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Abstract. Inspired by the recent pioneering work, dubbed “The Ramanujan Ma-
chine” by Raayoni et al. [6], we (automatically) [rigorously] prove some of their
conjectures regarding the exact values of some specific infinite continued fractions,
and generalize them to evaluate infinite families (naturally generalizing theirs).
Our work complements their beautiful approach, since we use symbolic rather,
than numeric computations, and we instruct the computer to not only discover
such evaluations, but at the same time prove them rigorously.

In fond memory of Richard A. Askey (1933-2019) who taught us that Special
Functions are Useful Functions.

1. Introduction

Continued fractions, possibly finite expressions of the form

a0 +
b1

a1 +
b2

a2 +
b3

a3 + · · ·

= a0 +
b1|
|a1

+
b2|
|a2

+
b3|
|a3

+ · · · ,

have been employed since antiquity. Aristarchus of Samos (b. 310 BCE), the great
Ancient Greek astronomer and first-rate mathematician, argued that r, the radius
of the Sun divided by the radius of Earth, satisfies

r

r − 1
>

71755875

61735500
.

To provide a simpler bound, he replaced 71755875/61735500 with 43/37 and claimed
that the same bound would hold. Continued fractions lurk here; the later fraction
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appears in the former’s continued fraction expansion:

43

37
= 1 +

1|
|6

+
1|
|6

71755875

61735500
= 1 +

1|
|6

+
1|
|6

+
1|
|4

+
1|
|1

+
1|
|2

+
1|
|1

+
1|
|2

+
1|
|1

+
1|
|6
.

Thus Aristarchus and the other Greeks certainly knew something about continued
fractions, though the full extent of their knowledge is lost to history (see [5, p. 336]
and [1, ch. 1]).

The Italian Pietro Cataldi (b. 1548) was the first mathematician to expound a
proper theory and notation for continued fractions. He noted that continued frac-
tions, when they converge, alternate between being above and below their limits,
and essentially gave us the notation

a0 +
b1|
|a1

+
b2|
|a2

+
b3|
|a3

+ · · ·

which we employ here.
Cataldi may have been the first to present the theory of continued fractions, but

the great mathematician Leonhard Euler was responsible for the theory’s explosion
and widespread application. In Introductio in Analysin Infinitorum, his influential
analysis textbook, Euler treated continued fractions extensively and showed that they
are in a sort of correspondence with infinite series. (Every series can be represented
as a continued fraction, and every continued fraction can be represented as a series.)
Based on this reasoning, he gave some of the first examples of continued fractions
for famous constants:

e =
1|
|2

+
1|
|1

+
1|
|2

+
1|
|1

+
1|
|1

+
1|
|4

+
1|
|1

+
1|
|1

+
1|
|6

+ · · ·

e+ 1

e− 1
=

1|
|2

+
1|
|6

+
1|
|10

+
1|
|14

+
1|
|18

+
1|
|22

+ · · ·

The most well-known general case of Euler’s results is now called Euler’s continued
fraction:

1

1−
r1

1 + r1 −
r2

1 + r2 −
r3

1 + r3 − · · ·

=
∑
k≥0

k∏
j=1

rj.

Such identities are intrinsically fascinating, but continued fraction expansions have
found wide applications in number-theoretic irrationality proofs. There is always
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hope that the correct continued fraction will provide a Diophantine approximation
sufficiently nice to prove the irrationality of a famous constant, á la Roger Apéry’s
proof that ζ(3) is irrational (see [9]).

In this paper, we would like to combine the spirits of Euler and Aristarchus to
present an experimental method for automatically discovering (and proving!) con-
tinued fraction expansions. We were inspired by “The Ramanujan Machine,” a
recent inverse symbolic calculator that numerically conjectures continued fraction
expansions involving well-known constants [6]. For example, one of their conjectures
is

(1)
e

e− 2
= 4− 1|

|5
− 2|
|6
− 3|
|7
− · · · = 4−

1

5−
2

6−
3

7− · · ·

.

Another is
1

e− 2
=

1|
|1
− 1|

1|
+

2|
|1
− 1|

1|
+

3|
1|
− 1|
|1

+ · · ·

The potential for automatic conjectures is intriguing, but it occurred to us that
symbolic experiments could yield automatic proofs rather than conjectures. These
experiments which led to the confirmation of some conjectures and discoveries of
other continued fractions, including three infinite families.

Before describing our results, we need some notation which deviates slightly from
the norm.

Definition 1. Given two sequences a(n) and b(n) and an integer m ≥ 1, the mth
convergent of their general continued fraction is defined by

[a(n) : b(n)]1 = a(1)

[a(n) : b(n)]m+1 = a(1) +
b(1)

[a(n+ 1) : b(n+ 1)]m
, m ≥ 1,

whenever these expressions are well-defined. If all convergents are well-defined and
limm→∞[a(n) : b(n)]m exists, then the general continued fraction [a(n) : b(n)] is
defined as

[a(n) : b(n)] = lim
m→∞

[a(n) : b(n)]m = a(1) +
b(1)

a(2) + b(2)
a(3)+···

.

Classical, simple continued fractions are those where b(n) = 1 for all n. We shall
often make reference to a continued fraction [a(n) : b(n)] before we have established
its existence; in such cases we usually refer to the convergents or to the sequences
a(n) and b(n) themselves.
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There is ambiguity in the notation [a(n) : b(n)]—what is the sequence variable?—
but we shall always use n as the sequence variable, and other letters as parameters.
For example, the sequences in [n2m : 1] are a(n) = n2m and b(n) = 1, not a(m) = n2m

and b(m) = 1.
Our principal discovery is the following doubly-infinite family:

(2) [n+ k : an] =
aD

(D − 1)!
(
ea −

∑D−1
s=0

as

s!

) , D = a+ k + 1 ≥ 1

We shall get to discovering and proving our results in the following sections, but
first one more historical remark.

As in continued fractions as it is elsewhere, so prolific was Euler that new results
should be checked against his work for duplicates. For example, what is usually
referred to as Gauss’ continued fraction was discovered by Euler nearly thirty years
before Gauss was born! (See [2], or [3] for an English translation.) In Section 3.4 we
shall discuss Euler’s results in relation to ours and argue that ours are, at the least,
non-trivial to derive from Euler’s.

For a more modern introduction to continued fractions, see [4, ch. X], and [11] for
the analytic theory in particular.

2. Experimental continued fractions: The Maple package GCF.txt

This article is accompanied by a Maple package, GCF.txt available from the web-
page of this article
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/gcf.html,

where one can also find two sample input and output files with computer-generated
articles for many special cases of our results. Indeed, while Section 3 contains human-
readable proofs, our results were discovered and proved through symbolic experimen-
tation with GCF.txt.

This is quite different than “The Ramanujan Machine” (TRM) described in [6],
both at a high-level and practically. At a high level, TRM takes a constant and
tries to fit a family of continued fractions to it. Our experiments work in the op-
posite direction: we construct a family of continued fractions and try to guess the
constants that they generate. While TRM produces only conjectures, our Maple
package produces proofs. Of course, the dazzling conjectures of TRM are motivation
for everything in GCF.txt.

Here are short descriptions of the main procedures.
• GCF(L): Inputs a finite list of pairs of numbers, [[a1,b1],[a2,b2], ...,

[ak,bk]], outputs the finite (generalized) continued fraction it evaluates to. For
example GCF([[1,1]$10] gives 89

55
(the tenth convergent to the Golden ratio) while

GCF([ seq([4*i-2,1],i=1..20) ]);

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/gcf.html
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gives the 20th convergent to Euler’s famous continued fraction for e+1
e−1 .

376958612213530151806235679061

174199042280794948413485144460
,

that agrees with it to 60 decimal digits.
• GCFab(a,b,n,K): Now the input parameters, a and b, are expressions in the

symbol n. K is again a positive integer, and the output is the same as GCF applied
to

[[a(1), b(1)], . . . , [a(K), b(K)]] .

• RDB(a,b,n): Inputs expressions a and b in n and outputs (if successful) the
explicit expressions for the numerator and denominator of the n-th convergent of the
infinite continued fraction, as well as its limit, and the error by using the 50-th conver-
gent. It uses Maple’s rsolve command that is not guaranteed to work (most linear
recurrences are not solvable in closed-form, and even amongst those that are, Maple
[probably] does not know how to solve all of them). But whenever is succeeds, can
be fully trusted, i.e. it gives a proved result. Under the hood rsolve uses Mark Van
Hoeij’s algorithm [10], but often the answer can be checked by hand. For instance, in
the case of (2), the relevant expressions involve the incomplete Gamma function, and
can be checked ab initio without Maple by using the incomplete Gamma function’s
well-known (and easily proved) first-order inhomogeneous recurrence.
• Yaron(k1,a1,n,G): is a specialization of RDB, namely RDB(n+k1,a1*n,n),

but for expository clarity, the incomplete Gamma function GAMMA(n+2,-a1) (Γ(n+
2,−a1)) is denoted by G[n]. It also proves its results rigorously.
• YaronV(k1,a1,n,G): a verbose form of Yaron(k1,a1,n,G). It outputs a computer-

generated article.
Note that for each specific pair of sequences, RDB gives the exact evaluation of the

infinite continued fraction, but to prove the general results of our paper, that were
conjectured from the many special cases, we had to ‘cheat’ and use traditional human
mathematics. We believe that much of this human part can also be automated, but
leave it to a future paper.

The following section rigorously evaluates an infinite family of general continued
fractions, but there is much more to discover. Our infinite family is a quite restricted
class of general continued fractions generated by specific linear polynomials. There
are other, equally interesting polynomials. For example, RDB can discover the identity

[3n : −n(2n− 1)] =
4

3π − 8
.

We encourage our readers to experiment and discover new, more exotic, families.
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3. General proofs

Our main tool to evaluate continued fractions is exploiting their recursive nature.

Definition 2. Given a continued fraction [a(n) : b(n)], define the numerator and
denominator sequences p(n) and q(n) by the recurrences

p(0) = a(1)

p(1) = a(1)a(2) + b(1)

p(n+ 2) = a(n+ 3)p(n+ 1) + b(n+ 2)p(n)

and

q(0) = 1

q(1) = a(2)

q(n+ 2) = a(n+ 3)q(n+ 1) + b(n+ 2)q(n),

respectively.

Lemma 1. For all positive integers m,

p(m)

q(m)
= [a(n) : b(n)]m+1.

This is a well-known fact from the theory of general continued fractions.

3.1. First infinite family. Our general proof of (2) relies on some results in differ-
ential equations, so let us first define the necessary objects.

Definition 3. Let

M(a, b, z) =
∑
k≥0

ak

bkk!
zk

be the confluent hypergeometric function of the first-kind—also known as Kummer’s
function—and

U(a, b, z) =
Γ(1− b)

Γ(a+ 1− b)
M(a, b, z) +

Γ(b− 1)

Γ(a)
z1−bM(a+ 1− b, 2− b, z)

be the confluent hypergeometric function of the second-kind—also known as Tricomi’s
function—where

Γ(z) =

∫ ∞
0

e−ttz−1 dt

is the gamma function, defined by the above integral whenever <z > 0. Also let

Γ(z, a) =

∫ ∞
a

e−ttz−1 dt

be the incomplete gamma function.
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The key property of M(a, b, z) and U(a, b, z) is that they are linearly independent
solutions of Kummer’s differential equation

zw′′(z) + (b− z)w′(z)− aw(z) = 0.

Kummer’s function M(a, b, z) is entire if b is not a nonpositive integer, while
U(a, b, z) generally has a pole at the origin. In particular, we have the following
well-known result.

Lemma 2. If a− b+ 1 = −n for a nonnegative integer n, then

U(a, b, z) = z−a
n∑
s=0

(
n

s

)
akz−s.

See [7, ch. 13] for more details on the confluent hypergeometric functions.
Here is a useful lemma from the world of generating functions.

Lemma 3. Let f(z) be a meromorphic function with a single pole of order r ≥ 2 at
z0 6= 0. If

f(z) =
∑
k≥−r

ak(z − z0)k,

then

[zn]f(z) =
(−1)ra−r
zn+r0

(
n+ r − 1

r − 1

)
(1 +O(1/n)).

where [zn]f(z) is the coefficient on zn in the expansion of f about the origin.

Proof. Let

g(z) =
∑
−r≤k<0

ak(z − z0)k

be the principle part of f at z0. Expressing g(z) as a power series about the origin
in the usual way yields

[zn]g(z) =
r∑

k=1

(−1)ka−k

zk+n0

(
n+ k − 1

k − 1

)
.

In particular, if r ≥ 2, then this is a polynomial in n of degree r − 1 ≥ 1, and nr−1

only appears in the last term. Since f(z)− g(z) is entire, [zn](f(z)− g(z)) = O(1),
and pulling out the leading term after rearranging yields

[zn]f(z) =
(−1)r

zn+r0

(
n+ r − 1

r − 1

)
(1 +O(1/n))

as desired. �
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Using the previous lemma, we will now provide asymptotic expansions for p(n)
and q(n) for the continued fraction [n + k : an]. The key observation is that the
exponential generating functions of p(n) and q(n) both satisfy the same second-
order differential equation, and that this equation has a nice, meromorphic solution
with a single pole at z = 1. To avoid repetition, let’s first prove a very specific
lemma.

Lemma 4. Let a(n) be a sequence whose exponential generating function A(z) =∑
n≥0

a(n)
n!
zn satisfies

A(z) = Le−αzM(D,D + 2, α(z − 1)) + Ee−αzU(D,D + 2, α(z − 1))

for some values L and E independent of z, a positive integer D, and a nonzero real
α. Then

a(n) = E
e−α

αD+1
D

(
n+D

D

)
(1 +O(1/n)).

Proof. Kummer’s hypergeometric function is entire, while U(D,D+ 2, α(z− 1)) has
a single pole at z = 1. In fact, by Lemma 2, the pole is order D + 1 ≥ 2, and the
coefficient on its lowest degree term is D/αD+1. If we write

Ee−αzU = e−αEe−α(z−1)U,

then we see that the coefficient on the lowest degree term of Ee−αzU is Ee−αD/αD+1,

so Lemma 3 implies a(n) = E e−α

αD+1D
(
n+D
D

)
(1 +O(1/n)). �

Theorem 1. Let a and k be integers. If D = a+ k + 1 ≥ 1, then

[n+ k : an] =
aD

(D − 1)!
(
ea −

∑D−1
s=0

as

s!

) ,
provided that the convergents of the continued fraction are well-defined.

Proof. Let

P (z) =
∑
n≥0

p(n)

n!
zn

Q(z) =
∑
n≥0

q(n)

n!
zn

be the exponential generating functions of p(n) and q(n), respectively. By well-known
facts about egfs, the recurrences in Definition 2 imply that P and Q both satisfy the
second-order differential equation

(1− z)f ′′(z)− (az + k + 3)f ′(z)− 2af(z) = 0,
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with initial conditions

P (0) = k + 1 P ′(0) = (k + 1)(k + 2) + a

Q(0) = 1 Q′(0) = k + 2.

This reduces to a special case of Kummer’s equation. It is easy to check with a
computer algebra system that the general solution is

f(z) = A(k)e−azM(D,D + 2, a(z − 1)) +B(k)e−azU(D,D + 2, a(z − 1))

for some sequences A(k) and B(k) which depend on the initial conditions. By
Lemma 4, it suffices to compute B(k) for p(n) and q(n) separately.

Let Bp(a, k) be the coefficient on e−azU for P (z), and Bq(a, k) the coefficient on
e−azU for Q(z). We may compute these functions by solving the relevant initial
condition equations. For instance,

Bp(a, k) = (−1)a+kaa+k+2 = (−a)D+1.

The function Bq(a, k) is significantly more complicated, but still routine to compute.
After some coercing, Maple simplifies it as

Bq(a, k) =
a(ea(Γ(D + 1, a)− Γ(D + 1))aD+1 − a2D+1)(−1)D

DaD+1

= (−1)D
a

D
(ea(Γ(D + 1, a)− Γ(D + 1))− aD).

The incomplete gamma function expression can be written

Γ(D + 1, a)− Γ(D + 1) = −
∫ a

0

e−ttD dt = D!

(
e−a

D∑
s=0

as

s!
− 1

)
,

so

Bq(a, k) = (−1)D
a

D

(
D!

(
D∑
s=0

as

s!
− ea

)
− aD

)

= (−1)Da(D − 1)!

(
D−1∑
s=0

as

s!
− ea

)
.
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Putting everything together, we have

[n+ k : an] = lim
m→∞

p(m)

q(m)

= lim
m→∞

Bp(a, k)(1 +O(1/m))

Bq(a, k)(1 +O(1/m))

=
Bp(a, k)

Bq(a, k)

=
aD

(D − 1)!
(
ea −

∑D−1
s=0

as

s!

) ,
as claimed. �

There are some notable special cases. If a = −k, then D = 1, which yields

[n+ k : −kn] =
kek

ek − 1
.

If a = −1, then D = k, and we can write

[n+ k + 1 : −n] =
(−1)ke

ek!
∑k

s=0
(−1)s
s!
− k!

for nonnegative integers k. Equation 1 is then obtained with k = 2:

[n+ 3 : −n] =
e

e− 2
.

Note that

ek!
k∑
s=0

(−1)s

s!
= e[k!/e],

where [x] denotes the integer nearest to the real x. This is a remarkable coincidence,
since [k!/e] is the kth derangement number, the number of permutations on k objects
with no fixed points. There does not seem to be any immediate combinatorial reason
for the derangement numbers to appear.

3.2. Second infinite family. Our second infinite family may be derived from Eu-
ler’s general continued fraction but we prefer to discover it ab initio, our way. Note
that our approach gives much more than the limit, it gives closed-form expressions
for the numerator and denominator of the truncated sequence.

Theorem 2. Let a and b be nonnegative reals such that a 6= 0. Then

[an2 + bn+ 1 : −an2 − bn] =
4F (a, b) + 2(2a+ b)(a+ b+ 1))

4F (a, b) + 2(2a+ b)
,
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where

F (a, b) = 2
∑
k≥0

1

(k + 2)!(3 + b/a)kak
.

Proof. The implied recurrence numerator and denominator recurrences can be solved
and easily put into asymptotic form. The solutions are, asymptotically,

p(n) = C(a, b, n)((F (a, b)/2 + (2a+ b)(a+ b+ 1)) +O(1/n2))

q(n) =
1

2
C(a, b, n)((F (a, b) + 2(2a+ b)) +O(1/n2)),

where C(a, b, n) is some function. From this, it is easy to see that

lim
n→∞

p(n)

q(n)
=
F (a, b) + 2(2a+ b)(a+ b+ 1)

F (a, b) + 2(2a+ b)
. �

The F function is actually a special case of the general hypergeometric function,
and therefore offers numerous opportunities for closed-form evaluation. For example,
suppose that b/a = m−1/2 for some nonnegative integer m. Then, from the identity

(r − 1/2)k =
(2r − 1)2k

4krk
,

we have

(3 + b/a)k = (3 +m− 1/2)k

=
(5 + 2m)2k

4k(3 +m)k

=
(4 + 2m+ 2k)!(2 +m)!

4k(4 + 2m)!(2 +m+ k)!
.

Therefore

F (a, b) =
2(4 + 2m)!

(m+ 2)!

∑
k≥0

(k +m+ 2)!

(k + 2)!(2k + 2m+ 4)!

(
4

a

)k
.

This remaining sum looks quite burly, but is amenable to routine evaluation after
some simplifications. Let us give a brief sketch of how it might work.

In what follows, let us write “∼” to mean “equal up to a multiplicative constant.”
First, shifting the summation index by m+ 2 gives

F (a, b) ∼
∑
k≥2

(k +m)!

k!(2k + 2m+ 1)!

(
4

a

)k
.
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Note that (k +m)!/k! = (k +m)m, so

F (a, b) ∼
∑
k≥2

(k +m)m

(2k + 2m+ 1)!

(
4

a

)k
.

Now shifting the index by m gives

F (a, b) ∼
∑

k≥m+2

km

(2k + 1)!

(
4

a

)k
.

At this point we have won, because the series∑
k≥m+2

1

(2k + 1)!
zk

is known, and km is a polynomial in k.
More explicitly, set

f(z) =
∑

k≥m+2

1

(2k + 1)!
zk,

and note that f(z) is z−1/2 sinh
√
z minus a finite number of initial terms. From the

elementary theory of generating functions, since km is a polynomial in k, we have∑
k≥m+2

km

(2k + 1)!
zk = (zD)mf(z),

where D is the differentiation operator Df = f ′. Since we know f , we can carry
out the iterated differentiations and then set z = 4/a to obtain an answer. Note
that the hyperbolic trigonometric functions are closed under differentiation, so our
answer will be in terms of them. The full result is too messy to completely record,
but these routine operations can be completed by any computer algebra system.

For example, if a = 4 and b = 6, then following the above steps will eventually
produce

F (4, 6) = −308 + 840(cosh(1)− sinh(1))

= −308 +
840

e
.

In this case we obtain

[4n2 + 6n+ 1 : −4n2 − 6n] =
840/e

840/e− 280

=
3

3− e
.
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Taking a = 6 and b = 9, we obtain

[6n2 + 9n+ 1 : −6n2 − 9n] =
−9
√

6 sinh(
√

6/3) + 18 cosh(
√

6/3)

−9
√

6 sinh(
√

6/3) + 18 cosh(
√

6/3)− 4
.

There are likely many other nice cases.

3.3. Third infinite family. Our third infinite family is an immediate consequence
of Euler’s, but once again, we do it our way. Again note that our approach gives
much more than the limit, it gives closed-form expressions for the numerator and
denominator of the truncated sequence (but we admit that in this case it is fairly
straightforward).

Theorem 3. For integers k ≥ 2,

[(n− 1)k + nk,−n2k] =
1

ζ(k)
.

Proof. It is routine to check that p(n) = (n + 1)!k is the numerator sequence for
this continued fraction. It is also routine to check (but difficult to discover) that the
denominator sequence of the continued fraction is

q(n) = (n+ 1)!k
(
ψ(k, n+ 2)

(k − 1)!
+ ζ(k)

)
,

where ψ(k, z) is the kth polygamma function, which may be defined by

ψ(k, z) = (−1)k+1k!
∑
j≥0

1

(z + j)k+1

for z /∈ {−1,−2, . . . }. This gives

p(n)

q(n)
=

1

ζ(k)

1

ψ(k, n+ 2)O(1) + 1
,

where the O(1) is some constant independent of n. It is easy to check with the
dominated convergence theorem that ψ(k, n+ 2)→ 0 as n→∞ for all k ≥ 2, which
implies

lim
n→∞

p(n)

q(n)
=

1

ζ(k)

as claimed. �

As a demonstration, k = 3:

1

ζ(3)
= 1− 1|

|9
− 64|

35|
− 729|
|91

+ · · ·
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Just using the terms listed, we have:

1− 1|
|9
− 64|

35|
− 729|
|91

=
1728

2035
≈ 0.84914004914004914

1

ζ(3)
≈ 0.83190737258070746.

Not a great approximation, but it is something.

3.4. The method of Euler. Our method of proving continued fractions is relatively
direct and simple: write down the “obvious” recurrences, solve them, then take a
limit. Another approach is to combine some specializations of well-known infinite
families with manipulation techniques. This situation is analogous to the problems of
evaluating sums or intengrals—try some standard techniques, or attempt to contort
your problem until it matches some well-known, general result.

One such general result for continued fractions is Euler’s continued fraction we
mentioned in the introduction:

1

1−
r1

1 + r1 −
r2

1 + r2 −
r3

1 + r3 − · · ·

=
∑
k≥0

k∏
j=1

rj.

Slight manipulation yields

− r1

1 + r1 −
r2

1 + r2 −
r3

1 + r3 − · · ·

=
1∑

k≥0
∏k

j=1 rj
− 1,

or, in our notation,

[r(n− 1) + 1 : −r(n)] = r(0) +
1∑

k≥0
∏k

j=1 r(j)
.

Euler’s continued fraction directly applies to situations where “numerator + de-
nominator = 1.” (In our notation this is “numerator + previous denominator = 1.”)
None of our families are of this form, but Euler’s reach can be expanded with an
equivalence transformation. Namely, it is easy to prove by induction that

[a(n) : b(n)] = [c(n− 1)a(n) : c(n− 1)c(n)b(n)]

for any strictly nonzero sequence {cn} with c(0) = 1, provided that both continued
fractions exist.
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In light of this, one way to evaluate [a(n) : b(n)] is to find sequences r(n) and c(n)
such that

a(n) = c(n− 1)(r(n− 1) + 1)

b(n) = −c(n− 1)c(n)r(n),

for n ≥ 1. Once these sequences are in hand, we can write

[a(n) : b(n)] = [c(n− 1)(r(n− 1) + 1) : −c(n− 1)c(n)r(n)]

= [r(n− 1) + 1 : −r(n)]

= r(0) +

(∑
k≥0

k∏
j=1

b(j)

a(j + 1) + b(j)

)−1
.

Our problem reduces to computing the remaining sum.
It is not obvious how to find such sequences. For instance, take a = −1 and k = 1

in (2). Then we must solve the equations

n+ 1 = c(n− 1)(r(n− 1) + 1)

−n = −c(n− 1)c(n)r(n)

for c(n) and r(n). It is easy to find that

r(n) =
n

c(n− 1)n− n+ 2c(n− 1)
,

but solving for c(n) is not so easy. It is possible that some suitable ansatz could let
us guess c(n), but this is another question entirely.

4. Conclusion

We have given a Maple package and a new and interesting doubly-infinite family
thereby proving conjectures made in [6] (and considerably generalizing them). More
important, we have illustrated a methodology of computer-assisted discovery and
proof that, however, still needs some human intervention for the general case, but
would have been impossible without the many special cases proved by the computer,
enabling us humans to generalize it. We believe that this last step would soon also
be fully automated.

The authors would like to thank the OEIS [8] for its help in identifying promising
sequences of integers that arose in the evaluation of these continued fractions.
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