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Abstract: A chessboard has the property that every row and every column has as many white

squares as black squares. In this mostly methodological note, we address the problem of counting

such rectangular arrays with a fixed (numeric) number of rows, but an arbitrary (symbolic) number

of columns. We first address the “vanilla” problem where there are no restrictions, and then go on

to discuss the still-more-challenging problem of counting such binary arrays that are not permitted

to contain a specified (finite) set of horizontal patterns, and a specified set of vertical patterns.

While we can rigorously prove that each such sequence satisfies some linear recurrence equation

with polynomial coefficients, actually finding these recurrences poses major symbolic-computational

challenges, that we can only meet in some small cases. In fact, just generating as many as possible

terms of these sequences is a big numeric-computational challenge. This was tackled by computer

whiz Ron H. Hardin, who contributed several such sequences, and computed quite a few terms

of each. We extend Hardin’s sequences quite considerably. We also talk about the much easier

problem of counting such restricted arrays without balance conditions.

Preface: How it all started

A few weeks ago, the New York Times magazine started publishing a new kind of logic puzzle that

they call Not Alone, created by Presanna Seshadri. You are given a 6× 6 (or 8× 8) array of boxes

with most of them empty, but a few of them are filled with either a solid circle, that we will denote

by 1, or an empty circle, that we will denote by 0. The solver has to, presumably using logic and

human cleverness, fill-in the empty boxes such that the following conditions are met.

• Every row and every column must have as many zeroes as ones (i.e., they each must contain 3

zeroes and 3 ones in the 6× 6 case).

• It is forbidden that on any row, and on any column, a single zero will be ‘all alone’ between two

ones and that a single one will be all alone between two zeroes. In other words the patterns 010

and 101 are forbidden both horizontally and vertically.

Three Natural Enumeration Problems

Being enumerators, the following three questions immediately came to mind.

• For a fixed, ‘numeric’, positive integer k, but an arbitrary, ‘symbolic’ n, how many 2k × 2n 0− 1

balanced matrices are there? In other words how many 2k × 2n 0 − 1 matrices are there where

every row has n zeroes and n ones and every column has k zeroes and k ones. We will show, using

‘holonomic nonsense’ [Z] [AZ] (very efficiently implemented in [K]) that for any such numeric k,

this sequence satisfies some linear recurrence equation with polynomial coefficients in n. Indeed for

k = 2 and k = 3 we (or rather our beloved computers) actually found these recurrences. Alas for

1



k ≥ 4 this remains a major symbolic-computational challenge. Since it seems hopeless, at present,

to find these recurrences (that once found, would enable, easily, to compute the first 10000 terms),

it still would be nice to get as many as possible terms using number-crunching. This endeavor was

started by computer whiz Ron H. Hardin, but we will go quite a bit beyond what he did.

• For an arbitrary (finite) alphabet (not just {0, 1}) and arbitrary finite sets of forbidden horizontal

and vertical patterns, H and V , how many k × n matrices are there avoiding the patterns of H in

the rows and the patterns of V in the columns (with no balance conditions)? We will show that

these sequences are much easier, both conceptually and computationally, since they always satisfy

linear recurrence equations with constant coefficients, or equivalently, their generating function is

a rational function.

•Going back to the alphabet {0, 1}, for a specific k, how many (2k)×(2n) balanced 0−1 matrices are

there that also avoid a prescribed horizontal set of patterns H and (another or the same) prescribed

vertical set of patterns V . Once again, we will show that for each such scenario, the enumerating

sequence satisfies some linear recurrence equation with polynomial coefficients (in n). Alas finding

it is yet harder than the ‘vanilla’ case above. Once again this leads to numeric challenges. In

particular, it turns out that for the original New York Times puzzles where k = n = 3 and

H = V = {010, 101} that number is exactly 368. It is relatively easy to actually construct the set

of all such legal matrices, once and for all. It follows that, surprisingly, a pure brute-force algorithm

for solving these original puzzles is more efficient than using logic, as a human solver would. Just

try out all 368 possible answers and see which one agrees with the given clues. Alas for the 8 × 8

puzzles that started to appear shortly after, the computer has to do it the human way of using

logic.

The Maple package NotAlone.txt, available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/NotAlone.txt solves and creates such puz-

zles. Procedure Ptor implements the brute-force approach that is optimal for the 6×6 case. Proce-

dure SolveN does it in a way a human would tackle it.

Theorems

In this section, that is purely theoretical, we will prove that the first and third kind of sequences

above are P-recursive (aka holonomic), in other words are guaranteed to satisfy some linear recur-

rence equation with polynomial coefficients (see [KaP] chapter 7), while any sequence that comes

from the second kind of enumeration problems belongs to the simpler class of C-finite sequences

([KaP], chapter 4), i.e., satisfies some linear equation with constant coefficients.

Theorem 1: Let k be a specific positive integer, and let n be a general positive integer. Let bk(n)

be the number of balanced 2k×2n 0−1 matrices, i.e., binary matrices with 2k rows and 2n columns

where every row has exactly n ones (and hence exactly n zeroes), and every column has exactly

k ones (and hence exactly k zeroes). Then the sequence {bk(n)}∞n=1 is holonomic. In other words

there exists a positive integer L (the order) and polynomials in n, pi(n), 0 ≤ i ≤ L, with pL(n) 6= 0
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such that
L∑

i=0

pi(n)bk(n+ i) = 0 .

Proof: Let ek(x1, . . . , xn) be the elementary symmetric function of degree k:

ek(x1, . . . , xn) =
∑

1≤i1<i2<...<ik≤n

xi1 · · ·xik .

It is readily seen that bk(n) is the coefficient of xn1 · · ·xn2k in ek(x1, . . . , x2k)2n. Indeed, each mono-

mial of ek(x1, . . . , x2k) corresponds to a way of placing k ones (and k zeroes) in any particular

column, making each column balanced. ek(x1, . . . , x2k)2n then is the weight enumerator of all

column-balanced 2k by 2n 0− 1 matrices. The coefficient of xn1 · · ·xn2k collects those that are also

row-balanced. Hence

bk(n) = Coeffx0
1···x

0
2k

(
ek(x1, . . . , x2k)2

x1 · · ·x2k

)n
=

(
1

2πi

)2k ∫ (
ek(x1, . . . , x2k)2

x1 · · ·x2k

)n
dx1 · · · dx2k
x1 · · ·x2k

,

where the integration is over the multi-circle |x1| = 1, . . . , |x2k| = 1. Since the integrand is holo-

nomic in the 2k continuous variables x1, . . . , x2k and the one discrete variable n, it follows from

algorithmic proof theory [Z][AZ][K] that integrating away the 2k continuous variables leaves bk(n)

holonomic in the surviving discrete variable n .

So far our alphabet was {0, 1}, for the next theorem (answering the second question above) we will

be more general. We need to introduce some definitions.

Fix a finite alphabet A once and for all. A word w1 . . . wn in the alphabet A contains the word

p1 . . . pk (called a ‘pattern’) if there is a location i such that wi = p1, . . . , wi+k−1 = pk. For example,

with the Latin alphabet robert contains the words rob, obe, t, and many others. A word w avoids

the pattern p if it does not contain it. For example 101010001 avoids 11.

Theorem 2: Let A be an arbitrary (finite) alphabet, and H and V be arbitrary finite sets of

words in A. Let k be a fixed (numeric) positive integer. Let mk(n) = mA,H,V,k(n) be the number

of n×k matrices with entries in A such that every row avoids the patterns in H, and every column

avoids the patterns in V , then the sequence {mk(n)}∞n=1 satisfies a linear recurrence equation with

constant coefficients. In other words there exists a positive integer L and numbers c0, c1, . . . , cL

such that
L∑

i=0

cimk(n+ i) = 0 .

Equivalently, there exist polynomials P (t) and Q(t) (where Q(t) has degree L) such that

∞∑
n=0

mk(n) tn =
P (t)

Q(t)
.

3



Proof: Let B be the set of words in the alphabet A with k letters that avoid the patterns in V .

This is a finite set. We will view the k×n matrix as a one-dimensional word in this meta-alphabet.

Then the restrictions that the rows avoid the patterns in H translate to many conditions about

pattern avoiding in this meta-alphabet. This gives rise to a so-called type-3 grammar, or finite

automata, whose enumerating generating functions are famously rational functions. In order to

actually find them one can use the positive approach, using the transfer-matrix method ([S], ch. 4),

or the negative approach, using the powerful Goulden-Jackson method, nicely exposited in [NZ].

Comment: For the motivating example (the Not Alone puzzles), A = {0, 1} and H = V =

{010, 101}.

The next theorem states that if one counts 2k × 2n balanced 0− 1 matrices and imposes arbitrary

horizontal and vertical conditions, the resulting sequences are still holonomic.

Theorem 3: Let k be a specific positive integer, and let n be a general positive integer. Let H and

V be finite sets of words (‘patterns’) in {0, 1}. Let bH,V,k(n) = bk(n) be the number of balanced

2k × 2n 0 − 1 matrices, that avoid the patterns of H in every row and the patterns of V in every

column, then there exists a positive integer L and polynomials pi(n), 0 ≤ i ≤ L, with pL(n) 6= 0

such that
L∑

i=0

pi(n)bk(n+ i) = 0 .

Proof: Instead of naive counting where the weight of a 2k × 2n matrix was simply t2n, we now

introduce 2k formal variables x1, . . . , x2k and assign a weight of a matrix A = (aij , 1 ≤ i ≤ 2k, 1 ≤
j ≤ n) to be

tn xa1
1 · · ·x

a2k

2k ,

where ai is the number of ones in the i-th row.

Once again we can use the transfer matrix method, or the Goulden-Jackson method, to find the

weight-enumerator of the set of all matrices avoiding H horizontally and V vertically, with the

above weight. This is a very complicated rational function in the 2k+1 variables, t and x1, . . . , x2k

In order to count balanced such matrices with 2n columns, we have to extract the coefficient of

t2nxn1 · · ·xn2k .

Let’s call this giant, but explicitly computable, rational function R(x1, . . . , x2k; t) then

bk(n) = Coefft2nxn
1 ···x

n
2k
R(x1, . . . , x2k; t)

=

(
1

2πi

)2k+1 ∫
R(x1, . . . , x2k; t)

(x1 · · ·x2k)nt2n
dx1 · · · dx2kdt
x1 · · ·x2kt

.

The integrand is holonomic in the 2k + 1 continuous variables x1, . . . , x2k, t and the one discrete

variable n, and once again, integrating with respect to the 2k + 1 continuous variables leaves us,

by algorithmic proof theory [Z][AZ][K], with a holonomic discrete function in n.
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Comment: Theorem 1 is the special case of Theorem 3 where the sets of forbidden patterns H

and V are empty. Nevertheless the simple explicit form of the integrand is useful, as we will see

below.

Symbol Crunching

The main Maple package accompanying this article is Hardin.txt available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/Hardin.txt .

Let’s describe briefly the main procedures.

• SeqB(k,N) uses the formula in the proof of Theorem 1 to crank-out the first N terms of the

sequence enumerating balanced 0 − 1 2k × 2n matrices for n = 1 to n = N . This is useful for

checking with the OEIS.

For example SeqB(2,10); gives:

6, 90, 1860, 44730, 1172556, 32496156, 936369720, 27770358330, 842090474940, 25989269017140

that is a very famous sequence, https://oeis.org/A002896, given there with a different descrip-

tion:

The number of walks with 2n steps on the cubic lattice Z3 beginning and ending at (0, 0, 0).

Can you see why these two sequences are the same?

Moving right along,

SeqB(3,10);

gives the first 10 terms of OEIS sequence A172556 https://oeis.org/A172556, given there with

the same description as ours, created by Ron Hardin, who computed 49 terms. With our Maple

package we were able to compute 55 terms. In fact already 49 terms suffice to conjecture a linear

recurrence. See the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHardin2.txt . Later on we will see

how to derive it rigorously, without guessing.

SeqB(4,10); gives the first 10 terms of OEIS sequence A172555 https://oeis.org/A172555, also

due to Hardin, who computed 33 terms.

SeqB(5,10); gives the first 10 terms of OEIS sequence A172557 https://oeis.org/A172557, also

due to Hardin, who computed 24 terms.

While we know from Theorem 1 that these sequences do satisfy linear recurrences with polynomial

coefficients, we are unable at present to find them. We need bigger and faster computers!
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• GF1t(A,H,V,n,t): inputs an alphabet A, sets of horizontal and vertical forbidden patterns H

and V respectively, a positive integer n, and a variable t. It outputs the rational function whose

coefficient of tm is the number of m×n matrices avoiding the patterns of H in rows and the patterns

of V in columns, whose existence is guaranteed by Theorem 2.

For example to get the rational function whose coefficient of tn is the number of 3×n 0−1 matrices

avoiding 010 and 101 both vertically and horizontally enter:

GF1t({0,1}, {[0,1,0],[1,0,1]}, {[0,1,0],[1,0,1]},3,t); ,

getting right away :

−5t4 − 19t2 − 4t− 1

t4 − 5t2 − 2t+ 1
.

The first few terms are

6, 36, 102, 378, 1260, 4374, 14946, 51384, 176238, 605022, 2076288, 7126302, 24457806, 83942100, 288096942 ,

and surprise! It is in the OEIS, sequence A06521 (https://oeis.org/A060521), but bigger sur-

prise! for a different reason. It is the number of 3× n 0− 1 matrices avoiding, both vertically and

horizontally, the patterns 000 and 111.

And indeed this is confirmed by our Maple package. Typing:

GF1t({0,1 }, {[1,1,1],[0,0,0]}, {[1,1,1],[0,0,0]},3,t);

gives the same output. Here is an explicit bijection between these two sets of 0− 1 3× n matrices.

Define the bijective map that maps the matrix entry mi,j to mi,j + i+ j (mod 2), for all 1 ≤ i ≤ 3

and 1 ≤ j ≤ n. In other words, use as “mask” a 0−1 matrix with chessboard pattern and add it to

the input matrix (in binary arithmetic). Clearly, every occurrence of 000 or 111 (either vertically

or horizontally) will be mapped to 101 or 010, and vice versa. Thus, this map transforms each

{010, 101}-avoiding matrix into a {000, 111}-avoiding one, and vice versa.

• GF2t(H,V,k,x,t): inputs sets of horizontal and vertical forbidden patterns H and V respectively,

variable names x and t, and outputs the rational function in t and x1, . . . , x2k, whose coefficient of

tnxa1
1 · · ·x

a2k

2k gives the number of 2k × 2n 0 − 1 matrices avoiding the horizontal patterns H and

vertical patterns V and having ai ones in row i, for all 1 ≤ i ≤ 2k.

For example if H = V = {010, 101} (as in the Not-Alone puzzles), the rational function for 4× 2n

matrices is given in the output file:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHardin5.txt .

This is already big! But once we have it, we can Taylor expand it in t, extract the coefficient of t2n

followed by extracting the coefficient of xn1x
n
2x

n
3x

n
4 to get many terms, see the output file
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https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHardin5a.txt .

The generating function for 6×2n 0−1 matrices avoiding 010, 101 both horizontally and vertically

is much bigger! See the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHardin6.txt .

This enabled us to find the first 30 terms, via symbolic computation. See:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oHardin6a.txt .

It starts with

8, 64, 368, 2776, 25880, 251704, 2629080, 28964248, 331032312, 3907675376, . . . .

In particular the third term, 368 is the exact number, mentioned above, of solutions to a 6 × 6

Not-Alone puzzle.

See the next section for 70(!) terms using numeric computations.

Rigorous Recurrences for the number of balanced 4× 2n and 6× 2n matrices.

Using the Maple package

https://sites.math.rutgers.edu/~zeilberg/tokhniot/SMAZ.txt

that accompanies [AZ] one very quickly gets the following theorem.

Theorem 4: Let a(n) be the number of 4 by 2n balanced matrices, then:

36(2n+ 3)(2n+ 1)(n+ 1)a(n)− 2(2n+ 3)
(
10n2 + 30n+ 23

)
a(n+ 1) + (n+ 2)3a(n+ 2) = 0 .

The Maple package SMAZ.txt was unable, with our computers, to find a recurrence for the sequence

enumerating 6 by 2n balanced matrices, but the second author’s Mathematica package

https://risc.jku.at/sw/holonomicfunctions/

did it! We have the following fully rigorously-proved recurrence.

Theorem 5: Let a(n) be the number of 6 by 2n balanced matrices then

−51200 (2n+ 7) (2n+ 5) (2n+ 3) (2n+ 1) (n+ 2) (n+ 1)
(
33n2 + 242n+ 445

)
a(n)

+ 128 (2n+ 7) (2n+ 5) (2n+ 3) (n+ 2)
(
7491n4 + 84898n3 + 351364n2

+ 628997n+ 414370
)
a(n+ 1)
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− 16 (2n+ 5) (2n+ 7)
(
2772n6 + 48048n5 + 344379n4 + 1307394n3

+ 2775099n2 + 3125336n+ 1460132
)
a(n+ 2)

− 2 (2n+ 7) (n+ 3)
(
3201n6 + 61886n5 + 497179n4 + 2124170n3 + 5089654n2

+ 6484024n+ 3431096
)
a(n+ 3)

+ (n+ 3)
(
33n2 + 176n+ 236

)
(n+ 4)

5
a(n+ 4) = 0 .

Number Crunching

Since it is unrealistic to try and find recurrences for enumerating 2k × 2n balanced matrices for

k ≥ 4, it would be nice to extend, as far as our computers would allow, Hardin’s already impressive

computational feats. Note that a brute force approach is doomed.

To that purpose we have a C program available from

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/balmat4p.c ,

that extended Hardin’s sequences quite a bit. The program computes, for n = 1, 2, . . . , 2N , the

coefficients of the polynomial ek(x1, . . . , x2k)n, and whenever n is even, outputs the coefficient of

(x1 · · ·x2k)n. For a = (a1, . . . , a2k) let

cn(a) := Coeffx
a1
1 ···x

a2k
2k

ek(x1, . . . , x2k)n .

The trivial identity ek(x1, . . . , x2k)n = ek(x1, . . . , x2k) · ek(x1, . . . , x2k)n−1 immediately yields a

recursive definition of these coefficients. Let S :=
{

(s1, . . . , s2k) ∈ {0, 1}2k
∣∣ s1 + · · · + s2k = k

}
denote the support of ek(x1, . . . , x2k), then cn(a) =

∑
s∈S cn−1(a − s). In this formula, one has

to apply the boundary conditions cn−1(a − s) = 0 whenever a − s has a negative component, or

one that is larger than n − 1. Thanks to the symmetry in the variables x1, . . . , x2k, and thanks

to the fact that ek(x1, . . . , x2k)n is a homogeneous polynomial of degree kn, it suffices to store

cn(a) for n ≥ a1 ≥ · · · ≥ a2k ≥ 0 and a1 + · · · + a2k = kn. Moreover, if we fix the number N

of desired terms from the very beginning, we can impose the additional condition ai ≤ N . Since

these vectors a do not any more form a rectangular (multi-dimensional) array, we flatten it to a

one-dimensional array, in order to handle it more easily in the C language. Conversion between

these two data structures can be done by a suitable rank and unrank function. Finally the whole

computation is done modulo prime numbers, using 64-bit integers. A sufficient number of primes

can be determined by the trivial upper bound
(
2k
k

)2n ≥ c2n(n, . . . , n), the latter being the n-th

term of the sequence.

• If you want to see 92 terms of the sequence enumerating 2n by 8 0 − 1 matrices with row sums

4 and column sums n, in other words OEIS sequence A172555 (Hardin only had 33 terms) see the

output file

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data4.txt .
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• If you want to see 50 terms of the sequence enumerating 2n by 10 0− 1 arrays with row sums 5

and column sums n, in other words OEIS sequence A172557 (Hardin only had 24 terms) see the

file

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data5.txt .

• If you want to see 39 terms of the sequence enumerating 2n by 12 0− 1 matrices with row sums

6 and column sums n, in other words OEIS sequence A172558 (Hardin only had 19 terms) see the

file:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data6.txt .

• If you want to see 30 terms of the sequence enumerating 2n by 14 0− 1 matrices with row sums

7 and column sums n, in other words OEIS sequence A172559 (Hardin only had 17 terms) see the

file:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data7.txt .

• If you want to see 25 terms of the sequence enumerating 2n by 16 0− 1 matrices with row sums

8 and column sums n, in other words OEIS sequence A172560 (Hardin only had 14 terms) see the

file:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/data8.txt .

• So far for the ‘vanilla case’. Above, using the Maple package Hardin.txt we were able to find

30 terms of the motivating sequence of this paper, i.e., the number of balanced 6 by 2n 0 − 1

matrices avoiding the patterns 010 and 101 both vertically and horizontally. Using the C program

mentioned above we now have 70 terms. See the output file:

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/hardinC/dataNA3.txt .

Conclusion: Humankind, and even computerkind, will most probably never know the exact

number of 100 × 100 0 − 1 matrices with row- and columns- sums all equal to 50, but it is fun to

try and see how far we can go. The OEIS created by our hero Neil Sloane, is an ideal platform for

publishing these hard-to-compute numbers.

Happy 85th birthday, Neil. May you live to see the OEIS with 1,200,000 sequences!
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