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Preface

On March 16, 2024, Daniel Litt, in an X-post [L] (see also [C]), proposed the following brainteaser.

“Flip a fair coin 100 times. It gives a sequence of heads (H) and tails (T). For each HH in the

sequence of flips, Alice gets a point; for each HT, Bob does, so e.g. for the sequence THHHT Alice

gets 2 points and Bob gets 1 point. Who is most likely to win?”

We show the power of symbolic computation, in particular the (continuous) Almkvist-Zeilberger

algorithm, to answer this, and far more general, questions of this kind. Everything is implemented

in our Maple package Litt.txt .

The Maple package Litt.txt

Our Maple package, Litt.txt, can not only answer the original question, but far more general

ones, as we will see below. First make sure that you have Maple, and that the Maple package,

downloadable from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/Litt.txt ,

resides in your working directory.

Now start a Maple session/worksheet, and load the package, by typing:

read ‘Litt.txt‘:

To get the answer whether Alice or Bob are more likely to win the bet, and their respective chances,

type:

WhoWonN(2,{ [1,1]},{[1,2]},100); ,

and get right away:

[false, 0.4576402592, 0.4858327983] ,

meaning that it is false that Alice is more likely than Bob to win the bet, and Alice’s chance

is 0.4576402592 . . ., while Bob’s chance is 0.4858327983 . . .. It also implies that with probability

1− 0.4576402592 . . .− 0.4858327983 . . . = 0.0565269425 . . . it would end with a tie.

How about if you toss 200 times?, then type
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WhoWonN(2,{ [1,1] },{[1,2] },200); ,

and get:

[false, 0.4700634942, 0.4900044947] .

Of course, as the number of coin tosses goes to infinity, the chances both converge to 1
2 . To see

why, note that since 11 and 12 are both of of same length (namely 2), the expected numbers of

occurrences are the same (namely (n− 1) · ( 1
2 )2 = (n− 1)/4).

It also happens (see below) that Bob is always more likely to win than Alice for any finite n.

How about rolling a fair (standard, six-faced) die? If Eve rolls such a die 200 times, and Alice bets

that there are more 11 than 12 then, to find out the answer type

WhoWonN(6,{[1,1]},{[1,2]},200); ,

getting [false, 0.4292455296, 0.4486924385], so once again Bob is more likely to win. If it is

11 versus 23 then

WhoWonN(6,{ [1,1] }, { [2,3] },200);

gives [false, 0.4346673623, 0.4527404645], and once again Bob is more likely to win, but both

their chances are better than before, and the probability of a tie decreased.

But Alice and Bob can also bet on sets of consecutive strings, as long they are all of the same

length. For example

WhoWonN(6,{[1,1,1],[2,2,2]},{[1,2,3]},100); ,

returns [true, 0.4163070114, 0.1955648145], that tells you, not very surprisingly, that if Alice

bets that the number of 111 plus the number of 222 exceeds the number of 123, and Bob bets the

opposite, she wins with probability 0.4163070114. On the other hand, entering

WhoWonN(6,{ [1,1,1],[2,2,2] },{[1,2,3],[3,2,1] },100); ,

gives [false, 0.3218641537, 0.3562425611], and once again Alice is less likely to win if she

predicts that the total number of occurrences of members of {111, 222} would exceed the total

number of occurrences of members of {123, 321}. Also Alice’s and Bob’s chances are, respectively,

0.3218641537 . . . and 0.3562425611 . . ..

Using symbolic computation to get numerical answers

Procedure WhoWonN(m,A,B,K) described in the previous section is numeric, i.e. both its inputs

and outputs are numbers. Later on we will also describe more sophisticated procedures that

output symbolic answers, but even for the simple-minded WhoWonN, the most efficient way is via
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symbol-crunching.

Of course, a purely brute-force approach won’t go very far. We can generate all mK K-letter words,

and for each of these words count the number of occurrences of consecutive strings that belong to

A and those that belong to B and for each find out whether it is an Alice-win, Bob-win, or a tie.

The key to the numeric procedure WhoWonN(m,A,B,K), as well as the forthcoming symbolic proce-

dure WhoWon(m,A,B,K), is to get an efficient way to compute the generating function, in the three

formal variables x, a, b, such that in its Maclaurin expansion the coefficient of xnaibj would be the

number of n-letter words in the alphabet {1, . . . ,m} with i occurrences, as consecutive subwords,

of members of A, and j occurrences, as consecutive subwords, of members of B. It is convenient

to use the language of weight-enumerators.

Computing the Weight-Enumerator with Positive Thinking

Fix our alphabet to be {1, . . . ,m}, and assume, as we do in this paper, and Maple package, that

all the members of A and B are of the same length, and let that length be k. Note that if this is

not the case, one can easily transform it to this case by adding all the possible ways to complete it

to sets of k-letter words.

Let x, a and b be abstract, ‘formal’ variables, and define the weight, Weight(w), of a word

w = w1 . . . wn, in the alphabet {1, 2, . . . ,m} by

Weight(w) := xn ·
n−k+1∏
i=1

aχ(wiwi+1...wi+k−1∈A) · bχ(wiwi+1...wi+k−1∈B) ,

where for any statement P , that is either true or false, χ(P ) = 1 if P is true, and χ(P ) = 0 if P is

false. Note that this is the same as

xLengthOfw · aNumberOfOccurrencesOfSubwords ∈ A · bNumberOfOccurrencesOfSubwords ∈ B .

For example if A = {111} and B = {222}, then

Weight(1111222211) = a2b2 .

For any set of words S, let Weight(S) be the sum of the weights of the words in S.

We are interested in the weight-enumerator of the set of all words in the alphabet {1, ...,m},
including the empty word φ. Let’s call this (infinite) set Wm. For i ≥ 0, let W

(i)
m be the set of

i-letter words.

For each v ∈W (k−1)
m , let Wm(v) be the (infinite) set of words, of length ≥ k− 1, that start with v.

For each v = v1 . . . vk−1 ∈ W(k−1)
m , we have:

Weight(Wm(v)) = Weight(v)+x

m∑
i=1

aχ(v1...vk−1i∈A) ·bχ(v1...vk−1i∈B) ·Weight(Wm(v2 . . . vk−1i)) .
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This gives us a linear system of mk−1 equations with mk−1 unknowns, that Maple can solve. Once

we have them, we have

Weight(Wm) =

k−2∑
i=0

Weight(W(i)
m ) +

∑
v∈W(k−1)

m

Weight(Wm(v)) .

Let’s call this grand-generating function F (x; a, b). Note that, thanks to Cramer’s law, this is a

rational function in the 3 variables x, a, b.

Computing the Weight-Enumerator with Negative Thinking

An alternative, more efficient, way of computing F (x; a, b) (with far fewer equations and unknowns)

is via the Goulden-Jackson Cluster method, that is a negative approach, using inclusion-

exclusion. See [NZ] for a lucid exposition.

This is implemented in procedure GFwtE(m,A,B,a,b,x). In particular, to get the generating func-

tion for the motivating example of the title, type

GFwtE(2, { [1,1] }, { [1,2] },a,b,x); ,

getting

− ax− x− 1

a x2 − b x2 − ax− x+ 1
.

For old time’s sake, we also implemented the slower, positive, approach, and the function call is

GFwtEold(m,A,B,a,b,x);

If mk−1 is large, then of course, the negative approach is much faster.

For example

GFwtE(6,{[1$6] }, {[1,2$5]},a,b,x);

takes 0.01 seconds, yielding that the generating function of words in {1, 2, 3, 4, 5, 6} according to

length of word, and number of occurrences of 111111 and 122222 is

(−a x5 − a x4 + x5 − a x3 + x4 − a x2 + x3 − ax+ x2 + x+ 1)·

(ab x10+ab x9−a x10−b x10+ab x8−a x9−b x9+x10+ab x7−a x8−b x8+x9−a x7−b x7+x8+5a x6

−b x6 + x7 + 5a x5 − 4x6 + 5a x4 − 5x5 + 5a x3 − 5x4 + 5a x2 − 5x3 − ax− 5x2 − 5x+ 1)−1 .

Don’t even try to do GFwtEold(6,{[1$6] }, {[1,2$5]},a,b,x));, it would take for ever!
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Computing the probability of Alice Winning

Once you have the generating function F (x; a, b) it is very easy to compute the first 200 (or what-

ever) terms of the sequence “probability of Alice winning after n rolls”. Introduce another formal

variable t and look at

F (x; t, t−1) .

Now expand it in a Maclaurin expansion with respect to x:

F (x; t, t−1) =

∞∑
n=0

fn(t)xn .

Here fn(t) are certain Laurent polynomials in t. Let’s break fn(t) into three parts:

• the one consisting of the positive powers of t, let’s call it f+n (t)

• the constant term (coefficient of t0), let’s call it f0n

• the one consisting of the negative powers of t, let’s call it f−n (t).

We have:

fn(t) = f−n (t) + f0n + f+n (t) .

It follows that, after rolling the m-sided fair die n times,

Pr(AliceWon) =
f+n (1)

mn
,

P r(BobWon) =
f−n (1)

mn
,

and

Pr(ItIsAtie) =
f0n
mn

.

This is the idea behind the numeric WhoWonN described above. It can easily go up to a few hundred

rolls (or tosses), but what about 30000 of them? This would be hopeless. More important, we are

mathematicians, not accountants, can we get an asymptotic expression, in n, for these probabilities?

Since everything is asymtotically normal, and the variance of the number of occurrences of a

substring belonging to a fixed set is proportional to
√
n, it is not hard to see that Alice’s and Bob’s

probabilities, for each specific scenario, have the asymptotics

1

2
− calice√

n
,

1

2
− cbob√

n
,

5



for some numbers calice, cbob, that depend on m, A, and B, and then of course the probability of a

tie is asymptotic to

calice + cbob√
n

.

It would be nice to have accurate estimates for these coefficients, and if possible, exact values.

Speaking of a tie, it is déjà vu! Twelve years ago we [EZ1] used the amazing (continuous) Almkvist-

Zeilberger algorithm [AZ] to answer these questions in response to a problem raised by Richard

Stanley. Let’s recall it briefly.

How to use the continuous Almkvist-Zeilberger algorithm to investigate the probabil-

ity of a Tie?

Easy, the quantity of interest, f0n, is the constant term, in t, of the coefficient of xn in F (x; t, t−1).

So the generating function, in x, equals the contour integral below:

∞∑
n=0

f0n x
n =

1

2πi

∫
|t|=1

F (x; t, t−1)

t
dt .

Calling this quantity g(x), the continuous Almkvist-Zeilberger algorithm (implemented in

http://sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD.txt, but also included in the present

package, Litt.txt, as procedure AZc) outputs a differential equation with polynomial coefficients sat-

isfied by g(x), and then the computer easily transforms it to a linear recurrence equation for the

actual coefficients of g(x), namely, for the integer sequence {f0n}. Once this recurrence is found (and

it is very fast!), one can easily compute the first 30000 terms, or whatever, and get very accurate

estimate for calice + cbob. In fact, using the method of [EZ2] one can get higher order asymptotics.

It turns out that it is just as easy to use the Almkvist-Zeilberger algorithm to get recurrences for

f+n (1) and f−n (1) enabling the fast computation of the probabilities of Alice and Bob winning the

bet.

To wit

∞∑
n=0

f+n (1)xn =
1

2πi

∫
|t|=1

F (x; t, t−1)

1− t
dt ,

with a similar expression for the generating function for f−n (1).

This is implemented in procedure RECaz(m, A, B, n, N), that inputs m (the size of the alphabet),

and the sets A and B belonging to Alice and Bob, respectively and outputs a linear recurrence

equation with polynomial coefficients for f+n (1). For example

6



RECaz(2,{ [1,1] }, {[1,2] },n,N);

outputs a certain 7th-order linear recurrence that enables very fast computation of many terms.

This is all combined in procedure

WhoWon(m,A,B,K) ,

that uses K terms of the sequence to estimate the numbers calice, cbob mentioned above, that tells

you that Alice’s and Bob’s chances of winning after n rolls, are asymptotic to 1
2−

calice√
n

, and 1
2−

cbob√
n

,

respectively.

Some Sample Output

There are numerous output files in the web-page of this paper:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/litt.html .

Let’s just give a few highlights.

For the original problem, type:

WhoWon(2,{[1,1]},{[1,2] },30000);

getting

[false, 0.423144, 0.141049] ,

meaning that it is false that Alice is more likely than Bob to win (i.e. Bob is more likely to win)

and that

Pr(AliceWon) � 1

2
− 0.423144√

n
,

Pr(BobWon) � 1

2
− 0.141049√

n
.

It turns out (see later) that these are in fact exactly (see below) 1
2 −

3
4
√
π
√
n

, and 1
2 −

1
4
√
π
√
n

,

respectively.

The advantage of Bob over Alice is asymptotic to calice−cbob√
n

. We have, using K = 20000:

• The best counter bets against Alice’s 111 are Bob’s 112 and (equivalently) 211, and Bob’s ad-

vantage is (estimated to be) 0.598456√
n

.

• The second best counter bets against Alice’s 111 are Bob’s 122 and (equivalently) 221, and Bob’s

advantage is (estimated to be) 0.4886160√
n

.

• The third best counter bet against Alice’s 111 is Bob’s 121 and Bob’s advantage is (estimated to

be) 0.32572√
n

.
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• The fourth best counter bet against Alice’s 111 is Bob’s 212 and Bob’s advantage is (estimated

to be) 0.28214√
n

.

• The fifth (and worst) counter bet against Alice’s 111 is Bob’s 222 and Bob’s advantage is 0, of

course, by symmetry.

To see the (complicated) linear recurrences that lead to these estimates, look at the output file:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oLitt23.txt .

More precise asymptotics

The recurrences one gets from the Almkvist-Zeilberger algorithm are not, usually, minimal, and

hence are not good for deriving asymptotics using the method of [EZ2]. But one can easily conjec-

ture minimal recurrences, and then prove them rigorously, i.e. that the sequences are equivalent,

using the Euclidean algorithm in the non-commutative algebra of linear recurrence operators with

polynomial coefficients. Since it is always possible, we didn’t bother.

It turns out that if write:

Pr(AliceWon)(n) =
1

2
−An ,

then An satisfies a nice recurrence that leads to more precise asymptotics. In particular, for the

origianl HH vs HT problem, We have the following two theorems.

Theorem 1: In the original Litt game, when you toss a fair coin n times, the probability that HT

would beat TT is
1

2
−An ,

where An is a solution of the recurrence

− (n+ 1)An
8 (n+ 4)

+
(4n+ 7)An+1

8n+ 32
− (5n+ 12)An+2

8 (n+ 4)
+

(3n+ 8)An+3

4n+ 16
− (3n+ 10)An+4

2 (n+ 4)
+An+5 = 0 ,

subject to the initial conditions

A1 =
1

2
, A2 =

1

4
, A3 =

1

8
, A4 =

1

8
, A5 =

3

32
.

The asymptotic of An starts as

1

4
√
π

√
1

n
+

7
√

1
n

16n
+

265
√

1
n

512n2
+

13165
√

1
n

8192n3
+

3996699
√

1
n

524288n4
+

377801193
√

1
n

8388608n5
+O(n−13/2)

 .

Theorem 2: In the original Litt game, when you toss a fair coin n times, the probability that HH

would beat HT is
1

2
−Bn ,
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where Bn is a solution of the recurrence

(n+ 1)Bn
8n+ 40

+
3Bn+1

8 (n+ 5)
− 3 (n+ 4)Bn+2

8 (n+ 5)
− (n+ 1)Bn+3

4 (n+ 5)
− (n+ 6)Bn+4

2 (n+ 5)
+Bn+5 = 0 ,

subject to the initial conditions

B1 =
1

2
, B2 =

1

4
, B3 =

1

4
, B4 =

1

4
, B5 =

3

16
.

The asymptotic of Bn starts as

3

4
√
π

√
1

n
+

5
√

1
n

48n
+

169
√

1
n

512n2
+

26615
√

1
n

24576n3
+

2583259
√

1
n

524288n4
+

242384345
√

1
n

8388608n5
+O(n−13/2)

 .

For similar theorems, for more complicated bets, consult the web-page of this paper.

Conclusion: We illustrated the power of symbolic computation to help you play, for profit, Litt-

style games.

Acknowledgment: Many thanks to Dr. George Spahn (DZ’s academic son), and Dr. Tamar

Zeilberger (DZ’s biological daughter) for telling us about Daniel Litt’s X-post [L].
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