PRINCETON COMPANION TO MATHEMATICS PROOF 1

Enumerative and Algebraic
Combinatorics

By D. Zeilberger

1 Introduction

FEnumeration, otherwise known as counting, is the
oldest mathematical subject, while algebraic com-
binatorics is one of the youngest. Some cynics claim
that algebraic combinatorics is not really a new
subject but just a new mame given to enumera-
tive combinatorics in order to enhance its (former)
poor image, but algebraic combinatorics is in fact
the synthesis of two opposing trends: abstraction of
the concrete and concretization of the abstract. The
former trend dominated the first half of the twen-
tieth century, starting with Hilbert’s “theological”
proof of the fundamental theorem of invariants, in
which he showed by abstract means that certain
invariants existed, but not how to find them. The
latter trend is dominating contemporary mathe-
matics, thanks to the omnipresence of The Mighty
Computer.

The abstraction trend consists of the categoriza-
tion, conceptualization, structuralization, and fan-
cification (in short, “Bourbakization” (see BOUR-
BAKI)) of mathematics. Enumeration did not
escape this trend, and in the hands of such giants
as Gian-Carlo Rota and Richard Stanley in Amer-
ica and Marco Schiitzenberger and Dominique
Foata in France, classical, enumerative combina-
torics became more conceptual, structural, and
algebraic. However, as algebraic combinatorics has
established itself as a fully-fledged and separate
mathematical speciality, the more recent trend
towards the explicit, concrete, and constructive has
left its mark as well. It has revealed that many alge-
braic structures have hidden combinatorial under-
pinnings; the attempts to unearth these have led
to many fascinating discoveries and unsolved prob-
lems.

1.1 Enumeration

The fundamental theorem of enumeration, inde-
pendently discovered by several anonymous cave
dwellers, states that

Al=)"1.

acA

In words: the number of elements in A is the sum
over all elements of A of the constant function 1.

While this formula is still useful after all these
years, enumerating specific finite sets is no longer
considered mathematics. A genuine mathematical
fact has to incorporate infinitely many facts, and
the generic enumeration problem is to enumerate
not just one set but all the sets in an infinite family.

To be precise, given an infinite sequence of sets
{4,352, where each set A, consists of objects
satisfying some combinatorial specifications that
depend on the parameter n, answer the question,
“How many elements does A,, have?”

In a moment we shall look at some examples.
But before we can learn how to answer this kind
of question, let us consider a meta-question: “What
is an Answer?”

This was posed, and beautifully answered, by
Herbert Wilf. To give some background to Wilf’s
meta-answer, let us examine answers to some
famous instances of enumeration questions.

In the list below, when we are given a set A,
(which will change from example to example), we
shall write a,, instead of | 4,,|. That is, a,, will stand
for the number of elements of A,,.

(1) I Ching. If A, is the set of all subsets of
{1,...,n}, then a, =2™.

(2) Rabbi Levi Ben Gerson. If A, is the set
of PERMUTATIONS (see THE SYMMETRIC AND
ALTERNATING GROUPS) on {1,...,n}, then
a, = nl.

(3) Catalan. If A, is the set of legal bracketings
with n opening brackets and n closing brack-
ets, then a,, = (2n)!/(n+1)!nl. (A legal brack-
eting is a sequence of n opening brackets and
n closing brackets such that at no point in the
sequence has the number of closing brackets
exceeded the number of opening brackets. For
instance, when n = 2 the legal bracketings are

[1[] and [{]].)

(4) Leonardo of Pisa. Let A, be the set of
finite sequences that consist only of 1s and 2s
and that sum to n. (For example, when n =4
the possible sequences are 1111, 112, 121, 211,
and 22.) In this case, we have three equivalent
answers as follows.
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(i)
ln/2]
n—k
w=3 (",")
k=0
(iii) ap, = Fn41, where F), is the sequence

defined by the recurrence F,, = F,_1 +
F,,_o, subject to the initial conditions
Fh=0,F, =1

(5) Cayley. If A, is the set of labeled trees on
n vertices, then a, = n""2. (A tree is a con-
nected GRAPH without cycles, and it is labeled
if the vertices have distinct names.)

(6) If A, is the set of labeled simple graphs with n
vertices, then a,, = 27("~1)/2, (A graph is sim-

ple if it has neither loops nor multiple edges.)

(7) If A, is the set of labeled connected simple
graphs on n vertices (that is, graphs for which
every vertex can be reached from every other
by a path), then a,, is n! times the coefficient

of ™ in the power series expansion of

> ok(k—1)/2
log <Z klxk>

k=0

If A, is the number of LATIN SQUARES of
size n (n X n matrices each of whose rows and

columns is a permutation of {1,...,n}), then
a, =777,

(8)

In 1982, Wilf defined an answer as follows.

Definition. An answer is a polynomial-time algo-
rithm (in n) for computing a,,.

Wilf arrived at this definition after he refereed
a paper proposing a “formula” for the answer to
question (8), and realized that its “computational
complexity” exceeds that of the caveman’s formula
of direct counting.

What is a “formula”? It is really an algorithm
that inputs n and outputs a,,. For example, a,, =
2" is shorthand for the recursive algorithm

if n =0 then a, =1,
else a, =2 an_1,

which takes O(n) steps. However, using the algo-
rithm

if n =20 then a, =1,
else if n is odd, then a, = 2a,_1,

else ap, = ai/2

takes O(logn) steps, much faster than Wilf
demands. In other cases, like enumerating self-
avoiding walks, the best algorithm that is known
is exponential, O(c™), and any lowering of the con-
stant ¢ is a major advance. (A self-avoiding walk
is a sequence of points xg,x1,...,x, in the two-
dimensional integer lattice, where each x; is one
of the four neighbours of x;_; and no two of the
x; are equal.) Notwithstanding these exceptions,
Wilf’s meta-answer is a very useful general guide-
line for evaluating answers.

The traditional customers of enumeration were
mainly probability and statistics. In fact, discrete
probability is almost synonymous with enumer-
ative combinatorics, since the probability of an
event F occurring is the ratio of the number of
successful cases divided by the total number. Also,
statistical physics is, by and large, weighted enu-
meration of lattice models (see PHASE TRANSI-
TIONS AND UNIVERSALITY). About 50 years ago,
another important customer came along: computer
science. Here one is interested in the computational
complexity of algorithms: that is, in the number of
steps it takes to execute algorithms (see COMPU-
TATIONAL COMPLEXITY).

2 Methods

The following tools are indispensable to the enu-
merative combinatorialist.

2.1 Decomposition
|[AUB|=|A|+|B| (f AnB=0).
In words: the size of the union of two disjoint sets
equals the sum of their sizes.
|Ax B| = |A] - |B].

In words: the size of the Cartesian product of two
sets (that is, the set of all pairs (a,b), where a € A
and b € B) equals the product of their sizes.

|AP| = |AJIPL
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In words: the size of the set of functions from B to
A equals the size of A raised to the power the size
of B. For example, the number of 0-1 sequences of
length n, which can be viewed as functions from
{1,2,...,n} to {0,1}, equals 2™.

2.2 Refinement

If
A, = LJBMc (disjoint union),
k

and if by,x, the number of elements of B,,;, is “nice”
(and even if it is not), then

Ap = ank
k

The idea here is that it may be possible to take
a set A, that is difficult to count, and split it up
into disjoint sets B,,; that are easier to count. For
example, consider the set A,, of example (4). This
can be split into a disjoint union of subsets B,
where each B, consists of the sequences in A,
that have exactly k 2s. If there are k 2s, then there
must be n—2k 1s, so bpp = (”;k) This yields
answer (ii).

2.3 Recursion

Suppose that A,, can be decomposed in such a way
that it is a combination of fundamental operations
applied to the sets A,_1,An_2,...,A9. Then a,
satisfies a recurrence relation of the form

ap = P(anflyanf% .. '7a0)'

For example, let A,, be the set of example (4).
If a sequence in A, starts with a 1, then the rest
of the sequence must add up to n — 1, and if it
starts with a 2, then the rest must add up ton — 2.
Since when n > 2 exactly one of these possibilities
occurs and both are possible, we can decompose A,,
into 14,,_1 and 2A,,_5, where 1A4,,_1 is shorthand
for the set of all sequences that begin with a 1
and continue with a sequence in A,,_1, and 24,,_»
is defined similarly. Since the sizes of 14,1 and
2A, _o are clearly a,_1 and a,_o, it follows that
@p = Ap-1 + Gnp—2, which yields answer (iii).

If A, is the set of legal bracketings with n pairs
(example (3)), then a typical legal bracketing can
be written recursively as [L1]La, where L; and
Ly are smaller (possibly empty) legal bracketings.
For example, if the bracketing is [[][]]1[[]]1[[][[]]]

then Ly = [J[] and Lo = [[J][[][[]]}- ¥ Ly
has k pairs, then Ly has n — 1 — k pairs. It fol-
lows that A, can be identified with the union
Z;é Ay x A,_1_g, and, taking cardinalities, a, =
n—1 . . . .
5—00k0n—1—%. This is a nonlinear (in fact,
quadratic) and nonlocal recurrence, but it is nev-
ertheless one that satisfies Wilf’s dictum.

2.4 Generatingfunctionology

According to Wilf, who coined this neologism by
making it the title of his classic book (a free down-
load from his website, even though it is still in
print!):

A generating function is a clothesline in
which we hang up a sequence of numbers
for display.

The method of generating functions is one of
the most useful tools of the trade of enumera-
tion. The generating function of a sequence, some-
times called its z-transform, is a discrete analog
of the LAPLACE transform, and indeed goes back
to Laplace himself. If the sequence is (an)5%g,
then its generating function f(z) is defined to
be >°° ,anz™. In other words, the terms of the
sequence are regarded as the coefficients of a power
series in z.

Generating functions are so useful because infor-
mation about the sequence (a,,) translates to infor-
mation about f(x) that is often easier to process,
and after some manipulations one often gets addi-
tional information about f(z) that can be trans-
lated back into information about the sequence.
For example, if ag = a1 =1 and a,, = ayy_1 + ap_2
when n > 2, then we can do the following manip-
ulations on f(x):

0 &S]
f(z) = Z anx” = ag + a1x + Z anz"
n=0

n=2

o0
=14+2+ Z(an_l + ap_z2)x™

n=2

oo o0
=1+z+ Z ap_12" + Z Ap_ox"
n=2 n=2

oo oo
=1l4+x+zx E an_12"t + 2?2 E Up_ox™ 2

n=2 n=2

=1+az+a(f(x)-1)+2%f(z)
=1+ (z+2°)f(2).
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It follows that

_ 1
T l—g— 22

e

If one performs a partial-fraction decomposition,
and expands the two resulting terms in a Taylor
series, then one can obtain answer (i) to exam-

ple (4).

3 Weight Enumeration

According to the modern approach, pioneered by
Pélya, Tutte, and Schiitzenberger, generating func-
tions are neither “generating,” nor are they func-
tions. Rather, they are formal power series that are
weight enumerators of combinatorial sets. (Usu-
ally, but not always, these sets are infinite: for
a finite set the corresponding “power series” has
only finitely many nonzero terms and is therefore
a polynomial.)

A power series Y a,x™ is called formal when
one sheds its analytical connotation as a Taylor
series of a function, and thereby obviates the need
to worry about convergence. For example, the sum
Yoo nI™z™ is perfectly legal as a formal power
series even though it converges only when z = 0.

As for weight enumerators, consider the follow-
ing situation. Suppose that we want to study the
age distribution of a finite population. One way
of doing this is to ask 121 questions. For each i
between 0 and 120, we ask those whose age is @
to raise their hand. Then we count each of these
age-groups one by one, compiling a table of q;
(0 < ¢ < 120), and finally computing the gener-
ating function

120

flz) = Z a;x’.
=0

But if the size of the population is much less than
120, it is much more efficient, because fewer ques-
tions would be needed, to ask every person their
age and then to declare the weight of a person of
age i to be z. Then the generating function is the
sum of these weights. That is,

f(.T) — Z xagc(pcrson),
persons

which is a natural extension of the caveman’s for-
mula of naive counting. Once we know f(z) we can

easily compute statistically interesting quantities,
like the average and the variance, which work out
tobe = f(1)/£(1) and 0® = F"(1)/ (1) +u—p2,
respectively.

The general scenario is that we have an interest-
ing (finite or infinite) combinatorial set, let us call
it A, and a certain numerical attribute, o : A — N,
which assigns to each element of A a natural num-
ber. (Here we allow 0 as a natural number.) Then
the weight enumerator of A with respect to « is
defined by the formula

f@) = 3 .

acA

We shall also use the notation |A|, for f(z). Obvi-
ously, this equals

(oo}
g anx™,
n=0

where a,, is the number of members of A whose
a equals n. Hence if we have some kind of
explicit expression for f(x), we immediately have
an “explicit” expression for the actual sequence a,
assuming, that is, that one considers the opera-
tions needed to calculate the nth coefficient a,, of
f(x) as constituting an explicit expression for a,,.
Even if one does not, then it is still often possible
to get a “nice” formula for a,, or, failing this, to
extract the asymptotics.

The fundamental operations for naive counting
also hold for weighted counting: just replace || by
|- For example,

|AUB|, =
(if AN B =) and
|A X B|w = |A|w : |B|:E

|Al; + | Bz

Let us quickly see why the second of these is true. If
the members of A and B are endowed with numeri-
cal attributes a and (3, respectively, and one defines
an attribute v on A x B by letting v(a,b) equal

ala) + B(b), then
[AxBl,= Y
(a,b)eAxB

- >

(a,b)eAxB

- >

(a,b)eAxB

27(a:b)

(@) +5(0)

L(@) . B0)
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=3 3 g0 . 50

a€AbeEB
_ (Z xa(a)) _ (Z .xﬁ(b)>
acA beB
= |A|ﬂc . |B|w

Let us see how these facts can be useful. First,
consider the infinite set A, of all (finite) sequences
of 1s and 2s, and let the attribute be “sum of
entries.” Then the weight of 1221 is 2%, and, in
general, the weight of a sequence (aj---a,) is
x@ T +ak The set A can be naturally decomposed
as

A={p}ULAU2A,

where ¢ is the empty word, and 1A is short for the
set of all sequences obtained by prefixing a 1 to
members of A, and analogously for 2A4. Applying
‘ : |£a we get

|Al, = 1+ z|Al, + 2% Al

which, in this simple case, can be solved explicitly,
to yield, once again

1
Al = ——.
|4l 1—x— 22
A legal bracketing L is either empty (in which
case the weight is 20 = 1), or else, as we have
already noted, it can be written as L = [Lq]|Ls,

where L; and Lo are (shorter) legal bracketings.
Conversely, whenever L; and Lo are legal brack-
etings, so is [L1]Ls. Let £ be the (infinite) set of
all legal bracketings, and define the weight of a
legal bracketing to be =™, where n is the number
of bracket pairs []. For example, the weight of []
is  and the weight of [[][[][]]] is °. The set £
decomposes naturally as follows:

L={pru (L] x L),

where ¢ denotes the empty word and [£] x L
denotes the set of all words of the form [L1]Ls with
Ly and Ly in £. This leads to the nonlinear (in fact,
quadratic) equation

|Lle =1+ a|L]3,

which yields, thanks to the Babylonians, the
explicit expression

1—-+v1—4x
2z '

|£|:v =

This in turn gives us the answer to example (3)
above, via Newton’s binomial theorem.

Legal bracketings are equivalent to so-called
binary trees, that is, unlabelled ordered trees
where every vertex has either no children or exactly
two children. For instance, when we write the legal
bracketing [[][]][[]][[][[]]] in the form [L]L,
we can think of [[J[]][[]][[][[]]] as the parent,
with children Ly = [][] and Lo = [[]][[][[]]]-
Then Lq’s children are ¢ and [], while Ly’s are []
and [[][[]]]- This process continues until we have
reached ¢ down every branch of the family.

If we try to count penta-trees instead, where each
vertex may only have exactly zero or five chil-
dren, then the generating function, alias weight-
enumerator, satisfies the quintic equation

f=x+f

which, according to ABEL and GALOIS, is not solv-
able by radicals (see THE INSOLUBILITY OF THE
QuiInTIC). However, solvability by radicals is not
everything. Count Joseph LAGRANGE, more than
200 years ago, devised a beautiful and extremely
useful formula for extracting the coefficients of the
generating function from the equation it satisfies,
now called the Lagrange inversion formula. Using
it one can easily show that the number of complete
k-ary trees with (k — 1)m + 1 leaves is

(km)!
(k=1)m+1)!m!’

A multivariate generalization of the Lagrange
inversion formula, discovered by the great Bayesian
probabilist I. J. Good, enables one to enumerate
colored trees and many other extensions.

3.1 Enumeration Ansatzes

If one wants to turn enumerative combina-
torics into a theory rather than a collection of
solved problems, one needs to introduce classifi-
cation, and enumeration paradigms for counting
sequences. But since “paradigm” is such a preten-
tious word, let us use the much humbler German
word “ansatz,” which roughly means “form of solu-
tion.”
Let (a,,)22, be a sequence, and let

flz) = Z anz"
n=0
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be its generating function. If we know the “form”
of a,, we can often deduce the form of f(x) (and
vice versa).

(1) If a, is a polynomial in n, then f(z) has the
form

P(z)
(1—z)d+1’
where P is a polynomial function and d is the
degree of the polynomial that describes a,,.

fz) =

If a, is a quasi-polynomial in n (i.e. there
exists an integer N such that for each r =
0,...,N — 1, the function m — amnN4, is
a polynomial in m), then, for some (finite)
sequence of integers di, ds, ... and some poly-
nomial function P,

P(x)
(1—x)h(1—22)d2(1 —x3)ds..."

fz) =

If a, is C-recursive, that is, if it satisfies a
linear recurrence equation with constant coef-
ficients

Qp = C1Qp—1 + C20p—2 + -+ + Cq0n—gq

(a good example is the Fibonacci sequence),
then f(z) is a rational function of x: that is,
f(z) = P(x)/Q(x), where P and @ are poly-
nomials.

If a,, satisfies a linear recurrence equation of
the form

co(n)ay, = c1(n)an—1 + ca(n)an—2
+ -+ caln)an—q,

where the coefficients ¢;(n) are polynomial in
n, then it is said to be P-recursive. (For exam-
ple, a,, = n! is P-recursive since we have the
recurrence a, = na,—1.) If this is the case,
then f(x) is D-finite, which means that it sat-
isfies a linear differential equation with poly-
nomial coefficients (in x).

In the case of a,, = n! the recurrence a,, = na, _1
is first order. A natural example of a P-recursive
sequence satisfying a higher-order linear recurrence
with polynomial coefficients is the sequence count-
ing the number of involutions on {1,...,n}. (An
involution is a permutation that equals its inverse.)

Let us call this number w,,. The sequence (w,,) sat-
isfies the recurrence relation

Wy, = Wp—1 + (0 — L)wy—o.

This recurrence follows from the fact that in the
permutation n belongs either to a 1-cycle or to a
2-cycle. The former case accounts for w,,_1 of the
involutions, and the latter for (n—1)w,,_2 of them.
(There are n — 1 ways of choosing the cycle-mate,
i, say, of n, and deleting the resulting cycle leaves
an involution of the n — 2 elements {1,...,i—1,i+
1,...,n—1}.)

4 Bijective Methods

This last argument was a simple example of a bijec-
tive proof, in this case, of a recurrence for the num-
ber of involutions on n objects. Contrast it with the
following proof.

The number of involutions of {1,...,n} with
exactly k 2-cycles is

n\ (2k)!

2k ) Kkl2k’
because we must first choose the 2k elements that
will participate in the k 2-cycles, and then match

them up into (unordered) pairs, which can be done
in (2k—1)(2k—3) -1 = (2k)!/(k!2%) ways. Hence

wn =3 (50) ot

k

Nowadays such sums can be handled completely
automatically, and if one inputs this sum to the
Maple package EKHAD (downloadable from my
website), one would get the recurrence w, =
Wp—1+ (n—1)w,_2 as the output, together with a
(completely rigorous!) proof. While the so-called
Wilf~Zeilberger (WZ) method can handle many
such problems, there are many other cases where
one still needs a human proof. In either case such
proofs involve (algebraic, and sometimes analytic)
manipulations. The great combinatorialist Adriano
Garsia derogatorily calls such proofs “manipula-
torics,” and real enumerators do not manipulate,
or at least try to avoid it whenever possible. The
preferred method of proof is by bijection.

Suppose one has to prove that |A,| = |B,|
for every n, where A, and B, are combinato-
rial families. The “ugly way” is to get, by some
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means or other, algebraic or analytic expressions
for a, := |A,| and b, := |B,|. Then one manip-
ulates a, getting another expression a,, which in
turn leads to yet another expression a//, and if one
is patient enough, and clever enough, and in luck,
or if the problem is not too deep, one eventually
arrives at b,,, and the result follows.

On the other hand, the nice way of proving
that |A,| = |B,| is by constructing (a preferably
nice) bijection T,, : A, — B, which immediately

implies, as a corollary, that |A,| = |B,]| (see Sec-
tion ??7 of THE LANGUAGE AND GRAMMAR OF
MATHEMATICS).

In addition to being more aesthetically pleasing,
a bijective proof is also philosophically more sat-
isfactory. In fact the notion of (cardinal) number
is a highly sophisticated derived notion based on
the much more basic notion of being in bijection.
Indeed, according to FREGE, the cardinal num-
bers are equivalence classes, where the equivalence
relation is “is in bijective correspondence with”
(see Section ?? of THE LANGUAGE AND GRAM-
MAR OF MATHEMATICS). Saharon Shelah said that
people have been exchanging objects, in a one-to-
one way, since long before they started to count.
Also a bijective proof explains why the two sets
are equinumerous, as opposed to just certifying the
formal correctness of this fact.

For example, suppose that Noah had wanted to
prove that there were as many male as female
creatures in his Ark. One way of proving this
would have been to count the males and count the
females, and check that the two resulting numbers
were indeed the same. But a much better, concep-
tual, proof would have been to note that there is
an obvious one-to-one correspondence between the
set M of males and the set F' of females: the func-
tion w : M — F defined by w(z) = WifeOf (x) is
a bijection, with inverse h : F© — M defined by
h(y) = HusbandOf (y).

A classic example of a bijective proof is
Glashier’s proof of EULER’s “odd equals distinct”
partition theorem. A partition of an integer n is
a way of writing it as a sum of positive integers,
where order does not matter. For example, 6 has
11 partitions: 6, 51, 42, 411, 33, 321, 3111, 222,
2211, 21111, 111111. (Here 3111 is shorthand for
the sum 3+141+1, and so on. Since order does not
matter, we count 3111 as the same partition of 6 as
1311, 1131, and 1113. It is convenient to write the

partitions with their numbers in decreasing order,
as we have done.)

A partition is called odd if all its parts are
odd, and it is called distinct if all its parts are
distinct. Let Odd(n) and Dis(n) be the sets of
odd and distinct partitions of n, respectively.
For example, Odd(6) = {51,33,3111,111111}
and Dis(6) = {6,51,42,321}. Euler proved that
|Odd(n)] = |Dis(n)| for all n. His “manipu-
latorics” proof goes as follows. Let o(n) and
d(n) be the number of odd and distinct par-
titions of mn, respectively, and let us define
the generating functions f(q) =Y .~ ,0(n)¢™ and
g(q) =307 s d(n)g™. Using the “multiplication
principle” for weighted counting, Fuler showed
that

[ee)

1
fo=]1 T
1=0
and

o

9(g) = [J(1+¢).

=0

Using the algebraic identity 1+y = (1—y2)/(1—y),
we have

[lo+a) =%
i=0 i - 4

_ H:io(l - qzi)
[120(1 = ) 20 (1 — ¢ )

ad 1
:gl_q2i+l'

Hence ¢(q) = f(q), and the identity o(n) =
follows by extracting the coefficient of ¢"”.
For a very long time, these kinds of manipulation
were considered to belong to the realm of analysis,
and in order to justify the manipulations of the
infinite series and products, one talked about the
“region of convergence,” usually |g| < 1, and every
step had to be justified by the appropriate analyt-
ical theorem. Only relatively recently did people
come to realize that no analysis need be involved:
everything makes sense in the completely elemen-
tary and much more rigorous (from the philo-
sophical viewpoint) algebra of formal power series.
One still needs to worry about convergence, so as
to exclude, for example, an infinite product like

d(n)
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[1:2,(1 + ), but the notion of convergence in the
ring of formal power series is much more user-
friendly than its analytical namesake.

Even though invoking analysis was a red herring,
Euler’s proof, while purely algebraic and elemen-
tary, is nevertheless still manipulatorics. It would
be much nicer to find a direct bijection between the
sets Dis(n) and Odd(n). Such a bijection was given
by Glaisher. Given a distinct partition, write each
of its parts as 2" - s, where s is odd, and replace
it by 2" copies of s. (For example, 12 = 4 - 3, so
we would replace 12 by 3 + 3 + 3 + 3.) The out-
put is obviously a partition of the same integer n,
but now into odd parts. For example, the parti-
tion (10,5,4) is transformed to the new partition
(5,5,5,1,1,1,1). To define the inverse transforma-
tion, take an odd part a and count how many times
it shows up. If it shows up m times, then write m in
binary notation, m = 2% 4 ... 4 2% and replace
the m copies of a by the k parts: 2°1a,...,2%a. It
is not hard to check that if you do the first trans-
formation to a partition in Dis(n) and then do the
second transformation, you get back to the parti-
tion you started with.

When we perform algebraic (and logical, and
even analytical) manipulations, we are really
rearranging and combining symbols, and hence we
are doing combinatorics in disguise. In fact, every-
thing is combinatorics. All we need to do is to take
the combinatorics out of the closet, and make it
explicit. The plus sign turns into (disjoint) union,
the multiplication sign becomes Cartesian product,
and induction turns into recursion. But what about
the combinatorial counterpart of the minus sign?
In 1982, Garsia and Steven Milne filled this gap by
producing an ingenious “involution principle” that
enables one to translate the implication
a—c=b—d

a=b and c=d =

into a bijective argument, in the sense that if
C C A and D C B, and there are natural bijec-
tions f : A — B and g : C — D establishing
that |A| = |B|, and |C| = |D|, then it is possi-
ble to construct an explicit bijection between A\C
and B\D. Let us define it in terms of people. Sup-
pose that in a certain village all the adults are
married, with the result that there is a natural
bijection from the set of married men to the set of
married women, m — WifeOf (m), with its inverse

w — HusbandOf (w). In addition, some of the peo-
ple have extramarital affairs, but only one per per-
son, and all within the village. There is a natu-
ral bijection from the set of cheating men to the
set of cheating women, called m — MistressOf (m),
with its inverse w — LoverOf (w). It follows that
there are as many faithful men as there are faith-
ful women. But how do we match them up? (One
might imagine, for example, that each faithful man
wants a faithful woman to go to church with him.)

Here is how it is done. A faithful man first asks
his wife to come with him. If she is faithful, she
agrees. If she is not, she has a lover, and that lover
has a wife. So she tells her husband: “sorry, hubby,
I am going to the pub with my lover, but my lover’s
wife may be free.” If this happens, then the man
asks the wife of the lover of his wife to go with
him, and if she is faithful, she agrees. If she is not
he keeps asking the wife of the lover of the woman
who has just rejected his proposal. Since the village
is finite, he will eventually get to a faithful woman.

The reaction of the combinatorial enumeration
community to the involution principle was mixed.
On the one hand it had the universal appeal of
a general principle, one that should be useful in
many attempts to find bijective proofs of combi-
natorial identities. On the other hand, its univer-
sality is also a major drawback, since involution-
principle proofs usually do not give any insight into
the specific structures involved, and one feels a bit
cheated. Such a proof answers the letter of the
question, but it misses its spirit. Given a proof
of this kind, one still hopes for a really natu-
ral, “involution-principle-free proof.” This is the
case, for instance, with the celebrated Rogers—
Ramanujan identity, which states that the num-
ber of partitions of an integer into parts that leave
remainder 1 or 4 when divided by 5 equals the
number of partitions of that integer with the prop-
erty that the difference between any two parts is
at least 2. For example, if n = 7 the cardinalities
of {61,4111,1111111} and {7,61,52} are the same.
Garsia and Milne invented their notorious princi-
ple in order to give a Rogers—Ramanujan bijection,
thereby winning a $50 prize from George Andrews.
However, finding a really nice bijective proof is still
an open problem.

A quintessential example of a bijective proof
is Priffer’s proof of CAYLEY’s celebrated result
that there are n" 2 labeled trees on n vertices
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(example (5) earlier). Recall that a labeled tree is
a labeled connected simple graph without cycles.
Every tree has at least two vertices with only
one neighbor (these are called leaves). A certain
mapping called the Priffer bijection associates
with every labeled tree T a vector of integers

(a1y...,ap—2), with 1 < a; < n for each ¢. This
vector is called its Priffer code. Since there are
n"~2 such vectors, Cayley’s formula follows once

we have defined the mapping f : Trees — Codes
and proved that it is indeed a bijection. This really
needs four steps: defining f, defining its alleged
inverse map ¢, and proving that go f and fog are
the identity maps on their respective domains.

The mapping f is defined recursively as follows.
If the tree has 2 vertices, then its code is the empty
sequence. Otherwise, let a; be the (sole) neighbor
of the smallest leaf and let (ag,...,a,—2) be the
code of the smaller tree obtained by deleting that
leaf.

5 Exponential Generating
Functions

So far, when we have discussed generating func-
tions, we have been talking about ordinary gener-
ating functions (or OGFs). These are ideally suited
for counting ordered structures like integer parti-
tions, ordered trees, and words. But many combi-
natorial families are really sets, where the order is
immaterial. For these the natural concept is that
of an ezponential generating function (or EGF).
The EGF of a sequence {a(n)}52, is defined to

n=0
be
a(n
> A,
n=0 ’

Labeled objects can be often viewed as sets of
smaller irreducible objects. For example, a permu-
tation is the disjoint union of cycles, a set partition
is the disjoint union of nonempty sets, a (labeled)
forest is the disjoint union of labeled trees, and so
on.

Suppose that we have two combinatorial families
A and B, and suppose that there are a(n) labeled
objects of size n in the A family, and b(n) in the
B family. We can construct a new set of labeled
objects C = A x B, where the labels are disjoint
and distinct, and define the size of a pair to be the

sum of the sizes of the components. We have

e(n) = g: (Z) a(k)b(n — k),

0

since we must

(i) decide the size of the first component, k (an
integer between 0 and n), which forces the size
of the second component to be n — k,

(ii) decide which of the n labels go to the first

component ((}) ways), and

(iii) pick the objects for each component from the

A and B families, respectively, using the avail-

able labels (a(k)b(n — k) ways).

Multiplying both sides by «™/n! and summing
from n = 0 to n = co yields

-(& ) (2 v

Hence EGF(C) = EGF(A) EGF(B). Iterating, we
get

EGF(Ay x Ay x - x Ay,) = EGF(A,) - - - EGF(Ap).

In particular, if all the A; are the same, we have
that the EGF of ordered k-tuples, AF, equals
[EGF(A)]*. But if “order does not matter,” then
the EGF of k-sets of A-objects is [EGF(A)]*/k!,
since there are exactly k! ways of arranging a k-
set into an ordered array (since all labels are dis-
tinct, all these objects are different). Summing
from kK = 0 to & = oo we get the “fundamental
theorem of exponential generating functions.”

If B is a labeled combinatorial family that can
be viewed as sets of “connected components” that
belong to a combinatorial family A, then

EGF(B) = exp[EGF(A4)].

This useful theorem was part of the physics folk-
lore for many years, and was also implicit in many
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older combinatorial proofs. However, it was expli-
cated only in the early 1970s. It was fully “catego-
rized” by means of Joyal’s theory of species, which
grew to be a beautiful theory of enumeration in
the hands of the école Québecoise (the Labelle and
Bergeron fréres, Leroux, and others).

Here are some venerable examples. Let us try to
find the EGF of set partitions. That is, let us try
and figure out an expression for

o0
n=0
where b(n) (so-called Bell numbers) denotes the
number of set partitions of an n-element set.
Recall that a set partition of a set A is a
set of pairwise-disjoint nonempty subsets of A,
{A4;,..., A}, such that the union of all the A;
equals A. For example, the set partitions of the
2-element set {1,2} are {{1},{2}} and {{1,2}}.
The atomic objects in this example are non-
empty sets. (We think of a set A as being the “triv-
ial” partition of itself into just one set.) Let a(n)
be the number of ways of partitioning a set of size
n into one nonempty set. Clearly when n = 0 this
cannot be done, so a(0) = 0. When n = 1 there
is exactly one way of doing it, so the EGF of the
sequence a(n) is

It follows immediately from the fundamental the-

orem that -
b T
Z (7:’) " = e® —17
— nl

an identity of Bell. Nowadays, with computer alge-
bra systems, this can be used immediately to crank
out the first 100 terms of the sequence b(n). For
example, in Maple one simply types

(5.1)

taylor (exp(exp(x)-1),x=0,101);

so this is definitely an answer in the Wilfian sense.
We can also easily derive recurrences (albeit ones
that need at least O(n) memory), by differentiating
both sides of (5.1) and comparing coefficients.
That was really easy, so let us go on and prove
something much deeper. How about an EGF-style
proof of Levi Ben Gerson’s celebrated formula
for the number of permutations on n objects, n!

(example (2) earlier)? Every permutation can be
decomposed into a disjoint union of cycles, so the
atomic objects are now cycles. How many n-cycles
are there? The answer is of course (n — 1)!; since
(a1,aq,...,a,) is the same as (ag,as,...,an,a1),
which is the same as (as, ..., an, a1, as), etc., which
means that we can pick the first entry arbitrarily,
after which we have (n —1)! choices for placing the
remaining entries. The EGF for cycles is therefore

Zn-1)! , =1,
nz::l n! v :;Ex

= —log(l — z) = log(1 — x)~".

Using the fundamental theorem, we get that the
EGF of permutations is

exp(log(l —z) ™ H=1—-2)"' = Zx"
n=0
&,
B n!”

and voila we have a beautiful new proof that the
number of permutations on n objects is n!.

This argument may not look very impressive.
But a slight modification leads immediately to the
(ordinary) generating function for the number of
permutations on {1,...,n} with exactly & cycles,
which we shall denote by ¢(n, k). Here we are fix-
ing n and letting k vary, so the generating func-
tion is Cp(a) = > p_,c(n, k)ak. All we have to
do to calculate this is go from naive counting to
weighted counting, and assign to each permutation
the weight a#<v°'*s. The fundamental theorem of
exponential generating functions carries over word-
for-word to weighted counting. The weighted EGF
for cycles is alog(1 — x)~1, so the weighted EGF
for permutations is

expla-log(l—2) 1) = (1 —2)~% = Z ()n o

where
(@) =ala+1)---(a+n—1)

is the so-called rising factorial. We have therefore
derived the far less trivial result that the number
of permutations of {1,...,n} with exactly k cycles
equals the coefficient of a® in (a),.
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About 10 years ago (Ehrenpreis and Zeilberger
1994) T used this technique to give a combinatorial
proof of Pythagoras’s theorem in the form

sin® z + cos? z = 1.

sin z and cos z are the weighted EGF's for increas-
ing sequences of odd and even lengths, respectively,
with weight (—1)l"th/2] Hence the left-hand side
is the weighted EGF for ordered pairs of increasing
sequences

a; < --- < ag, by << by,

such that k and r have the same parity, the sets
{a1,...,ar} and {by,...,b,.} are disjoint, and the
union of the two sets is {1,2,...,k + r}. There is
a killer-involution on these sets of pairs defined as
follows.

If ay, < b, then map the pair to

ap < - < ag < by, by <o < bp_q.

and otherwise map it to

a; < -+ < ap_1, by <--- < b <ag.

For example, the pair

1,3,5,6 2,4,7,8,9,10,11, 12,

whose sign is (—1)% - (=1)* = 1, goes to the pair

1,3,5,6,12  2,4,7,8,9,10,11,

whose sign is (—1)? - (—1)% = —1 (and vice versa).

Since this mapping changes the sign, and is an
involution, all such pairs can be paired up into
mutually cancelling pairs. But this mapping is
undefined for one special pair, namely the pair
(empty, empty), whose weight is 1, hence the EGF
for the sum of the weights of all pairs is 1, explain-
ing the right-hand side.

Yet another application of this method is a proof
of André’s generating function for the number of
up—down permutations. A permutation of ay - - - a,
is called up—down (or sometimes zigzag) if a1 <
as > a3z < aqg > as < ---. Let a, be the number of
up—down permutations. Then

>
n=0

" = secx + tan .

This is equivalent to saying that

COST - <Z a(?)w”> =1+sinz.
n!

n=0

Can you find the appropriate set and the killer-
involution?

6 Podlya—Redfield Enumeration

Often in enumeration it is easy enough to count
labeled objects, but what about unlabeled ones?
For example, the number of labeled (simple)
graphs on n vertices (example (6)) is trivially
2(n=1)/2 hut how many unlabeled graphs are
there on n vertices? This is much harder, and in
general there are no “nice” answers, but the best
known way is via a powerful technique initiated by
Pélya, which was largely anticipated by Redfield.
Pélya enumeration lends itself very efficiently to
counting chemical isomers, since, for example, all
the carbon atoms “look the same.” Indeed counting
isomers was Pdlya’s initial motivation (see MATH-
EMATICS AND CHEMISTRY).

The main idea is to view wunlabeled objects as
equivalence classes of easy-to-count labeled objects,
and to count these equivalence classes. But what
is the equivalence? The answer is that there
is always a symmetry group (see Section 77?7 of
SOME FUNDAMENTAL MATHEMATICAL DEFINI-
TIONS) involved, and it leads to a natural equiv-
alence relation. Let the symmetry group be G,
and let the set of labeled objects be A. Then two
objects a and b of A are regarded as equivalent if
b = g(a) for some member g of the group G. This
means that there is some symmetry g in the group
G that transforms a to b. This is easily seen to be
an equivalence relation and the equivalence classes
are the sets

Orbit(a) := {g(a) [ g € G}, a€ A4,

which are known as orbits. Calling each orbit a
“family,” we have the task of counting the number
of families. Note that G is a subgroup of the group
of permutations of the finite set A.

Suppose that there is a picnic consisting of many
families and we want to count the number of fam-
ilies. One way would be to define some “canonical
head” of each family, say “mother,” and count the
number of mothers. But some daughters look like
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mothers, so this is not so easy. On the other hand,
you cannot just count everybody, since then you
would count each family several times. The prob-
lem is that “naive” counting of people (or objects)
is giving a credit of 1 to each person, and this is
inappropriate if we are trying to count families. If
instead we were to ask each person “How big is
your family?” and add to our count the reciprocal
of that number, then the calculation would come
out just right, since a family of size k would get a
credit of 1/k for each of its members, and would
therefore have been counted exactly once by the
end. Going back to counting orbits, we see by the
same reasoning that their number is

Z 1
= |Orbit(a)]

The conceptual opposite of “orbit of a” is the sub-
group of members of G that fix a:

Fix(a) = {g € G | g(a) = a}.

(This is sometimes known as the stabilizer of a.) To
each element b = ga in the orbit of a, we can asso-
ciate the left coset g Fix(a) of Fix(a). This associa-
tion turns out to be a well-defined one-to-one cor-
respondence between the orbit of a and the cosets
of Fix(a) in G, from which it follows that the size
of Orbit(a) is |G/ Fix(a)|. We can therefore substi-
tute |Fix(a)|/|G| for 1/|Orbit(a)| in the previous
formula, which implies that the number of orbits

is
Z |Fix(a)

a€A

1G]

Let us use the notation x(statement) to stand for
1 if the statement is true and 0 if it is false. Then

o 3 IFix()] = 22 3 3 e

a€A a€A geG

7 2 2 xla

gEG acA

\G| Zﬁx

geG

(] \GI

where fix(g) is the number of fixed points of ¢
(when g is viewed as a permutation of A). We
have just proved what used to be called Burnside’s
lemma, but it goes back to CAUCHY and FROBE-
NIUS. It states that the total number of orbits
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equals the average number of fixed points of g, over
all transformations g in G. If the group G is the
full symmetric group of all the permutations of A,
then the average number of fixed points equals 1
(since in this trivial case there is only one orbit!).

Enter Polya. The objects that he was interested
in counting (e.g. chemical isomers, or colorings of
the faces of the cube) were all naturally functions
from an underlying set to a set of colors (or atoms).
Let us call the underlying set U and the set of
colors C'. A symmetry of U gives rise in a natural
way to a transformation of the set of functions f :
U — (. Given a function f one defines a new
function gf by g(f)(u) := f(g(u)). (If we think of
f as a coloring, then gf is the new coloring that
assigns to u the color that f assigned to g(u).) Now
let us think about the number of fixed points of ¢ in
the set of C-colorings of U. Such a fixed point is a
coloring f that equals gf: that is, f(u) = f(gu) for
every u. But then f(u) = f(gu) = f(g%u) = -+,
which means that, given any cycle of g, f must
assign the same color to all members of that cycle.
It follows that the number of fixed colorings of g is
ceveles(9) where ¢ = |C| is the number of colors.

Applying Burnside’s lemma, we may deduce that
the number of different colorings of U (up to G-
equivalence) is

3 cevelesta),

IGI =

since an equivalence class of colorings is simply an
orbit of one of the colorings in that class.

Here is a simple application. How many neck-
laces (without a clasp) are there that consist of p
beads (where p is a prime) and that use a differ-
ent colors? The underlying set is {0, ...,p—1}, and
the symmetry group is Z,, the cyclic group of order
p. As usual, regard the elements of the symmetry
group as permutations of the set of beads. Since
p is a prime, there are p — 1 elements of Z, with
one cycle (of length p), and one element (the iden-
tity permutation) with p cycles (all of length 1). It
follows that the number of necklaces is

1 a? —a
—((p—1)-a+1-a’)=a+ .
p p

In particular, since this number is necessarily an
integer, we get as a bonus a combinatorial proof
of Fermat’s little theorem: that a? — a is always a
multiple of p. Perhaps one day there will be an
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equally nice combinatorial proof of Fermat’s last
theorem? All one has to do is to prove that there
is no bijection from the union of the set of straight
necklaces of size n using z colors, and the set of
such necklaces using y colors, to the set of necklaces
using z colors (with n > 2, of course).

If one wants to keep track of how many beads
there are of each color, we simply replace straight
counting by weighted counting, and c¢#oveles(9) ig
replaced by

(x1++l'c)a1(x%++l'z)a2

(assuming that g has ay 1-cycles, ap 2-cycles, etc.).
The resulting expression is the celebrated cycle-
index polynomial.

6.1 The Principle of Inclusion—Exclusion
and Mdobius Inversion

Another pillar of enumeration is the principle
of inclusion—exclusion (nicknamed PIE). Suppose
that there are n sins, s1,..., s,, that a person may
succumb to, and suppose that for each set of sins
S, Ag is the set of people who have all the sins in
S (and possibly others). Then the number of good
people (without sins) is

> (=1FlAg.

S

For example, if the set A is the set of all permu-
tations 7 of {1,...,n} and the ith sin is having
w[i] = 4, then |Ag| = (n — |S])!, and we get that
the number of derangements (permutations with-
out fixed points) is

n

n " 1
> (-1* <k> (n—k)! = n! kzzo(_l)kﬂ’

k=0

which yields the answer: “closest integer to n!/e.”
This is sometimes called the “umbrella problem”:
if on a rainy day n absent-minded people go to a
party and leave an umbrella by the door, and if on
their departure they each take a random umbrella,
then the probability that nobody ends up with the
right umbrella is about 1/e.

The PIE is but a special case of Mébius inversion
on general partially ordered sets (posets) where the
poset happens to be the Boolean lattice. This real-
ization was published in a seminal paper by Rota
(1964) and reprinted in his collected works. It is
considered by many to be the big bang that started

modern algebraic combinatorics. M&bius’s original
inversion formula is recovered when the partially
ordered set is N and the partial order is divisibil-
ity.

A contemporary account of enumeration from
the “algebraic” point of view can be found in a
marvelous two-volume set by Stanley (2000), which
I strongly recommend.

7 Algebraic Combinatorics

So far I have described one of the routes to
algebraic combinatorics: abstraction and concep-
tualization of classical enumeration. The other
route, “concretization of the abstract,” is almost
everywhere dense in mathematics, and cannot be
described in a few pages. Let me quote from the
preface of the excellent New Perspectives in Alge-
braic Combinatorics by Billera et al. (1999).

Algebraic combinatorics involves the use
of techniques from algebra, topology, and
geometry in the solution of combinato-
rial problems, or the use of combinato-
rial methods to attack problems in these
areas. Problems amenable to the meth-
ods of algebraic combinatorics arise in
these or other areas of mathematics or
from diverse parts of applied mathemat-
ics. Because of this interplay with many
fields of mathematics, algebraic combina-
torics is an area in which a wide variety
of ideas and methods come together.

7.1 Tableaux

An interesting class of objects that initially came
up in group representation theory, but that turned
out to be useful in many other areas—such as,
for example, the theory of algorithms—are Young
tableaur. They were first used by Reverend Alfred
Young to construct explicit bases for the irre-
ducible representations of the symmetric group.
For any partition A\ = A;--- A of n, a Young
tableau of shape A is an array of k left-justified
rows with Ay entries in the first row, Ay entries in
the second row, and so on, such that every row and
every column is increasing, and the set of entries is
{1,2,...,n}. For example, there are two standard
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Young tableaux whose shape is 22,

1 2 1 3
3 4 2 47
and three of shape 31,
1 2 3 1 2 4 1 3 4
4 3 2 ’

Let f) be the number of standard Young tableaux
of shape \. For example, forn = 4: fy = 1, f3; = 3,
foo = 2, fo11 = 3, and f1111 = 1. The sum of the
squares of these numbers is 12 +32+22+32412 =
24 = 4.

The number fy is the dimension of the irre-
ducible representation parametrized by A. It fol-
lows by a result in REPRESENTATION THEORY
known as Frobenius reciprocity that the same is
true for all n. In other words,

> R=n

AFn

a result known as the Young—Frobenius iden-
tity. A gorgeous bijective proof of this identity,
which has many beautiful properties, was given by
Gilbert Robinson and Craige Schensted and later
extended by Donald Knuth, and is now known as
the Robinson—Schensted—Knuth correspondence.
It inputs a permutation 7 = w7y - - - m,, and out-
puts a pair of Young tableaux of the same shape,
thereby proving the identity.

Algebraic combinatorics is currently a very
active field, and as mathematics is becoming more
and more concrete, constructive and algorithmic,
there are going to be many more combinatorial
structures discovered in all areas of mathematics
(and science!) and this will guarantee that alge-
braic combinatorialists will stay very busy for a
long time to come.
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