves for the graphs F(a, op(ArgList)),. . .,F(b, op(ArgList)).

VtxTransNumLeavesSeq(F, ArgList, a,b) similar to NumLeavesSeq. However, assumes that the graphs generated
by F are vertex-transitive. Uses Corollary 3.0.2 to compute the output faster.

Hnr(n,r) constructs the r-th power of a path on n vertices. Returns n,E.

Gnr(n,r) constructs the r-th power of a cycle on n vertices. Returns n,E.

BZc(F,Arglist,a,b,k) Using a graph-generating procedure F with fixed arguments ArgList and varying the first
argument from a to b, compute the B-Z constant. k adjusts the B-Z computation so that if the index of a graph
(in the family) is n, then the graph has k · n vertices.

The following procedures generate the outputs for the theorems in this paper: [Add these]

HnrS

GnrS

From Doron Zeilberger’s Cfinite.txt package: [Dr. Z, add more if necessary:]

RGF(S,t) given a C-finite sequence S, outputs its rational generating function in the variable t.

9 Questions and Conjectures

[To Z: Instead of writing these fully, I’m loosely listing them so you can decide which ones to keep.]

Why are the coefficients for the polynomials in the denom. of RGFs for Hnr and Gnr symmetric? Why do the
denoms of the RGFS of Hnr divide those of Gnr? (Related to Eugene Zima Question).

Conjecture 9.0.1. The B-Z constants of Gr and Hr are equal for all r ≥ 1.

Let ∆(G) denote the maximum degree in a graph. Gn \Hn [define this appropriately]

Conjecture 9.0.2. Let G := {Gn}n and H := {Hn}n be (indexed) graph families. If Hn ⊆ Gn for all n, the
number of vertices with positive degree in Gn \Hn is bounded, and ∆(Gn \Hn) is bounded; then, G and H have the
same B-Z constant.

[Eugene Zima question about RGF factors]

9

	Introduction and Background
	Preliminaries and Graph Families
	Counting Total Number of Leaves
	The B-Z Constant: Average Number of Leaves per Vertex
	Powers of a Cycle: Experimental Results
	Generating Functions for the Number of Spanning Trees
	Generating functions for the Total Number of Leaves
	B-Z Constants

	Powers of a Path: Experimental Results
	Generating functions for the Number of Spanning Trees
	Generating functions for the Total Number of Leaves
	B-Z Constants

	Verification of Results by Random Sampling
	Accompanying Maple package
	Questions and Conjectures

