
PROOFS OF THREE GEODE CONJECTURES

TEWODROS AMDEBERHAN AND DORON ZEILBERGER

Abstract. In the May 2025 issue of the Amer. Math. Monthly, Nor-
man J. Wildberger and Dean Rubine introduced a new kind of multi-
indexed numbers, that they call ‘Geode numbers’, obtained from the
Hyper-Catalan numbers. They posed three intriguing conjectures about
them, that are proved in this note.

1. Introduction

In a recent captivating Monthly article [2], by Norman J. Wildberger and
Dean Rubine, the authors utilize a generating series to solve the general
univariate polynomial equation. They also explored a “curious factoriza-
tion" of this hyper-Catalan generating series, and in the penultimate section,
they made three conjectures about this algebraic object that they termed the
Geode array.
In this note, we prove these three conjectures. At least as interesting as the
actual statements of the conjectures (now theorems) is how we proved them,
using several important tools of the trade.

The first tool is the multinomial theorem

(x1 + · · · + xr)n =
∑

m1,....mr≥0
m1+···+mr=n

(
n

m1, . . . ,mr

)
xm1

1 · · · x
mr
r .(1.1)

The second tool is constant-term extraction, the third is Wilf-Zeilberger
(WZ) algorithmic proof theory[3] and the last-but-not-least tool is Lagrange
Inversion [4] that states that: if u(t) and Φ(t) are formal power series start-
ing at t1 and t0, respectively, then u(t) = tΦ(u(t)) implies

[tn]u(t) =
1
n

[zn−1]Φ(z)n.(1.2)

Here [zn]F(z) means the coefficient of zn in the Laurent expansion of F(z).
We shall use the notation CTCTCT zF(z) for the constant-term of F(z).
We now bring in the relevant notation adopted in [2] with a caveat that
indices are shifted slightly. Consider the equation 0 = 1 − α +

∑
k≥1 tkα

k+1
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and denote its series solution by α = SSS [t1, t2, . . . ]. Letting SSS 1 = t1+ t2+ · · · ,
Wildberger-Rubine proved [2, Theorem 12] the existence of a (remarkable!)
factorization SSS − 1 = SSS 1GGG and the factor GGG[t1, t2, . . . ] (that they dubbed the
Geode series). Furthermore, we opt to use G[m1,m2, . . . ] for the coefficient
of tm1

1 tm2
2 · · · in the polyseries GGG[t1, t2, . . . ]. We are now ready to state and

prove the three conjectures from [2, p. 399]. For the sake of clarity, let’s
describe the first of these in some detail.
Suppose we are solving the polynomial equation 0 = 1 − α + t1α

2 + t2α
3

through the formal power series

α = SSS [t1, t2] =
∑

m1,m2≥0

C[m1,m2] tm1
1 tm2

2 .

Consequently, the corresponding Geode series becomes GGG[t1, t2] = SSS [t1,t2]−1
t1+t2

.
We follow closely [4] to engage the Lagrange Inversion in the extraction of
the coefficients C[m1,m2] satisfying n = m1 + m2. Then, the amalgamation
of such monomials is given by (1.2) in the form of∑

m1+m2=n

C[m1,m2] tm1
1 tm2

2 = [Yn]

3n+1∑
k=1

1
k

[zk−1]
(
1 + Yt1z2 + Yt2z3

)k


= [Yn]
∑

m1,m2≥0

(
1+2m1+3m2

m1,m2,1+m1+2m2

)
1 + 2m1 + 3m2

Ym1+m2tm1
1 tm2

2

=
∑

m1,m2≥0
m1+m2=n

(
1+2m1+3m2

m1,m2,1+m1+2m2

)
1 + 2m1 + 3m2

tm1
1 tm2

2

=

n∑
m2=0

(
1+2n+m2

n−m2,m2,1+n+m2

)
1 + 2n + m2

tn−m2
1 tm2

2

=

n∑
k=0

(
n
k

)(
2n+1+k
n+1+k

)
2n + 1 + k

tn−k
1 tk

2.

For example, the following reveal both coefficients C[m1,m2] and G[m1,m2]:∑
m1+m2=3

C[m1,m2] tm1
1 tm2

2 = (t1 + t2)(5t2
1 + 16t1t2 + 12t2

2),∑
m1+m2=4

C[m1,m2] tm1
1 tm2

2 = (t1 + t2)(14t3
1 + 70t2

1t2 + 110t1t2
2 + 55t3

2).

As a first step, we reprove that the linear term t2 + t3 divides the polynomial

Pn(t1, t2) :=
n∑

k=0

(
n
k

)(
2n+1+k
n+1+k

)
2n + 1 + k

tn−k
1 tk

2.
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This is equivalent to proving that Pn(−t2, t2) = 0, which, in turn, is equiva-
lent to the following identity:

n∑
k=0

(−1)k

(
n
k

)(
2n+1+k
n+1+k

)
2n + 1 + k

= 0.

To continue, we invoke the role of the WZ method. Define the functions
F(n, k) := (−1)k (n

k)(2n+1+k
n+1+k )

2n+1+k and also H(n, k) := −F(n, k) · k(n+1+k)
n(2n+1) to verify

F(n, k) = H(n, k + 1) − H(n, k). The rest is routine [3].

Our next step will actually find G[m1,m2]. For that we perform the division
Pn(t1,t2)

t1+t2
to obtain (algebraically) that

[tn−1−i
1 ti

2]
(

Pn(t1, t2)
t1 + t2

)
=

i∑
j=0

(−1)i− j

(
n
j

)(
2n+1+ j
n+1+ j

)
2n + 1 + j

= (−1)i[H(n, i + 1) − H(n, 0)]

= (−1)iH(n, i + 1)

=
1

2n + 1

(
n − 1

i

)(
2n + 1 + i
n + 1 + i

)

which leads to (an equivalent form of) the first conjecture [2] on G[m1,m2].
To wit:

Theorem 1.1. For non-negative integers m1 and m2, we have

G[m1,m2] =
1

(2m1 + 2m2 + 3)(m1 + m2 + 1)
(2m1 + 3m2 + 3)!

(m1 + 2m2 + 2)!m1!m2!
.

2. On the second conjecture

Now that the reader, hopefully, is getting accustomed to our proof-procedure
as depicted in Section 1, let’s move on to next conjecture [2, p. 399]
which does generalize the one we just finished proving. For brevity, denote
G̃ = G̃[ma,ma+1] = G[0, 0, . . . ,ma,ma+1]. Again, we revive the Lagrange
Inversion (1.2). Suppose n = ma + ma+1. Then the total content of such
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monomials is encapsulated by∑
ma+ma+1=n

G̃ tm2
a tm3

a+1 =
[Yn]

ta + ta+1

(a+1)n+1∑
k=1

1
k

[zk−1]
(
1 + Ytaza + Yta+1za+1

)k

=
[Yn]

ta + ta+1

∑
ma,ma+1≥0

(
1+ama+(a+1)ma+1

ma,ma+1,1+(a−1)ma+ama+1

)
Yma+ma+1tma

a tma+1
a+1

1 + ama + (a + 1)ma+1

=
∑

ma,ma+1≥0
ma+ma+1=n

(
1+ama+(a+1)ma+1

ma,ma+1,1+(a−1)ma+ama+1

)
1 + ama + (a + 1)ma+1

tma
a tma+1

a+1

ta + ta+1

=

n∑
ma+1=0

(
1+an+ma+1

n−ma+1,ma+1,1+(a−1)n+m3

)
1 + an + ma+1

tn−ma+1
a tma+1

a+1

ta + ta+1

=

n∑
k=0

(
n
k

)(
an+1+k

(a−1)n+1+k

)
an + 1 + k

tn−k
a tk

a+1

ta + ta+1
.

As a first step, we justify that the linear term ta+ ta+1 divides the polynomial

Pn(ta, ta+1) :=
n∑

k=0

(
n
k

)(
an+1+k

(a−1)n+1+k

)
an + 1 + k

tn−k
a tk

a+1.

This is tantamount to Pn(−ta+1, ta+1) = 0 which is equivalent to the identity
that

n∑
k=0

(−1)k

(
n
k

)(
an+1+k

(a−1)n+1+k

)
an + 1 + k

= 0.

Again, apply the Wilf-Zeilberger approach with F(n, k) :=
(−1)k(n

k)( an+1+k
(a−1)n+1+k)

an+1+k

and H(n, k) := −F(n, k) · k((a−1)n+1+k)
n(an+1) to verify F(n, k) = H(n, k+1)−H(n, k).

The rest is trivial.
Our next step will actually determine G̃[ma,ma+1]. To this effect, let’s divide
Pn(ta,ta+1)

ta+ta+1
to obtain (routinely) that

[tn−1−i
a ti

a+1]
(

Pn(ta, ta+1)
ta + ta+1

)
=

i∑
j=0

(−1)i− j

(
n
j

)(
an+1+ j

(a−1)n+1+ j

)
an + 1 + j

= (−1)i[H(n, i + 1) − H(n, 0)] = (−1)iH(n, i + 1)

=
1

an + 1

(
n − 1

i

)(
an + 1 + i

(a − 1)n + 1 + i

)
which proves the desired conjecture on G̃[ma,ma+1]. To wit:



PROOFS OF THREE GEODE CONJECTURES 5

Theorem 2.1. Denote m = ma+ma+1. For integers ma,ma+1 ≥ 0 there holds

G̃[ma,ma+1] =
(ama + (a + 1)(ma+1 + 1))!

(a(m + 1) + 1)(m + 1)((a − 1)ma + a(ma+1 + 1))!ma!ma+1!
.

3. On the third conjecture

The proof of the last conjecture [2, p. 399] is a bit more complicated.

Theorem 3.1. For the 2a-variate case, we have

GGG[− f , f , . . . ,− f , f ] =
∑

n

an f n.

Proof. To begin, we make a slight alteration by writing (−1)iti instead of
the customary plain ti [2]. Thanks to the Lagrange Inversion (1.2), we have

[Yn]

 ∞∑
k=1

1
k

[zk−1]
(
1 − Yt1z2 + Yt2z3 − · · · − Yt2a−1z2a + Yt2az2a+1

)k


=[Yn]
∑

m1,...,m2a≥0

(−1)m1+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a
m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
(Yt1)m1 · · · (Yt2a)m2a

1 + 2m1 + 3m2 + · · · + (2a + 1)m2a

=
∑

m1,...,m2a≥0
m1+···+m2a=n

(−1)m1+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a
m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
tm1
1 · · · t

m2a
2a

1 + 2m1 + 3m2 + · · · + (2a + 1)m2a
.

First, consider the case a = 1 and refer back to Theorem 1.1 (and its proof),
to gather that if t1 = − f and t2 = f then, as expected, we arrive at

f n−1
n−1∑
m=0

(−1)n−1−m

2n + 1

(
n − 1

m

)(
2n + 1 + m
n + 1 + m

)
= f n−1

as justified by the WZ-certificate [3] given by

R(n,m) :=
m(8mn + 10n2 + 6m + 15n + 6)

2(2n + 3)(n + 1)(n − m)
.

Second, we go back to study the above-posed calculations when a > 1. To
set the stage, substitute t1 = t2 = · · · = t2a−1 = f while leaving out t2a as an
indeterminate. The outcome takes the form∑

m1,...,m2a≥0
m1+···+m2a=n

(−1)m1+m3+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a
m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
f n−m2atm2a

2a

1 + 2m1 + 3m2 + · · · + (2a + 1)m2a
.

At this point, divide out the current polynomial (in t2a) by the linear factor

−t1 + t2 − · · · − t2a−3 + t2a−1 − t2a−1 + t2a = t2a − f
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and then replace t2a by f . That leads to the sum

f n−1
n−1∑
i=0

i∑
m2a=0

∑
m1,...,m2a≥0

m1+···+m2a=n

(−1)1+m1+m3+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a
m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
1 + 2m1 + 3m2 + · · · + (2a + 1)m2a

.

Therefore, our main task that remains is to prove the identity declared by

n−1∑
i=0

∑
m1,...,m2a−1≥0
m1+···+m2a=n

0≤m2a≤i

(−1)1+m1+m3+···+m2a−1
(

1+2m1+3m2+···+(2a+1)m2a
m1,m2,...,m2a,1+m1+2m2+···+(2a)m2a

)
1 + 2m1 + 3m2 + · · · + (2a + 1)m2a

. = an−1.

To put this more succinctly, introduce some notation. LetP denote the set of
all integer partitions λ, written as λ = (λ1, λ2, . . . ) or λ = 1m12m2 . . . (2a)m2a .
The size of λ is denoted by |λ| = λ1 + λ2 + · · · = m1 + 2m2 + · · · + (2a)m2a

while we use ℓ(λ) = m1 + m2 + · · · + m2a for the length of the partition. So,
the claim stands at∑

λ∈P
ℓ(λ)=n
λ1≤2a

(−1)1+|λ| ·
(n − m2a)

(
n

m1,...,m2a

)(
|λ|+n+1
|λ|+1

)
|λ| + n + 1

= an−1.(3.1)

We find it more convenient to split up this assertion into two separate claims

(−1)1
∑
λ∈P
ℓ(λ)=n
λ1≤2a

(−1)|λ|
(

n
m1, . . . ,m2a

)(
|λ| + n
|λ| + 1

)
= 0,(3.2)

∑
µ∈P

ℓ(µ)=n−1
µ1≤2a

(−1)|µ|
(

n − 1
m1, . . . ,m2a

)(
|µ| + 2a + n
|µ| + 2a + 1

)
= an−1.(3.3)

One arrives at (3.2) due to
n (|λ+n+1

|λ|+1 )
|λ+n+1 =

(
|λ+n
|λ|+1

)
and (3.3) arises because of

m2a

(
n

m1,...,m2a

)
(|λ+n)!

(|λ+1)!n! =
(

n−1
m1,...,m2a−1

)(
|λ|+n
|λ|+1

)
and then we reindex m′2a = m2a − 1 to

convert |λ| = |µ| + 2a where ℓ(µ) = n − 1.

In fact, let’s generalize (3.2) and (3.3) by introducing an extra parameter x.

Claim 1: For positive integers n, a and an indeterminate x, we have∑
λ∈P
ℓ(λ)=n
λ1≤2a

(−1)|λ|
(

n
m1, . . . ,m2a

)(
|λ| + n + x

n − 1

)
= 0.
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Claim 2: For positive integers n, a and an indeterminate x, we have∑
λ∈P

ℓ(λ)=n−1
λ1≤2a

(−1)|λ|
(

n − 1
m1, . . . ,m2a

)(
|λ| + n + x

n − 1

)
= an−1.

Claim 2 implies Claim 1: We apply the multinomial recurrence (assume
n = k1 + · · · + kr)(

n
k1, . . . , kr

)
=

(
n − 1

k1 − 1, . . . , kr

)
+ · · · +

(
n − 1

k1, . . . , kr − 1

)
(3.4)

followed by appropriate reindexing so that∑
λ∈P
ℓ(λ)=n
λ1≤2a

(−1)|λ|
(

n
m1, . . . ,m2a

)(
|λ| + n + x

n − 1

)

=

2a∑
i=1

∑
λ∈P
ℓ(λ)=n
λ1≤2a

(−1)|λ|
(

n − 1
m1, . . . ,mi − 1, . . .m2a

)(
|λ| + n + x

n − 1

)

=

2a∑
i=1

∑
µ∈P

ℓ(µ)=n−1
µ1≤2a

(−1)|µ|+i

(
n − 1

m1, . . . ,m′i , . . .m2a

)(
|µ| + n + (x + i)

n − 1

)

=

2a∑
i=1

(−1)i
∑
µ∈P

ℓ(µ)=n−1
µ1≤2a

(−1)|µ|
(

n − 1
m1, . . . ,m′i , . . .m2a

)(
|µ| + n + (x + i)

n − 1

)

=an−1
2a∑
i=1

(−1)i

= 0.

Proof of Claim 2: Let’s now utilize the multinomial theorem (1.1) and
constant-term extraction. Start by noting the constant-term extraction(

|λ| + n + x
n − 1

)
=

(
m1 + 2m2 + · · · + (2a)m2a + n + x

n − 1

)
= CTCTCT z

[
(1 + z)m1+2m2+···+(2a)m2a+n+x

zn−1

]
.

Insert this into the left-hand side of Claim 2, take CTCTCT z outside the sum,
factor out the inside and reapply the multinomial theorem in reverse (1.1)
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to get∑
λ∈P

ℓ(λ)=n−1
λ1≤2a

(−1)|λ|
(

n − 1
m1, . . . ,m2a

)(
|λ| + n + x

n − 1

)

=CTCTCT z

[
(1 + z)n+x

zn−1

∑(
n − 1

m1, . . . ,m2a

)
(−1 − z)m1(−1 − z)2m2 · · · (−1 − z)(2a)m2a

]
=CTCTCT z

[
(1 + z)n+x

zn−1

{
−(1 + z)1 + (1 + z)2 − (1 + z)3 + · · · + (1 + z)2a

}n−1
]
.

Next, follow through with the geometric series expansion to obtain∑
λ∈P

ℓ(λ)=n−1
λ1≤2a

(−1)|λ|
(

n − 1
m1, . . . ,m2a

)(
|λ| + n + x

n − 1

)

=CTCTCT z

(−1)n−1 (1 + z)2n+x−1

zn−1

{
1 − (1 + z)2a

2 + z

}n−1
=CTCTCT z

 (1 + z)2n+x−1

(2z)n−1

z
∑2a

k=1

(
2a
k

)
zk−1

1 + z
2


n−1 = an−1.

The proof is indeed complete. □

Remark 3.2. On [2, p. 399], it is stated that “With k − 2 leading zeros,
we conjecture that G[0, . . . ,mk] is a two-parameter Fuss-Catalan number."
In light of the conjectures we already proved, the current claim is rather
obvious (for further discussion on the topic the reader is directed to [1]).

Remark 3.3. One can prove both Theorem 1.1 and 2.1 with the following
observation. It suffice to explain this for Theorem 1.1. Since C[m1,m2]
are known from the Lagrange Inversion and because we have and explicit
conjectured formula G[m1,m2] due to [2], all that is required is to verify
the relation G[m1 − 1,m2] + G[m1,m2 − 1] = C[m1,m2]. This, however, is
routine. Of course, the proofs in Section s1 and 2 do not assume knowing
C[m1,m2] and G[m1,m2] a priori: they are pure derivations from scratch.

Remark 3.4. We offer (the proof is analogous to Theorem 2.1 but omitted)
the assertion that

G[0, . . . , 0,ms, 0, . . . ,mt] =
1
n

i∑
j=0

(−1)i− j

(
n
j

)(
(s + 1)n + (t − s) j

n − 1

)
,

where we used ms = n − 1 − i,mt = i.
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Remark 3.5. We also offer (the proof is analogous to Theorem 3.1 but
omitted) the assertion that for a generalized 2a-variate case, we have

G[−ca f , c2 f ,−c2 f , c3 f ,−c3 f , · · · , ca−1 f ,−ca−1 f , ca f ]

=
∑

n

((2aca − c2 − c3 − · · · − ca)n f n.
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