
A SYMBOLIC COMPUTATIONAL APPROACH TO THE GENERALIZED

GAMBLER’S RUIN PROBLEM IN ONE AND TWO DIMENSIONS

LUCY MARTINEZ

Abstract. The power of symbolic computation, as opposed to mere numerical computation, is illustrated

with efficient algorithms for studying the generalized gambler’s ruin problem in one and two dimensions.

We also consider a new generalization of the classical gambler’s ruin where we add a third step which we
call the mirror step. In this scenario, we provide closed formulas for the probability and expected duration.

1. Introduction

Throughout we let x be some positive integer such that 0 < x < N where N ∈ N = {1, 2, 3, . . .}. Consider
a gambler who starts with x dollars. At each gamble, the gambler either wins a dollar with probability 1

2 or

loses a dollar with probability 1
2 . The gambler’s goal is to reach N dollars without first running out of money

(i.e., hitting 0 dollars). If the gambler reaches N dollars, we say they are a winner. The gambler continues
to play until they either run out of money or win. This scenario is known as the gambler’s ruin problem,
first posed by Pascal in 1656 in a letter to Fermat, as noted by Edwards [?Edwards1983]. In 1657, Huygens
restated the problem and published a solution for the probability of winning [?Huygens]. For additional
historical context, we refer the reader to a paper of Seongjoo Song and Jongwoo Song [?Song].

In this paper, we begin by providing an overview of the classical gambler’s ruin problem, recalling results
for both the probability of winning and the expected duration of the game. We also summarize analogous
results on the generalized 1-dimensional and 2-dimensional versions of the gambler’s ruin problem. Building
on the 1-dimensional version, we introduce a new generalization of the classical gambler’s ruin that includes
an additional step called the mirror step. For the generalized model, we derive formulas for the probability
of winning and expected duration of the game. The objective of this paper is to propose an approach to
reduce the running time required to determine the probability of winning, the expected duration and the
variance specifically for the generalized 1-dimensional and 2-dimensional versions.

1.1. Classical gambler’s ruin problem. Let f(x) be the probability that the gambler exits the game as
a winner starting with x dollars. Then, for 0 < x < N ,

f(x) =
1

2
f(x− 1) +

1

2
f(x+ 1), f(0) = 0, f(N) = 1. (1)

That is, if the gambler starts with x dollars, then in the next round, the gambler has x− 1 dollars or x+ 1
dollars, each with probability 1

2 . Using this recurrence relation and the boundary conditions, we can find
the solution to be f(x) = x

N .
If the gambler starts with x dollars, let g(x) be the expected number of steps (expected duration of the

game) the gambler takes to exit the game (either with N dollars or 0 dollars). Similar to the probability, for
1 < x < N ,

g(x) =
1

2
g(x− 1) +

1

2
g(x+ 1) + 1, g(0) = 0, g(N) = 0.

At each round, if the gambler has x dollars, then in the next round, the gambler will have either x − 1
dollars or x+1 dollars, each with probability 1

2 . However, we add 1 to the count since the gambler has taken
one extra step. Using the recurrence relation and the boundary conditions, we can find the solution to be
g(x) = x(N − x).

Building upon the expected duration, we can obtain the probability generating function of the duration
of the game. For a formal variable t and 0 < x < N ,

F (x, t) = t

(
1

2
F (x− 1, t) +

1

2
F (x+ 1, t)

)
, F (0, t) = 1, F (N, t) = 1.

1

Taking the derivative of F (x, t) with respect to t, and evaluating at t = 1 recovers the expected duration of
the game at x.

Consider extending the game so that the probability of losing one dollar or winning one dollar are not
the same. In other words, let p be the probability of winning one dollar, and q = 1 − p be the probability
of losing one dollar. Let f(x) be the probability of exiting the game as a winner starting with x dollars.
Similarly to Equation (1), we get

f(x) = qf(x− 1) + pf(x+ 1), f(0) = 0, f(N) = 1, and p+ q = 1.

Edwards gives a conjecture on how Pascal solved the above using a method of recursive formula [?Edwards1983].
We provide Edwards’ solution to f(x). Rewrite f(x+ 1)− f(x) and observe the following

f(x+ 1)− f(x) =
q

p
(f(x)− f(x− 1)) =

q2

p2
(f(x− 1)− f(x− 2)) = · · · = qi

pi
(f(1)− f(0)) .

Hence,

f(x) =

x−1∑
j=0

(
q

p

)j f(1).

Since p = 1− q then p 6= q, it follows that q
p 6= 1. Therefore, by the geometric series, we obtain

1 = f(N) =
1−

(
q
p

)N
1− q

p

· f(1).

Thus, we can recover the following

f(1) =
1− q

p

1−
(
q
p

)N and f(x) =
1−

(
q
p

)x
1−

(
q
p

)N .
1.2. Generalized 1-dimensional gambler’s ruin. The gambler’s ruin problem can be formulated as
follows: A particle starts at a point x on a line of length N where 0 < x < N . The particle moves to the
left from x to x− 1 with probability 1

2 , or to the right from x to x+ 1 with probability 1
2 .

Consider extending the 1-dimensional gambler’s ruin game to include more than two steps on a line of
length N . Let r be a positive integer. Let a1, a2, . . . , ar be distinct integers such that a1 < a2 < · · · < ar
where a1 < 0 and ar > 0. Let p1, p2, . . . , pr be probabilities such that p1 + p2 + . . . + pr = 1, and let P
be the probability table P = [[a1, p1], [a2, p2], . . . , [ar, pr]] where each pair [ai, pi] represents the outcome ai
occurring with probability pi. The generalized 1-dimensional gambler’s ruin problem states that if a particle
is currently at some x then the particle moves from x to x + a1 with probability p1, or moves from x to
x+ a2 with probability p2, or moves from x to x+ a3 with probability p3, and so on.

Similar to the method of solving a system of linear equations as in Section 1.1, we can obtain the probability
of winning and expected duration for the generalized case for any starting position. However, as N grows,
the computation time for solving a system of N linear equations will be slower. In Section 2, we present
a faster method to reduce the running time by going from a system of N − 1 linear equations with N − 1
unknowns to a system of ar linear equations with ar unknowns where ar is the maximum of the steps in the
probability table P = [[a1, p1], [a2, p2], . . . , [ar, pr]]. Our method significantly drops the running time and we
make comparisons between the direct approach and our strategy in Section 2.3.

1.3. 2-dimensional gambler’s ruin. Let M and N be positive integers. Consider a particle starting at a
point (x, y) in the interior of a rectangular grid of size M×N , where 0 < x < M and 0 < y < N . At each step,
the particle moves in one of four directions, each with probability 1

4 : (x−1, y), (x, y+1), (x+1, y), (x, y−1).
The particle stops moving once it hits one of the four boundaries, defined by x = 0, x = M,y = 0, or y = N .
By setting up a recurrence relation for the expected duration, we can obtain a system of (M − 1)× (N − 1)
linear equations with (M − 1) × (N − 1) unknowns. Andrej Kmet and Marko Petkovšek gave an explicit

2

formula involving a double sum, enabling direct computation of the expected duration for the 2-dimensional
gambler’s ruin game without the need to solve systems of equations or use recursion [?Kmet]. While Kmet
and Petkovšek’s formula expresses the expected duration as a double sum, our method reduces the running
time by going from a system of (M − 1)× (N − 1) linear equations with (M − 1)× (N − 1) unknowns to a
system of N − 1 linear equations and N − 1 unknowns. Our method is significantly faster than the direct
approach and Kmet and Petkovšek’ formula. We make comparisons in Section 3.3.

One way to generalize the 2-dimensional game is to change the probabilities of each of the four directions
with probabilities pL, pU , pR, and pB , corresponding to left, up, right and down movements, respectively
where pL + pU + pR + pB = 1. Although one can generalize the number of steps for either of the four
directions, we focus on the case when the set of steps the particle can move is {[0, 1], [0,−1], [1, 0], [−1, 0]},
and remark that one can adapt our strategy for an arbitrary (finite) set of allowed steps, and arbitrary
probability distribution.

1.4. A mirror step variant of gambler’s ruin. We consider a new generalization of the gambler’s ruin
problem. A particle starts at some point x on a line of length N where 0 < x < N . At each step, the particle
either moves from x to x − 1 with probability q1, or moves from x to x + 1 with probability q2, or moves
from x to N − x with probability p where 0 < p < 1 and q1 + q2 + p = 1. We call this last step the mirror
step. The particle continues to walk on the line until it reaches 0 or N . In this paper, we focus on the case
when q1 = q2 = 1−p

2 and we call this the symmetric case.
We begin with an example where the particle starts at x = 1 and generate data for different p values with

fixed N .

Example 1. Let N = 100 and x = 1. We generate data for the probability that if the particle is currently
at x = 1, the particle eventually ends at 100. Let p ∈ { 12 ,

1
3 ,

1
4 , . . . ,

1
10}.

We use the procedure Lk(p,x,N), as described in Appendix A.1.4 in Maple which generates the following
data in about 4.765 seconds:

T :=[0.4142135624, 0.3660254038, 0.3333333333, 0.3090169944, 0.2898979486, 0.2742918852, 0.2612038750,

0.2500000000, 0.2402530734].

The sequence T reads as follows. If the particle is currently at x = 1 and p = 1
2 , the particle moves from

x to x − 1 with probability 1−p
2 = 1

4 , or moves from x to x + 1 with probability 1−p
2 = 1

4 , or moves from

x to 100 − x with probability p = 1
2 . Then, the probability of the particle starting at x = 1 and ending at

100 is T1 = 0.4142135624. Similarly, if the particle is currently at x = 1 and p = 1
3 , the particle moves from

x to x − 1 with probability 1−p
2 = 1

3 , or moves from x to x + 1 with probability 1−p
2 = 1

3 , or moves from

x to 100 − x with probability p = 1
3 . Then, the probability of the particle starting at x = 1 and ending at

100 is T2 = 0.3660254038. Thus, Ti is the probability of the particle starting at x = 1 and ending at 100 for
p = 1

i+1 where 1 ≤ i ≤ 9.
We then use the function identify in Maple on the sequence T . The function identify is based, in part,

on the continued fraction expansion of any given numerical value. Using this function on the values of T ,
we conjecture that each of the probabilities in T converges to

M :=

[
√

2− 1,

√
3− 1

2
,

1

3
,

√
5− 1

4
,

√
6− 1

5
,

√
7− 1

6
,

2
√

2− 1

7
,

1

4
,

√
10− 1

9

]
.

That is, the probability of the particle starting at x = 1 and ending at 100 converges to Mi for p = 1
i+1

where 1 ≤ i ≤ 9.

The previous example illustrates that when the particle starts at x = 1, the probability of ending at

N converges fast. Denote this probability by f
(p)
N (x). We state the following guess for x = 1 and in

Corollary 4.4.1 we provide a proof.

Guess 1.1. If the particle starts at x = 1, then

lim
N→∞

f
(p)
N (1) =

√
p− p

1− p
.

3

In Section 4, we provide other expressions for limN→∞ f
(p)
N (x) when x = 2 and x = N − 2 with fixed N ,

and in Corollary 4.4.1 we provide the general formula for the limit.
This paper is structured as follows: In Section 2, we present a symbolic computation approach to compute

the probability of winning, the expected duration of the game and the variance that reduces the running
time for the generalized 1-dimensional gambler’s ruin. In Section 3, we provide the analogous approach for
the generalized 2-dimensional case and compare the running times to a formula provided by Andrej Kmet
and Marko Petkovšek. In Section 4, we consider a mirror step variant of gambler’s ruin and provide closed
formulas for both the probability of winning and the expected duration of the game. We conclude with
future directions in Section 5.

2. Generalized 1-dimensional Gambler’s Ruin

In this section, we introduce the recurrence relation for the probability of winning in the generalized
1-dimensional gambler’s ruin game, and introduce symbolic variables to the recurrence equation of the
probability and expected duration. Recall that P = [[a1, p1], [a2, p2], . . . , [ar, pr]] denotes a probability table,
where each pair [ai, pi] represents the outcome ai occurring with probability pi. To set up notation, we start
with an example.

Example 2. Let N = 5 and P be the probability table given by P =
[
[−2, 12], [1, 14], [2, 14]

]
. If the particle

starts at some x where 0 < x < 5 on the line of length 5, then it can move along the line as follows: from x
to x− 2 with probability 1

2 , or from x to x+ 1 with probability 1
4 , or from x to x+ 2 with probability 1

4 .

2.1. Probability. We now establish the recurrence relation for the probability that the particle reaches
some position ≥ N starting from an initial position x. We then rewrite this recurrence and introduce new
variables for the probabilities at each x.

Define f(x) as the probability that a particle starting at x will eventually reach a position ≥ N . For
0 < x < N , this probability satisfies the recurrence relation

f(x) =

r∑
i=1

pif(x+ ai), (2)

where ai ∈ Z, a1 < a2 < · · · < ar, a1 < 0 and ar > 0. Unlike the classical gambler’s ruin problem,
the generalized 1-dimensional scenario has more than two boundary conditions. Certainly f(0) = 0 and
f(N) = 1. Since a1 < a2 < · · · < ar, the values a1 and ar represent the minimum and maximum of all the
integers ai, respectively. For any integer k such that a1 + 1 ≤ k ≤ 0, it follows that f(k) = 0. Indeed, if the
particle is at x = 1, it may move to x+ a1 = a1 + 1 with probability p1. Given that a1 < 0, this movement
brings the particle to some position k ≤ 0, implying that f(k) = 0 for k = a1 +1, a1 +2, . . . ,−1, 0. Similarly,
for any integer ` such that N ≤ ` ≤ N + ar − 1, we have f(`) = 1. If the particle is at x = N − 1, it may
move to x+ ar = N + ar − 1 with probability pr. Since ar > 0, this movement brings the particle to some
position ` ≥ N , so f(`) = 0 for ` = N,N + 1, N + ar − 2, N + ar − 1. Thus, there are ar − a1 boundary
conditions.

Example 3. (Continuing Example 2) Recall the probability table P =
[
[−2, 12], [1, 14], [2, 14]

]
and N = 5. If

f(x) denotes the probability that the particle reaches some position ≥ 5, then

f(x) =
1

2
f(x− 2) +

1

4
f(x+ 1) +

1

4
f(x+ 2)

with initial and final conditions f(−1) = f(0) = 0 and f(5) = f(6) = 1.
This setup results in a system of 4 linear equations for 0 < x < 5,

f(1) =
1

2
f(−1) +

1

4
f(2) +

1

4
f(3)

f(2) =
1

2
f(0) +

1

4
f(3) +

1

4
f(4)

f(3) =
1

2
f(1) +

1

4
f(4) +

1

4
f(5)

f(4) =
1

2
f(2) +

1

4
f(5) +

1

4
f(6).

4

Solving for the unknowns using the boundary conditions yields f(1) = 1
5 , f(2) = 13

45 , f(3) = 23
45 , f(4) = 29

45 .

Although this direct method works for small values of N , solving the system of N − 1 equations becomes
computationally expensive as N grows. To address this, we rewrite the recurrence relation Equation (2) as

f(x) =
1

pr
f(x− ar)−

1

pr

r−1∑
i=1

pif(x+ ai − ar) (3)

obtained by the change of variables x 7→ x−ar. The boundary conditions remain, f(a1 + 1) = 0, f(a1 + 2) =
0, . . . , f(−1) = 0, f(0) = 0 and f(N) = 1, f(N + 1) = 1, . . . , f(N + ar − 2) = 1, f(N + ar − 1) = 1. For each
1 ≤ j ≤ ar define dj = f(j) and construct the set S = {d1, d2, . . . , dj} where ar is the maximum of the ai’s.
Using these variables, we express

f(ar + 1), f(ar + 2), . . . , f(N + ar − 1) (4)

as linear combinations of the elements in S.
Observe that a1 < a2 < · · · < ar implies ai−ar < 0 for any 1 ≤ i ≤ r−1. Hence, x+ai−ar < x ≤ N+ar−1

for all x ∈ {ar + 1, ar + 2, . . . , N + ar − 1} since 0 < ar + 1 < ar + 2 < · · · < N + ar − 1. Thus,
x+ ai − ar < N + ar − 1 for all x ∈ {ar + 1, ar + 2, . . . , N + ar − 1} and any 1 ≤ i ≤ r − 1.

Also, x + ai − ar > x + a1 − ar since ai > a1 for any 1 ≤ i ≤ r − 1. Now, x + ai − ar > x + a1 − ar ≥
ar+1+a1−ar = a1+1 for all x ∈ {ar+1, ar+2, . . . , N+ar−1} since 0 < ar+1 < ar+2 < · · · < N+ar−1.
Hence, x+ ai − ar > a1 + 1 for all x ∈ {ar + 1, ar + 2, . . . , N + ar − 1}.

Therefore, a1 + 1 < x + ai − ar < N + ar − 1. This implies that f(x + ai − ar) depends only on the
following

f(a1 + 1), f(a1 + 2), . . . , f(0),

f(N), f(N + 1), f(N + 2), . . . , f(N + ar − 1),

f(1), f(2), . . . , f(ar),

f(ar + 1), f(ar + 2), . . . , f(N − 1).

We know 0 = f(a1+1) = f(a1+2) = · · · = f(0), 1 = f(N) = f(N+1) = f(N+2) = · · · = f(N+ar−1) and
f(1) = d1, f(2) = d2, . . . , f(j) = dj where j = ar. For any ar+1 ≤ x ≤ N−1, f(ar+1) is a linear combination
of f(1) and f(a1 + 1), f(a2) + 1, . . . , f(ar−1 + 1). But we know a1 + 1 ≤ a2, a2 + 1 ≤ a3, . . . , ar−1 + 1 ≤ ar
since a1 < a2 < · · · < ar−1 < ar. Hence, f(ar + 1) depends on at most the expression f(ar), which is
known. Thus, f(ar + 1) depends on the variables {d1, d2, . . . , dj}. Since f(x) is a recursive formula, for any
x > ar + 1, f(x) will be a linear combination of the variables {d1, d2, . . . , dj}.

Furthermore, when f(x) is evaluated in Equation (3), f(x) will be a linear combination of {d1, d2, . . . , dj}
while simultaneously we have f(N) = f(N + 1) = . . . = f(N +ar−2) = f(N +ar−1) = 1. Therefore, these
ar equations are linear combinations of {d1, d2, . . . , dj} where j = ar and are all equal to 1. It follows that
this is a system of ar equations with ar unknowns. Solving for this system yields solutions for {d1, d2, . . . , dj}
which provides solutions for the rest of the expressions, namely f(ar + 1), f(ar + 2), . . . , f(N − 1).

Example 4. (Continuing Example 3) Let N = 5 and P = [[−2, 1/2], [1, 1/4], [2, 1/4]] as in Example 3.
Recall the boundary conditions: f(−1) = f(0) = 0 and f(5) = f(6) = 1. Note that a3 = 2, the maximum
of {−2, 1, 2}, introduces the new variables {d1, d2} such that f(1) = d1. Using the recurrence relation
f(x) = 4f(x−2)−2f(x−4)−f(x−1), we construct the equations for f(3), f(4), f(5), and f(6), with r = 3:

f(−1) = f(0) = 0

f(1) = d1

f(2) = d2

f(3) = 4f(1)− 2f(−1)− f(2) = 4d1 − d2
f(4) = 4f(2)− 2f(0)− f(3) = 5d2 − 4d1

f(5) = 4f(3)− 2f(1)− f(4) = 18d1 − 9d1

f(6) = 4f(4)− 2f(2)− f(5) = 27d2 − 34d1.

5

Since f(5) = f(6) = 1, the system of equations 1 = 18d1 − 9d1 and 1 = 27d2 − 34d1 has the solution d1 = 1
5

and d2 = 13
45 . Substituting these values gives

f(1) =
1

5
, f(2) =

13

45
, f(3) =

23

45
, f(4) =

29

45
.

These results agree with Example 3.

2.2. Expected duration. In the previous section, we considered the probability for the particle to reach
some position ≥ N . In this section, we consider the expected duration for the particle to end at a position
≤ 0 or a position ≥ N . Since this is analogous to the probability case, we omit the details.

Define g(x) as the expected number of steps that a particle starting at x will eventually reach a position
≤ 0 or a position ≥ N . For 0 < x < N , this expected duration satisfies the recurrence relation

g(x) =

r∑
i=1

pig(x+ ai) + 1, (5)

where ai ∈ Z, a1 < a2 < · · · < ar, a1 < 0, ar > 0 and boundary conditions 0 = g(a1 + 1) = g(a1 + 2) = · · · =
g(−1) = g(0) and 0 = g(N) = g(N + 1) = · · · = g(N + ar − 2) = g(N + ar − 1).

Similar to the probability case, we rewrite Equation (5) to

g(x) =
1

pr
g(x− ar)−

1

pr

r−1∑
i=1

pig(x+ ai − ar)−
1

pr
(6)

where 0 = g(a1 + 1) = g(a1 + 2) = · · · = g(−1) = g(0) and 0 = g(N) = g(N + 1) = · · · = g(N + ar − 2) =
g(N + ar − 1).

Using Equation (6) reduces the running time for the expected duration of the game as we will see in the
next section.

2.3. Comparison between the slower method and the faster method. In this section, we compare
the running times in Maple between the classical approach of solving for N − 1 linear equations and the
faster method from Section 2.2.

Let P = [[−1, 13], [1, 13], [2, 13]] and N ∈ {100, 110, 120, 130, 140, 150}. Using GR1dLG and NewGR1dLG as
described in Appendix A.1.2, we run time(GR1dLG) and time(NewGR1dLG). We get the following times in
Maple:

N System of N − 1 linear equations Symbolic Computation
(seconds) (seconds)

100 0.015 0.015
110 97.953 0.015
120 501.484 0.046
130 0.062
140 0.078
150 0.062

The data in the table suggests that introducing symbolic variables in Equation (6) dramatically reduces
the running time for computing the expected durations of the game starting at all starting locations.

2.4. Variance. In this section, we consider the variance of the duration of the generalized 1-dimensional
gambler’s ruin game. The computation builds up the expected duration discussed in Section 2.2.

Let P = [[a1, p1], [a2, p2], . . . , [ar, pr]] such that p1 + . . . + pr = 1 and define F (x, t) as the probability
generating function of the duration of the generalized 1-dimensional gambler’s ruin game. For 0 < x < N ,
this functions satisfies the recurrence relation

F (x, t) = t(p1F (x+ a1, t) + p2F (x+ a2, t) + · · ·+ prF (x+ ar, t)),

where F (0, t) = 1 and F (N, t) = 1. Making the substitution t 7→ z + 1 yields
6

F (x, z) = (z + 1)(p1F (x+ a1, z) + p2F (x+ a2, z) + · · ·+ prF (x+ ar, z), (7)

with F (0, z) = 1 and F (N, z) = 1. We derive an expression to estimate the second factorial moment.
Expanding F (x, z) as a Taylor series gives

F (x, z) = 1 + g(x)z +
h(x)

2!
z2 + · · · (8)

where g(x) is the expected duration as defined as in Section 2.2, and h(x) represents the second factorial
moment at x. Substituting Equation (8) into Equation (7) results in

1 + g(x)z +
h(x)

2
z2 + . . . = (1 + z)

(
p1

(
1 + g(x+ a1)z +

h(x+ a1)

2
z2 + · · ·

))
+ (1 + z)

(
p2

(
1 + g(x+ a2)z +

h(x+ a2)

2
z2 + · · ·

))
...

+ (1 + z)

(
pr

(
1 + g(x+ ar)z +

h(x+ ar)

2
z2 + · · ·

))
.

From the previous expression, we extract the coefficient of z2 to get an expression for h(x). Hence,

h(x)− (p1h(x+ a1) + p2h(x+ a2) + · · ·+ prh(x+ ar)) = 2(p1g(x+ a1) + p2g(x+ a2) + · · ·+ prg(x+ ar))

where 0 = g(a1 + 1) = g(a1 + 2) = · · · = g(−1) = g(0) and 0 = g(N) = g(N + 1) = · · · = g(N + ar − 2) =
g(N + ar − 1). The sum g(x) + h(x) gives the second moment for 0 < x < N .
The variance at x, denoted V (x), is computed as

V (x) = g(x) + h(x)− (g(x))2

where g(x) and h(x) are defined as follows

g(x) =
1

pr
g(x− ar)−

1

pr

r−1∑
i=1

pig(x+ ai − ar)−
1

pr

and

h(x)−
r∑
i=1

pih(x+ ai) = 2

r∑
i=1

pig(x+ ai).

We conclude this section with a table comparing the expected duration and the standard deviation when
the particle starts at x = N

2 for various N and probability table P = [[−2, 13], [1, 13], [2, 13]] .

N x Expected Duration Standard Deviation
10 5 8.613479400 6.321808669
20 10 25.23344696 18.44137538
30 15 42.94261730 29.22243692
40 20 59.58246747 37.26482832
50 25 75.36543964 43.30155080
60 30 90.70157954 48.13687964
70 35 105.8379590 52.27336865
80 40 120.8913756 55.98253147
90 45 135.9117966 59.40593597
100 50 150.9194653 62.61931702

7

3. 2-Dimensional Gambler’s Ruin

In this section, we consider the 2-dimensional gambler’s ruin and provide analogous results to the probabil-
ity, expected duration and variance discussed in Section 2. We introduce symbolic variables to the recurrence
equation of the probability and expected duration. We then compare the running times between symbolic
computation and the formula provided by Kmet and Petkovšek. We conclude this section with a detailed
analysis of the variance.

We begin by recalling the setup for the 2-dimensional case as described in Section 1.3. Consider a particle
starting at a point (x, y) in the interior of a rectangular grid of size M×N , where 0 < x < M and 0 < y < N .
At each step, the particle moves in one of four directions, with probabilities pL, pU , pR, and pB , corresponding
to left, up, right and down movements, respectively. The particle stops moving once it hits one of the four
boundaries, defined by x = 0, x = M,y = 0, or y = N .

3.1. Probability. We begin by considering the recurrence relation for the probability that the particle
reaches some position at one of the four boundaries. We then rewrite this recurrence and introduce new
variables for the probabilities at each x and y.

Define f(x, y) = fL(x, y)L+fR(x, y)R+fU (x, y)U +fD(x, y)D, where fL(x, y) is the probability that the
particle, starting at (x, y) will exit the rectangle on the left side, and analogously for fR(x, y), fU (x, y), fD(x, y),
and L,R,U,D are formal variables. For 0 < x < M and 0 < y < N , this probability satisfies the recurrence
relation

f(x, y) = pLf(x− 1, y) + pUf(x, y + 1) + pRf(x+ 1, y) + pBf(x, y − 1) (9)

with boundary conditions f(0, y) = L, f(x,N) = U, f(M,y) = R and f(x, 0) = B for all 0 < x < M and
0 < y < N . Thus, the coefficients of L,U,R, and B in f(x, y) represent the respective probabilities that a
particle starting at (x, y) will end on each boundary. For any 0 < x < M and 0 < y < N , f(x, y) can be
determined by solving a system of (M − 1)× (N − 1) linear equations with (M − 1)× (N − 1) unknowns.

In the next subsection, we will introduce symbolic variables into the recurrence relation for the expected
duration, as outlined in Section 2. This method, applied to Equation 9 , but the same approach works for
efficient computations of probabilities. This is further detailed in Appendix A.1.3.

3.2. Expected duration. We now consider the expected duration until the particle reaches some position
at one of the four boundaries. We focus on the case when pW = pN = pE = pS = 1

4 , and remark that one
can adapt our strategy for pW 6= pN 6= pE 6= pS as described in Appendix A.1.3.

Define g(x, y) as the expected number of steps that a particle starting at (x, y) will eventually take to
reach a position at one of the boundaries. For 0 < x < M and 0 < y < N , this expected duration satisfies
the recurrence relation

g(x, y) =
1

4
g(x− 1, y) +

1

4
g(x, y + 1) +

1

4
g(x+ 1, y) +

1

4
g(x, y − 1) + 1 (10)

with boundary conditions g(0, y) = g(M,y) = g(x, 0) = g(x,N) = 0 for all 0 < x < M and 0 < y < N .
Similarly to the probability case, g(x, y) can be determined by solving a system of (M − 1)× (N − 1) linear
equations with (M − 1)× (N − 1) unknowns.

Orr and Zeilberger provided a solution that reduces the number of linear equations from (M−1)×(N−1)
to O(N + M). Their approach exploits symmetry by solving g(0, y) = g(M − 1, y) for 0 < y < N , and
g(x, 1) = g(x,N − 1) for 0 < x < M [?OrrDoron]. Kmet and Petkovšek gave an explicit solution involving
a double sum, enabling direct computation of the expected duration without the need to solve systems of
equations or use recursion [?Kmet]. For the special case where M = N , they established the following result.

Theorem 3.1 ([?Kmet], Equation (11)). Consider the 2-dimensional gambler’s ruin problem as stated in
this section. Then, the expected duration of the game when the particle starts at (x, y) is given by

g(x, y) =
4

M2

M−1∑
k=1
k odd

sin

(
jkπ

M

)
cot

(
kπ

2M

)M−1∑
`=1
` odd

sin (i`πM) cot (`π2M)

sin2 (kπ2M) + sin2 (`π2M)


for any 0 ≤ x, y ≤M .

8

We propose an alternative approach to those of Orr and Zeilberger, and Kmet and Petkovšek. By rewriting
Equation (10), we obtain the recurrence

g(x, y) = 4g(x− 1, y)− g(x− 1, y − 1)− g(x− 1, y + 1)− g(x− 2, y)− 4 (11)

where x → x − 1. The boundary conditions remain g(0, y) = g(M,y) = g(x, 0) = g(x,N) = 0 for all
x, y. For each 1 ≤ j ≤ N − 1 define dj = g(1, j) and construct the set S = {d1, d2, . . . , dN−1}. Using
these variables, we reduce the system of equations. Initially, g(x, y) is solved by constructing a system of
(M −1)× (N −1) linear equations with (M −1)× (N −1) unknowns. By using S, we reformulate the system
into:

• N − 1 equations for x = 1,
• (M − 2)× (N − 1) equations for 2 ≤ x ≤M − 1, and
• N − 1 boundary equations for x = M .

The boundary equations, derived using Equation (11), are expressed in terms of the variables in S and
reduce the system to N−1 boundary equations with N−1 unknowns. Once these N−1 variables are solved,
the remaining (M − 2)× (N − 1) equations can be determined. We illustrate this process in Example 5.

Example 5. Let M = N = 3. This system consists of 4 linear equations with 2 unknowns: d1 = g(1, 1) and
d2 = g(1, 2). The boundary conditions are g(0, y) = g(M,y) = g(x, 0) = g(x,N) = 0 for all 0 ≤ x, y ≤ 3.
Using the recurrence in Equation (11), we derive

d1 = g(1, 1)

d2 = g(1, 2)

g(2, 1) = 4d1 − d2 − 4

g(2, 2) = 4d2 − d1 − 4

g(3, 1) = 0 = 16d1 − 8d2 − 16

g(3, 2) = 0 = 16d2 − 8d1 − 16.

Solving the last two equations yields d1 = 2 and d2 = 2. Substituting these values into the earlier equations
gives g(1, 1) = g(1, 2) = g(2, 1) = g(2, 2) = 2.

3.3. Comparison between Kmet and Petkovšek formula and faster method. We compare the
computational running times in Maple between Kmet and Petkovšek’s formula for the expected duration and
the faster method introduced in the previous section. Specifically, we evaluate the performance of NewGR2dL
and KmetPetkovsek, as described in Appendix A.1.3. Using the commands time(evalf(NewGR2dL(M,M))) and
time(KmetPetkovsek(M))), we measure the execution time for varying values of M . The results provide a
direct comparison of the efficiency of the two methods. The measured times in Maple are summarized below:

M Faster Method Kmet and Petkovšek M Faster Method Kmet and Petkovšek
(seconds) (seconds) (seconds) (seconds)

10 0.015 0.015 90 9.843 181.953
20 0.015 0.500 100 14.765 301.906
30 0.093 1.859 110 21.171 451.625
40 0.343 5.703 120 36.187 641.609
50 0.468 15.171 130 57.281 872.015
60 1.171 35.125 140 80.140 1155.281
70 2.640 63.062 150 133.109 1564.515
80 5.062 114.234 160 226.312 2023.125

While Kmet and Petkovšek’s formula expresses the expected duration as a double sum, it is computation-
ally less efficient compared to our method.

9

3.4. Variance. In this subsection, we analyze the variance of the duration of the 2-dimensional gambler’s
ruin game under the condition pW = pN = pE = pS = 1

4 . The computation builds upon the expected
duration discussed Section 3.2.

Define F (x, y, t) as the probability generating function of the duration of the 2-dimensional gambler’s ruin
game. For 0 < x < M and 0 < y < N , this function satisfies the recurrence relation

F (x, y, t) =
t

4
(F (x− 1, y, t) + F (x+ 1, y, t) + F (x, y − 1, t) + F (x, y + 1, t)) (12)

where F (0, 0, t) = 1 and F (M,N, t) = 1. Making the substitution t 7→ z + 1 yields

F (x, y, z) =
1 + z

4
(F (x− 1, y, z) + F (x+ 1, y, z) + F (x, y − 1, z) + F (x, y + 1, z)), (13)

with F (0, 0, z) = 1 and F (M,N, z) = 1. We derive an expression to estimate the second factorial moment.
Expanding F (x, y, z) as a Taylor series gives

F (x, y, z) = 1 + g(x, y)z +
h(x, y)

2!
z2 + · · · (14)

where g(x, y) is the expected duration as defined in Section 3.2, and h(x, y) represents the second factorial
moment at (x, y). Substituting Equation (14) into Equation (12) and extracting the coefficient of z2 yields
an expression for h(x, y):

4h(x, y)−h(x−1, y)−h(x+1, y)−h(x, y−1)−h(x, y+1) = 2(g(x−1, y)+g(x+1, y)+g(x, y−1)+g(x, y+1))

where g(0, y) = g(M,y) = g(x, 0) = g(x,N) = 0 for all x, y. The sum g(x, y) + h(x, y) gives the second
moment for 0 < x < M and 0 < y < N .

The variance at (x, y), denoted by V (x, y), is computed as

V (x, y) = g(x, y) + h(x, y)− (g(x, y))2

where g(x, y) and h(x, y) are defined by

g(x, y) = 4g(x− 1, y)− g(x− 1, y − 1)− g(x− 1, y + 1)− g(x− 2, y)− 4

and

4h(x, y)−h(x−1, y)−h(x+1, y)−h(x, y−1)−h(x, y+1) = 2(g(x−1, y)+g(x+1, y)+g(x, y−1)+g(x, y+1)).

We conclude this section with a table comparing the expected duration and the standard deviation when
the particle starts at (x, y) = (M2 ,

M
2) for various M under probabilities P = [16 ,

1
3 ,

1
6 ,

1
3].

M (x, y) Expected Duration Standard Deviation
2 (1, 1) 1 0
4 (2, 2) 4.470588235 2.891342524
6 (3, 3) 10.3030 7.102295958
8 (4, 4) 18.47746573 12.97689858
10 (5, 5) 28.99020033 20.52455308
12 (6, 6) 41.84019550 29.74741677
14 (7, 7) 57.02707373 40.64621816
16 (8, 8) 74.55067222 53.22126050
18 (9, 9) 94.41091165 67.47268859
20 (10, 10) 116.6077497 83.40057864

10

4. A Mirror Step Variant of Gambler’s Ruin

In this section, we begin by formulating a new generalization of the gambler’s ruin problem in 1-dimension.
A particle starts at some point x on a line of length N where 0 < x < N . At each step, the particle moves
from x to x− 1 with probability q1, or moves from x to x+ 1 with probability q2, or moves from x to N − x
with probability p where 0 < p < 1 and q1 + q2 + p = 1. We call this last step the mirror step. The particle
continues to walk on the line until it reaches 0 or N . We focus on the case when q1 = q2 = 1−p

2 and we call
this the symmetric case.

4.1. Probability. Define f(x) = f
(p)
N (x) as the probability that a particle starting at x will eventually reach

N . For 0 < x < N , this probability satisfies the recurrence relation

f(x) =
1− p

2
f(x− 1) +

1− p
2

f(x+ 1) + pf(N − x) (15)

where f(0) = 0 and f(N) = 1. Before providing the solution to Equation (15), we will try to guess the limit
as N goes to infinity of the probability when the particle starts at some x and ends at N , by using a fixed,
large, N as discussed in Section 1.4. We are interested in

lim
N→∞

f
(p)
N (x) (16)

and we hope to get expressions for when x = 2 and x = N − 2. First, we describe the approach that
will generate data for fixed values of N and x. Using the data, we can make some guesses for the limit in
Equation (16).

• Fix N as large as possible and use Maple to generate N − 1 linear equations with Equation (15).
• Solve for the N − 1 linear equations.

• Generate data for f
(p)
N (x) for different p values with fixed N and a fixed location x.

• We use the function identify in Maple to try to identify the numerical values given by f
(p)
N (x). The

function identify is based, in part, on the continued fraction expansion of the numerical values. As N
grows the numerical value will converge to some number.

• Guess a formula for the number with fixed x and varying p.

We begin with an example on how to generate data in Maple using the code accompanying this article.

Example 6. Let N = 100 and x = 2. We generate data for the probability that if the particle starts at
x = 2, the particle eventually ends at 100. Let p ∈ { 12 ,

1
3 ,

1
4 , . . . ,

1
10}.

We use the procedure Lk(p,x,N), as described in Appendix A.1.4, in Maple which generates the following
data in about 8.390 seconds:

T :=[0.48528137423857029281, 0.46410161513775458705, 0.444, 0.42705098312484227231,

0.41171425595857973499, 0.39811169380648470689, 0.38595282133533513790, 0.375,

0.36506306819388080622].

The sequence T reads as follows. If the particle starts at x = 2 and p = 1
2 , the particle moves from x to

x − 1 with probability 1−p
2 = 1

4 , or moves from x to x + 1 with probability 1−p
2 = 1

4 , or moves from x to

100− x with probability p = 1
2 . Then, the probability of the particle starting at x = 2 and ending at 100 is

T1 = 0.48528137423857029281. Similarly, if the particle starts at x = 2 and p = 1
3 , the particle moves from

x to x− 1 with probability 1−p
2 = 1

3 , or moves from x to x + 1 with probability 1−p
2 = 1

3 , or moves from x

to 100− x with probability p = 1
3 . Then, the probability of the particle starting at x = 2 and ending at 100

is T2 = 0.46410161513775458705. Thus, Ti is the probability of the particle starting at x = 2 and ending at
100 for p = 1

i+1 where 1 ≤ i ≤ 9.
Using identify in Maple for the sequence T , we conjecture that each of the probabilities in T converge

to

M :=

[
−8 + 6

√
2,−3 + 2

√
3,

4

9
,
−5 + 3

√
5

4
,
−24 + 14

√
6

25
,
−7 + 4

√
7

9
,
−32 + 36

√
2

49
,

3

8
,
−40 + 22

√
10

81

]
.

11

That is the probability of the particle starting at x = 2 and ending at N as N grows converges to Mi for
p = 1

i+1 where 1 ≤ i ≤ 9.

The previous example illustrates that when the particle starts at x = 2, {f (p)N (2)} converges fast. We state
the following guess for the expression of the limit when x = 2 and in Corollary 4.4.1 we provide a proof.

Guess 4.1. If the particle starts at x = 2, then

lim
N→∞

f
(p)
N (2) =

2
√
p(1 + p− 2

√
p)

(1− p)2
.

Using the same approach from above, we can obtain data for x = N−2. We guess the following expression
of the limit when x = N − 2 and provide a proof in Corollary 4.4.1.

Guess 4.2. If the particle starts at x = N − 2, then

lim
N→∞

f
(p)
N (N − 2) =

(1 + p)(1 + p− 2
√
p)

(1− p)2
.

We were able to guess more expressions for limN→∞ fN (x) with other x values. After we made these
guesses, we established the following key lemma which provides a relation between f(x) and f(N − x) for
any 0 ≤ x ≤ N . We stress that this is only true for the symmetric case when the probability of the particle
moving from x to x− 1 is the same as the probability of the particle moving from x to x+ 1.

Lemma 4.3. Consider the symmetric case when f(x) = 1−p
2 f(x − 1) + 1−p

2 f(x + 1) + pf(N − x) with
boundary conditions f(0) = 0, f(N) = 1 for some 0 < p < 1. For any 0 ≤ x ≤ N , the following identity
holds

f(x) + f(N − x) = 1.

Proof. Call g(x) = 1− f(N −x). We will show that f(x) + f(N −x) = 1 by proving that g(x) = f(x). Note
that g(0) = 0 and g(N) = 1, and f(x) = 1− g(N − x). Using the recurrence in Equation (15), we substitute
1− g(N − x) for f(x) and obtain:

g(N − x) =
1− p

2
g(N − (x− 1)) +

1− p
2

g(N − (x+ 1)) + pg(x).

That is,

g(x) =
1− p

2
g(x+ 1)) +

1− p
2

g(x− 1) + pg(N − x)

which has boundary conditions g(0) = 0 and g(N) = 1. Therefore, g(x) = f(x) as desired. �

Lemma 4.3 establishes that the sums of the probabilities when the particle starts at x and when the
particle starts at N − x equals to 1. Using this identity, we rewrite Equation (15) to

f(x) =
p

1 + p
+

1

2

(
1− p
1 + p

)
f(x− 1) +

1

2

(
1− p
1 + p

)
f(x+ 1), f(0) = 0, f(N) = 1. (17)

We can now derive the probability of the particle ending at N if it starts at some x, for general N, x and
p.

Theorem 4.4. Consider the generalization of the gambler’s ruin problem when we add a mirror step. Then,
the probability of ending at N starting at x is given by

f(x) =
1

2

(
1−√p
1+
√
p

)N
+ 1(

1+
√
p

1−√p

)N
−
(

1−√p
1+
√
p

)N (1 +
√
p

1−√p

)x
+

1

2

(
1+
√
p

1−√p

)N
+ 1(

1−√p
1+
√
p

)N
−
(

1+
√
p

1−√p

)N (1−√p
1 +
√
p

)x
+

1

2

whenever we restrict the particle moves by either moving from x to x− 1 with probability q1, or from x to
x+ 1 with probability q2, or from x to N − x with probability p where q1 = q2 = 1−p

2 .
12

Proof. We can solve for Equation (17) because it is an inhomogeneous recurrence relation. Hence, we
find a homogeneous and an inhomogeneous solution. The general solution to the homogeneous equation

f(x) = 1
2

(
1−p
1+p

)
f(x− 1) + 1

2

(
1−p
1+p

)
f(x+ 1) is

f(x) = A

(
1 + p+ 2

√
p

1− p

)x
+B

(
1 + p− 2

√
p

1− p

)x
for some numbers A and B. Next, we find the particular solution to the inhomogeneous relation by setting

f∗(x) = C for some constant C. Then,

f∗(x) =
p

1 + p
+

1

2

(
1− p
1 + p

)
f∗(x− 1) +

1

2

(
1− p
1 + p

)
f∗(x+ 1)

becomes

C =
p

1 + p
+

1

2

(
1− p
1 + p

)
C +

1

2

(
1− p
1 + p

)
C

which has solution C = 1
2 .

Therefore, f∗(x) = 1
2 is the particular solution, and the general inhomogeneous solution is

f(x) = A

(
1 + p+ 2

√
p

1− p

)x
+B

(
1 + p− 2

√
p

1− p

)x
+

1

2
. (18)

Using Maple, we find A and B by using the boundary conditions to get a system of two linear equations.
Namely,

0 = A+B +
1

2

and

1

2
= A

(
1 + p+ 2

√
p

1− p

)N
+B

(
1 + p− 2

√
p

1− p

)N
.

Solving for the above linear equations gives

A =
1

2

(
1+p−2√p

1−p

)N
+ 1(

1+p+2
√
p

1−p

)N
−
(

1+p−2√p
1−p

)N (19)

and

B =
1

2

(
1+p+2

√
p

1−p

)N
+ 1(

1+p−2√p
1−p

)N
−
(

1+p+2
√
p

1−p

)N . (20)

Rewriting Equations 18, 19 and 20 gives

f(x) = A

(
1 +
√
p

1−√p

)x
+B

(
1−√p
1 +
√
p

)x
+

1

2

13

with

A =
1

2

(
1−√p
1+
√
p

)N
+ 1(

1+
√
p

1−√p

)N
−
(

1−√p
1+
√
p

)N ,

B =
1

2

(
1+
√
p

1−√p

)N
+ 1(

1−√p
1+
√
p

)N
−
(

1+
√
p

1−√p

)N .

This completes the proof. �

Theorem 4.4 provides a formula for limN→∞ fN (x) for any x where 0 < x < N .

Corollary 4.4.1. If the particle starts at some x where 0 < x < N , then

lim
N→∞

f
(p)
N (x) =

1

2
− 1

2

(
1−√p
1 +
√
p

)x

whenever we restrict the particle moves by either moving from x to x− 1 with probability q1, or from x to
x+ 1 with probability q2, or from x to N − x with probability p where q1 = q2 = 1−p

2 .

Proof. Let

f
(p)
N (x) =

1

2

(
1−√p
1+
√
p

)N
+ 1(

1+
√
p

1−√p

)N
−
(

1−√p
1+
√
p

)N (1 +
√
p

1−√p

)x
+

1

2

(
1+
√
p

1−√p

)N
+ 1(

1−√p
1+
√
p

)N
−
(

1+
√
p

1−√p

)N (1−√p
1 +
√
p

)x
+

1

2
, (21)

and

g
(p)
N (x) =

1

2

1(
1+
√
p

1−√p

)N (1 +
√
p

1−√p

)x
+

1

2
− 1

2

(
1−√p
1 +
√
p

)x
.

We will show that limN→∞ f
(p)
N (x)− g(p)N (x) = 0. Observe that

14

f
(p)
N (x)− g(p)N (x) =

1

2

(
1−√p
1+
√
p

)N
+ 1(

1+
√
p

1−√p

)N
−
(

1−√p
1+
√
p

)N (1 +
√
p

1−√p

)x
+

1

2

(
1+
√
p

1−√p

)N
+ 1(

1−√p
1+
√
p

)N
−
(

1+
√
p

1−√p

)N (1−√p
1 +
√
p

)x

− 1

2

1(
1+
√
p

1−√p

)N (1 +
√
p

1−√p

)x
+

1

2

(
1−√p
1 +
√
p

)x

=
1

2

(
1 +
√
p

1−√p

)x
(

1−√p
1+
√
p

)N
+ 1(

1+
√
p

1−√p

)N
−
(

1−√p
1+
√
p

)N − (1−√p
1 +
√
p

)N
+

1

2

(
1−√p
1 +
√
p

)x
(

1+
√
p

1−√p

)N
+ 1(

1−√p
1+
√
p

)N
−
(

1+
√
p

1−√p

)N +
1

2


=

1

2

(
1 +
√
p

1−√p

)x
(

1−√p
1+
√
p

)N
+
(

1−√p
1+
√
p

)2N
(

1+
√
p

1−√p

)N
−
(

1−√p
1+
√
p

)N
− 1

2

(
1−√p
1 +
√
p

)x 1 +
(

1−√p
1+
√
p

)N
(

1+
√
p

1−√p

)N
−
(

1−√p
1+
√
p

)N


=
1

2

(
1 +

(
1−√p
1+
√
p

)N)((
1+
√
p

1−√p

)x (
1−√p
1+
√
p

)N
−
(

1−√p
1+
√
p

)x)
(

1+
√
p

1−√p

)N
−
(

1−√p
1+
√
p

)N

=
1

2

(
1 +

(
1−√p
1+
√
p

)N)((
1+
√
p

1−√p

)x
− 1
)

(
1+
√
p

1−√p

)2N
− 1

.

Since

lim
N→∞

(
1−√p
1 +
√
p

)N
= 0

and

lim
N→∞

1

2

((
1+
√
p

1−√p

)x
− 1
)

(
1+
√
p

1−√p

)2N
− 1

= 0,

It follows that

lim
N→∞

f
(p)
N (x)− g(p)N (x) = 0.

Thus,

lim
N→∞

f
(p)
N (x) =

1

2
− 1

2

(
1−√p
1 +
√
p

)x
as desired.

�

Using Corollary 4.4.1 provides a proof for Guess 1.1. See the following example.

Example 7. Setting x = 1,

lim
N→∞

f
(p)
N (1) =

1

2
− 1

2

(
1−√p
1 +
√
p

)
=

√
p− p

1− p
as expected.

15

4.2. Expected duration. We now consider the expected duration of the gambler’s ruin problem with a
mirror step. Define g(x) as the expected number of steps that a particle starting at x will eventually reach
a position 0 or N . For 0 < x < N , this expected duration satisfies the recurrence relation

g(x) =
1− p

2
g(x− 1) +

1− p
2

g(x+ 1) + pg(N − x) + 1, g(0) = 0, g(N) = 0. (22)

We use this recurrence relation to find a closed formula for the expected duration of the game.

Theorem 4.5. Consider the generalization of the gambler’s ruin problem when we add a mirror step. Then,
the expected duration of ending at 0 or N starting at x is given by

g(x) =
1

1− p
x(N − x)

whenever we restrict the particle moves by either moving from x to x− 1 with probability q1, or from x to
x+ 1 with probability q2, or jumps to N − x with probability p where q1 = q2 = 1−p

2 .

Remark: When p = 0, Theorem 4.5 recovers the formula for the expected duration of the classical
gambler’s ruin game.

Proof. Let h(x) = 1
1−px(N − x) and observe that h(0) = 0, h(N) = 0. We prove that h(x) satisfies the same

recurrence relation as g(x). Applying the recurrence from Equation (22) to h(x) and simplifying yields

1− p
2

h(x− 1) +
1− p

2
h(x+ 1) + ph(N − x) + 1

=
1− p

2

(
1

1− p
(x− 1)(N − x+ 1)

)
+

1− p
2

(
1

1− p
(x+ 1)(N − x− 1)

)
+ p

(
1

1− p
x(N − x)

)
+ 1

=
1

1− p
x(N − x).

Hence, h(x) satisfies the following recurrence relation

h(x) =
1− p

2
h(x− 1) +

1− p
2

h(x+ 1) + ph(N − x) + 1, h(0) = 0, h(N) = 0.

Thus, we get that h(x) = g(x) which completes the proof. �

5. Future Work

In Section 4, we consider a generalization of the gambler’s ruin problem where the particle starts at some
point x on a line of length N where 0 < x < N . At each step, the particle either moves to the left by one step
with probability q1, moves to the right by one step with probability q2, or moves to N − x with probability
p where 0 < p < 1 and q1 + q2 + p = 1. We focus on the case when q1 = q2 = 1−p

2 , and we provide formulas
for the probability that the particle ends at N and the expected number of steps to finish the game. Thus,
it is an open problem to give formulas for general q1, q2 and p.

Computational evidence suggests the following conjecture when the probability of moving from x to x−1
is the same as the probability of moving from x to N − x.

Conjecture 5.1. Consider the generalization of the gambler’s ruin problem when we add a mirror step. If
the particle starts at x = 1, then

lim
N→∞

f
(p)
N (1) =

√
(p+ 1)(1− 3p+ 4p2)− (1− 2p)(p+ 1)

2p(p+ 1)

whenever we restrict the particle moves by either moving from x to x− 1 with probability q1, or from x to
x+ 1 with probability p, or from x to N − x with probability q2 where q1 = q2 = 1−p

2 .

Acknowledgements

The author thanks her advisor Dr. Doron Zeilberger for the introduction to the problem and feedback
on an earlier draft. The author was supported by the NSF Graduate Research Fellowship Program under
Grant No. 2233066.

16

Appendix A. Computational Tools for Analyzing the Gambler’s Ruin Problem

A.1. Method Descriptions. There are four text files accompanying this article: GGR.txt, GGR1d.txt,

GGR2d.txt, and GGR1dMirror.txt. In this section, we will describe the functionality of some of the main
procedures. These text files should be saved in the same directory. All procedures were written and tested
for Maple 20.

A.1.1. GGR.txt. The GGR.txt file contains the following main procedures.

• ProbN(N)

Returns a list L of length N − 1.
This function inputs a positive integer N and computes the probability of ending at N for every

1 ≤ x ≤ N − 1.
Example:

read ‘GGR.txt‘:

N:=10;

ProbN(N);

Output:
{[1/10, 1/5, 3/10, 2/5, 1/2, 3/5, 7/10, 4/5, 9/10]}

• ExpN(N)

Returns a list L of length N − 1.
This function inputs a positive integer N and computes the expected number of steps of ending

at either 0 or N for every 1 ≤ x ≤ N − 1.

A.1.2. GGR1d.txt. The GGR1d.txt file contains procedures for the classical gambler’s ruin game. In addition,
it contains procedures for the 1-dimensional case. We provide the main procedures.

• GR1dPG(N,P)

Returns a list L of length N − 1.
This function inputs a positive integerN and a probability table P where P = [[a1, p1], [a2, p2], ..., [ar, pr]]

and computes the probability of the particle ending at some position ≥ N for every 1 ≤ x ≤ N − 1.
Remark: This procedures uses the classical approach of solving for N − 1 linear equations.
Example:

read ‘GGR1d.txt‘:

P:=GR1dPG(10,[[-1,1/2],[1,1/2]]);

Output:
{[1/10, 1/5, 3/10, 2/5, 1/2, 3/5, 7/10, 4/5, 9/10]}

• GR1dLG(N,P)

Returns a list L of length N − 1.
This function inputs a positive integerN and a probability table P where P = [[a1, p1], [a2, p2], ..., [ar, pr]]

and computes the expected number of steps for the particle to end at ≤ 0 or ≥ N for every
1 ≤ x ≤ N − 1.

Remark: This procedures uses the classical approach of solving for N − 1 linear equations.
• NewGR1dPG(N,P)

Returns a list L of length N − 1.
This function inputs a positive integerN and a probability table P where P = [[a1, p1], [a2, p2], ..., [ar, pr]]

and computes the probability for the particle to end at ≥ N for every 1 ≤ x ≤ N − 1.
Remark: This procedures uses the faster method.
Example:

read ‘GGR1d.txt‘:

P:=NewGR1dPG(10,[[-1,1/2],[1,1/2]]);

17

Output:
{[1/10, 1/5, 3/10, 2/5, 1/2, 3/5, 7/10, 4/5, 9/10]}

• NewGR1dLG(N,P)

Returns a list L of length N − 1.
This function inputs a positive integerN and a probability table P where P = [[a1, p1], [a2, p2], ..., [ar, pr]]

and computes the expected number of steps for the particle to end at ≤ 0 or ≥ N for every
1 ≤ x ≤ N − 1.

Remark: This procedures uses the faster method.

A.1.3. GGR2d.txt. The GGR2d.txt file contains procedures for the 2-dimensional gambler’s ruin game. We
provide the main procedures.

• GR2dP(M,N,L,U,R,B)

Returns an (M − 1)× (N − 1) matrix whose entries are linear combinations of L,U,R,B.
This function inputs positive integers M,N and symbols L,U,R,B where L is the left edge, U is

the top edges, R is the right edge and B is the bottom edge of the M ×N rectangle, and computes
the probability of the particle starting at some point (a, b) and ending on L, U, R or B for every
1 ≤ a ≤M − 1 and 1 ≤ b ≤M − 1.

Remark: This procedures uses the classical approach of solving for (M − 1) × (N − 1) linear
equations.

Example:

read ‘GGR2d.txt‘:

GR2dP(3,3,L,U,R,B);

Output:
{[[(3L)/8 + (3B)/8 + U/8 + R/8, (3L)/8 + B/8 + (3U)/8 + R/8], [L/8 + (3B)/8 + U/8 + (3R)/8,

L/8 + B/8 + (3U)/8 + (3R)/8]]}

• GR2dL(M,N)

Returns an (M − 1)× (N − 1) matrix M .
This function inputs positive integers M,N and computes the expected number of steps of the

particle starting at some point (a, b) and ending on L, U, R or B for every 1 ≤ a ≤ M − 1 and
1 ≤ b ≤M − 1.

Remark: This procedures uses the classical approach of solving for (M − 1) × (N − 1) linear
equations.

Example:

read ‘GGR2d.txt‘:

GR2dL(3,3);

Output:
{[[2, 2], [2, 2]]}

• NewGR2dP(M,N,L,U,R,B)

Returns an (M − 1)× (N − 1) matrix whose entries are linear combinations of L,U,R,B.
This function inputs positive integers M,N and symbols L,U,R,B where L is the left edge, U is

the top edges, R is the right edge and B is the bottom edge of the M ×N rectangle, and computes
the probability of the particle starting at some point (a, b) and ending on L, U, R or B for every
1 ≤ a ≤M − 1 and 1 ≤ b ≤M − 1.

Remark: This procedures uses the faster method.
Example:

read ‘GGR2d.txt‘:

NewGR2dP(3,3,L,U,R,B);

Output:
18

{[[(3L)/8 + (3B)/8 + U/8 + R/8, (3L)/8 + B/8 + (3U)/8 + R/8], [L/8 + (3B)/8 + U/8 + (3R)/8,

L/8 + B/8 + (3U)/8 + (3R)/8]]}

• NewGR2dL(M,N)

Returns an (M − 1)× (N − 1) matrix M .
This function inputs positive integers M,N and computes the expected number of steps of the

particle starting at some point (a, b) and ending on L, U, R or B for every 1 ≤ a ≤ M − 1 and
1 ≤ b ≤M − 1.

Remark: This procedures uses the faster method.
Example:

read ‘GGR2d.txt‘:

NewGR2dL(3,3);

Output:
{[[2, 2], [2, 2]]}

• NewGR2dPG(M,N,L,U,R,B,P)

Returns an (M − 1)× (N − 1) matrix whose entries are linear combinations of L,U,R,B.
This function inputs positive integers M,N , symbols L,U,R,B where L is the left edge, U is the

top edges, R is the right edge and B is the bottom edge of the M ×N rectangle, and a probability
table P = [pL, pU , pR, pB] such that the particle moves left by one step with probability pL, or moves
up by one step with probability pU , or moves right by one step with probability pR, or moves down
by one step with probability pB , and computes the probability of the particle starting at some point
(a, b) and ending on L, U, R or B for every 1 ≤ a ≤M − 1 and 1 ≤ b ≤M − 1.

Remark: This procedures uses the faster method.
Example:

read ‘GGR2d.txt‘:

NewGR2dPG(3,3,L,U,R,B,[1/4,1/4,1/4,1/4]);

Output:
{[[R/8 + (3L)/8 + U/8 + (3B)/8, R/8 + (3L)/8 + (3U)/8 + B/8], [(3R)/8 + L/8 + U/8 + (3B)/8,

(3R)/8 + L/8 + (3U)/8 + B/8]]}

• NewGR2dLG(M,N,P)

Returns an (M − 1)× (N − 1) matrix.
This function inputs positive integers M,N , and a probability table P = [pL, pU , pR, pB] such that

the particle moves left by one step with probability pL, or moves up by one step with probability
pU , or moves right by one step with probability pR, or moves down by one step with probability pB ,
and computes the expected number of steps of the particle starting at some point (a, b) and ending
on L, U, R or B for every 1 ≤ a ≤M − 1 and 1 ≤ b ≤M − 1.

Remark: This procedures uses the faster method.
Example:

read ‘GGR2d.txt‘:

NewGR2dLG(3,3,[1/4,1/4,1/4,1/4]);

Output:
{[[2, 2], [2, 2]]}

• KmetPetkovsek(N)

Returns an (N − 1)× (N − 1) matrix.
This function inputs a positive integer N and implements Kmet and Petkovsek’s formula for the

expected duration of the 2-dimensional gambler’s ruin game for the M = N case.
Example:

read ‘GGR2d.txt‘:

19

KmetPetkovsek(3);

Output:
{[[2, 2], [2, 2]]}

A.1.4. GGR1dMirror.txt. The GGR1dMirror.txt file contains the following main procedures for the new gen-
eralization of gambler’s ruin where we add a third step.

• ProbN2(N,P)

Returns a list L of length N .
This function inputs a positive integer N and a probability table P where P = [p1, p2, p3] where

p1 + p2 + p3 = 1 and outputs a list L of length N such that L[x] is the probability of the particle
ending at N when it starts at x where the particle can move from x to x− 1 with probability p1, or
x to x+ 1 with probability p2, or x to N − x with probability p3.

Example:

read ‘GGR1dMirror.txt‘:

ProbN2(5,[1/3,1/3,1/3]);

Output:
{[7/19, 9/19, 10/19, 12/19, 1]}

• ExpN2(N,P)

Returns a list L of length N .
This function inputs a positive integer N and a probability table P where P = [p1, p2, p3] where

p1 + p2 + p3 = 1 and outputs a list L of length N such that L[x] is the expected number of steps
that the particle takes to end at N or 0 when it starts at x where the particle can move from x to
x− 1 with probability p1, or x to x+ 1 with probability p2, or x to N − x with probability p3.

Example:

read ‘GGR1dMirror.txt‘:

ExpN2(5,[1/3,1/3,1/3]);

Output:
{[6, 9, 9, 6, 0]}

• Lk(p,x,N)

Returns a number.
This function inputs a probability value p, 0 < p < 1, and positive integers x,N where 0 < x < N

and outputs the exact probability of the particle ending at N when it starts at location x where with
probability (1 − p)/2 the particle moves to x − 1, with probability (1 − p)/2 the particle moves to
x+ 1 and with probability p the particle moves to N − x.

Example:

read ‘GGR1dMirror.txt‘:

Lk(1/3,4,100);

Output:
{0.4974226119}

(L. Martinez) Department of Mathematics, Rutgers University, Piscataway, NJ 08854

E-mail address: lucy.martinez@rutgers.edu

20

mailto:lucy.martinez@rutgers.edu

	1. Introduction
	1.1. Classical gambler's ruin problem
	1.2. Generalized 1-dimensional gambler's ruin
	1.3. 2-dimensional gambler's ruin
	1.4. A mirror step variant of gambler's ruin

	2. Generalized 1-dimensional Gambler's Ruin
	2.1. Probability
	2.2. Expected duration
	2.3. Comparison between the slower method and the faster method
	2.4. Variance

	3. 2-Dimensional Gambler's Ruin
	3.1. Probability
	3.2. Expected duration
	3.3. Comparison between Kmet and Petkovšek formula and faster method
	3.4. Variance

	4. A Mirror Step Variant of Gambler's Ruin
	4.1. Probability
	4.2. Expected duration

	5. Future Work
	Acknowledgements
	Appendix A. Computational Tools for Analyzing the Gambler's Ruin Problem
	A.1. Method Descriptions

