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Enumeration, alias counting, is the oldest
mathematical subject, while Algebraic Combi-
natorics is one of the youngest. Some cynics claim
that Algebraic Combinatorics is not really a new
subject but just a new name given to Enumera-
tive Combinatorics in order to enhance its (former)
poor image, but Algebraic Combinatorics is in fact
the synthesis of two opposing trends: abstraction
of the concrete and concretization of the abstract.
The former trend dominated the first half of the
20th century, starting with Hilbert’s ‘theological’
proof of the fundamental theorem of invariants,
while the latter trend is dominating contemporary
mathematics, thanks in large part to Its Omnipres-
ence, The Mighty Computer.

The abstraction trend, that consists of catego-
rization, conceptualization, structuralization and
fancification (in short ‘Bourbakisation’) of math-
ematics, did not escape enumeration, and in
the hands of such giants as Gian-Carlo Rota
and Richard Stanley in America and Marco
Schützenberger and Dominique Foata in France,
classical, enumerative, combinatorics became more
conceptual, structural and algebraic. On the other
hand, the trend towards the explicit, concrete, and
constructive revealed that many algebraic struc-
tures have hidden combinatorial underpinnings,
and the attempts to unearth them lead to the other
route towards the establishment of Algebraic Com-
binatorics as a full-fledged separate mathematical
specialty.

Enumeration
The Fundamental Theorem of Enumeration,

independently discovered by several anonymous
cave-dwellers, states that

|A| =
∑
a∈A

1 .

While this formula is still useful after all these
years, enumerating specific finite sets is no longer
considered mathematics. A genuine mathematical

fact has to incorporate infinitely many facts, and
the generic enumeration problem is:

Given an infinite sequence of sets {A(n)}∞n=0,
parameterized by n, of objects satisfying a set of
combinatorial specifications, answer the fol-
lowing

Question: What is a(n) := |A(n)|?

But before we can learn how to answer this kind
of questions, let’s consider a

Meta-Question: What is an Answer?

It was posed, and beautifully answered by Her-
bert Wilf. Before telling you Wilf’s meta-answer,
let’s first examine answers to some famous in-
stances of enumeration questions.

1. (I Ching) If A(n) is the set of subsets of
{1, . . . ,n}, then a(n) = 2n.

2. (Levi Ben Greson) If A(n) is the set of per-
mutations on {1, . . . , n}, then a(n) = n!.

3. (Catalan) If A(n) is the set of complete
binary trees with n leaves, then a(n) = (2n−2)!

(n−1)!n! .
4. (Leonardo of Pisa) If A(n) is the set of words

in the alphabet {1, 2} that sum to n, then we
have three answers.

(i)

a(n) =
1√
5

(1 +
√

5
2

)n+1

−

(
1−
√

5
2

)n+1
 .

(ii)

a(n) =
n/2∑
k=0

(
n− k
k

)
.

(iii) a(n) = Fn+1, where Fn is the sequence de-
fined by the recurrence Fn = Fn−1 +Fn−2, subject
to the initial conditions F0 = 0, F1 = 1.

5. (Cayley) If A(n) is the set of labeled trees
on n vertices, then a(n) = nn−2.

6. If A(n) is the set of labeled simple graphs
on n vertices, then a(n) = 2n(n−1)/2.

7. If A(n) is the set of labeled connected
simple graphs on n vertices, then a(n) is n! times
the coefficient of xn in the power series expansion
of

log

( ∞∑
k=0

2k(k−1)/2

k!
xk

)
.

1
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8. If A(n) is the number of Latin Squares
of size n (n × n matrices each of whose rows
and column is a permutation of {1, . . . , n}), then
a(n) =???.

In 1982, Herb Wilf defined an answer as follows.

Definition: An answer is a polynomial-time
algorithm (in n) for computing a(n).

Wilf arrived at this definition after he refereed
a paper proposing a ‘formula’ for the answer to
question 8, and realizing that its ‘computational
complexity’ exceeds that of the caveman’s formula
of direct counting.

What is a ‘formula’? It is really an algorithm
that inputs n and outputs a(n). For example
a(n) = 2n is shorthand for the recursive algorithm:
“if n = 0 then 1 else 2a(n − 1)”, that takes O(n)
steps. However using the algorithm: “if n = 0 then
1, else if n is odd, then 2a(n − 1), else, a(n/2)2,
takes O(log n) steps, much faster than Wilf de-
mands. In other cases, like enumerating so-called
Self-Avoiding Walks, where the best known algo-
rithm is exponential, O(cn), any lowering of the c
is a major advance. Notwithstanding these excep-
tions, Wilf’s meta-answer is a very useful gen-
eral guideline for evaluating answers.

The traditional customers of Enumeration
were mainly probability and statistics. In fact
discrete probability is almost synonymous with
enumerative combinatorics, since the probabil-
ity of an event E occurring is the ratio of the
number of successful cases divided by the total
number. Also statistical physics is by and
large weighted-enumeration of lattice mod-
els. About fifty years ago, another important cus-
tomer came along: computer science, where one
is interested in computational complexity of
algorithms, that is in the number of steps it
takes to execute algorithms.

METHODS

• Decomposition:

|A ∪B| = |A|+ |B| ,

( if A ∩B = ∅)

|A×B| = |A| · |B| ,

|AB | = |A||B| .

• Refinement: If

A(n) =
⋃
k

B(n, k) (disjoint union) ,

and if b(n, k) := |B(n, k)| is ‘nice’ (and even if it
isn’t), then

a(n) =
∑
k

b(n, k) .

For example, the set A(n) of example 4, can be
split into a disjoint union of the subsets B(n, k),
consisting of those sequences with exactly k 2’s.
Then there must be n − 2k 1’s and we have that
b(n, k) equals

(
n−k
k

)
, yielding answer (ii).

• Recursion

Suppose that A(n) can be decomposed in such
a way that it is a combination of fundamental
operations applied to the sets A(n − 1), A(n −
2), . . . , A(0). Then a(n) satisfies an ‘explicit’ re-
cursion

a(n) = P (a(n− 1), a(n− 2), . . . , a(0)) .

For example if A(n) is the set of ex. 4, then for
any n ≥ 2,

A(n)↔ A(n− 1)× {1} ∪A(n− 2)× {2} ,

yielding answer (iii).
If A(n) is the set of (complete) binary trees

on n leaves (ex. 3), then, by considering the
number of leaves of the left subtree, we get
A(n) =

⋃n−1
k=1 A(k) × A(n − k), and taking cardi-

nalities, a(n) =
∑n−1
k=1 a(k) · a(n− k), a non-linear

(quadratic) and non-local recurrence, but never-
theless one that satisfies Wilf’s dictum.

• Generatingfunctionology

According to Herb Wilf, who coined this neolo-
gism by making it the title of his classic book (a
free download from his website, even though it is
still in print!):

“A generating function is a clothesline in which
we hang up a sequence of numbers for display”.
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The method of Generating Functions is one of
the most useful tools of the trade of Enumera-
tion. The generating function of a sequence, some-
times called its z-transform, is a discrete analog of
the Laplace Transform, and indeed goes back to
Laplace himself.

{an}∞n=0 → f(x) :=
∞∑
n=0

anx
n .

Generating functions are so useful because infor-
mation about an translates to information about
f(x) that is often easier to process, getting addi-
tional information about f(x) that often translates
back to information about the sequence. For ex-
ample, an = an−1 + an−2 (n ≥ 2) together with
the initial conditions a0 = 1, a1 = 1 translates to

f(x) :=
∞∑
n=0

anx
n = a0 + a1x+

∞∑
n=2

anx
n =

1 + x+
∞∑
n=2

(an−1 + an−2)xn =

1 + x+
∞∑
n=2

an−1x
n +

∞∑
n=2

an−2x
n

1 + x+ x
∞∑
n=2

an−1x
n−1 + x2

∞∑
n=2

an−2x
n−2 =

1 +x+x(f(x)− 1) +x2f(x) = 1 + (x+x2)f(x) .

Hence
f(x) =

1
1− x− x2

,

that after performing a partial-fraction decomposi-
tion, and taylor-expanding the two resulting terms,
would yield ans. (i) to ex. 4.

Weight-Enumeration

According to the modern approach, pioneered
by Pólya, Tutte, and Schützenberger, generating
functions are neither ‘generating’, nor are they
functions. They are rather formal power series
that are weight enumerators of (usually infinite)
combinatorial sets.

Suppose that we want to study the age distribu-
tion of a finite population. One way would be to
ask 121 questions. For each i between 0 and 120,
we ask those whose age is i to raise their hand.

Then we count each of these age-groups one-by-
one, compiling a table of ai, (0 ≤ i ≤ 120), and
finally computing the generating function

f(x) =
120∑
i=0

aix
i .

But if the size of the population is much less than
120, it would be much more efficient to ask every
person their age and assign the weight of the person
to be xage(person).

f(x) =
∑

persons

xage(person) ,

which is a natural extension of the caveman’s for-
mula of naive counting. Once we have f(x) we
can easily compute statistically interesting quan-
tities, like the average, µ = f ′(1)/f(1), and vari-
ance, σ2 = f ′′(1)/f(1) + µ− µ2.

The general scenario is that we have an interest-
ing (finite of infinite) combinatorial set, let’s call
it A and a certain numerical attribute: α : A→ N.
Then the weight-enumerator of A w.r.t. to α is
defined by

f(x) := |A|x :=
∑
a∈A

xα(a) .

Obviously, this equals

∞∑
n=0

anx
n ,

where an is the number of members of A whose
α equals n. Hence if we have some kind of ex-
plicit expression for f(x), we immediately have
an ‘explicit’ expression for the actual sequence
an := Coeffxnf(x), that is, if one allows the op-
erator ‘Coeff of xn’ as a primitive (or equivalently,
contour integrals in the complex x plane). Even
if one doesn’t, then it is still often possible to get
a ‘nice’ formula for an, and failing this, to extract
the asymptotics, which is a deep current subspe-
cialty in the hands of such masters as Ed Bender,
Rod Canfield, Andrew Odlyzko, and the indefati-
gable Phillipe Flajolet.

The fundamental operations for naive counting
also hold for weighted counting, just replace || by
||x, to wit:

|A ∪B|x = |A|x + |B|x ,



4

( if A ∩B = ∅) and

|A×B|x = |A|x · |B|x .

For example, consider the infinite set A, of all
words in {1, 2}, and let the attribute be ‘sum of
entries’, so the weight of 1221. e.g., is x6, and in
general, weight(a1 . . . ar) := xa1+···+ak . The set A
can be naturally decomposed as

A = {φ} ∪ 1A ∪ 2A ,

where φ is the empty word. Applying | · |x, we get

|A|x = 1 + x|A|x + x2|A|x ,

which, in this simple case, can be solved explicitly,
to yield, once again

|A|x =
1

1− x− x2
.

A complete (ordered) binary tree is either the
root alone (in which case it only has one vertex),
or else the root has two children, called its left-
child and right-child, and the subtrees rooted at
both of them are complete binary trees on their
own right. A leaf is a vertex without children. Let
B be the (infinite) set of all complete binary trees,
and define the weight of such a tree to be x raised
to the power ‘the number of leaves’. For example,
the weight of () is x and the weight of (()(()())) is
x3. B decomposes naturally into

B = {·} ∪B ×B ,

which leads to the non-linear (quadratic) equation

|B|x = x+ |B|2x ,

that implies, thanks to the Babylonians, the ex-
plicit expression

|B|x =
1−
√

1− 4x
2

,

that in turn, via Newton’s binomial theorem,
would yield the answer to ex. 3 above.

If instead of complete binary trees, where every
vertex is allowed either zero or two children, we try
to count penta-trees, where each vertex may only
have exactly zero or five children, then the gen-
erating function, alias weight-enumerator, would
satisfy the quintic equation

f = x+ f5 ,

that according to Abel and Galois is not solvable by
radicals. However the ansatz of solvability by rad-
icals has its limitations. Count Joseph Lagrange,
more than 200 years ago, devised a beautiful and
extremely useful formula for extracting the coeffi-
cients of the generating function from the equation
it satisfies, now called the Lagrange Inversion For-
mula. Using it one easily gets that the number of
complete k-ary trees with (k − 1)m+ 1 leaves is:

(km)!
((k − 1)m+ 1)!m!

.

A multivariate generalization of the Lagrange
Inversion Formula, discovered by the great
Bayesian probabilist I. J. Good, enables one to
enumerate colored trees and many other exten-
sions.

Enumeration Ansatzes

If one wants to turn Enumerative Combina-
torics into a theory rather than a collection of
solved problems, one needs to introduce classifica-
tion, and enumeration paradigms for counting se-
quences. But since paradigm is such a pretentious
word, let’s use the much humbler German word
ansatz, that roughly means ‘form of solution’.

Let {an}∞n=0 be a sequence, and let

f(x) =
∞∑
n=0

anx
n ,

be its generating function. If we know the ‘form’
of an we can often deduce the form of f(x) (and
vice versa).

1. If an is a polynomial in n, then f(x) has the
form

f(x) =
POLY (x)
(1− x)d+1

,

where d is the degree (in n) of the polynomial de-
scribing an.

2. If an is a quasi-polynomial in n (i.e. there ex-
ists an integer N such that for each r = 0, . . . , N−
1, a(mN+r) is a polynomial in m), then, for some
(finitely-many ) integers d1, d2, . . . ,

f(x) =
POLY (x)

(1− x)d1(1− x2)d2(1− x3)d3 . . .
.
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3. If an is C − recursive, i.e. satisfies a lin-
ear recurrence equation with constant coefficients
(like the Fibonacci sequence)

an = c1an−1 + c2an−2 + · · ·+ cdan−d ,

then

f(x) = RATIONAL(x) =
POLY (x)
POLY (x)

.

4. If an is P − recursive, i.e. satisfies a linear
recurrence equation with polynomial coefficients
(e.g. an = n!):

c0(n)an = c1(n)an−1+c2(n)an−2+· · ·+cd(n)an−d ,

where ci(n) are polynomials in n, then f(x) is D-
finite, i.e. satisfies a linear differential equation
with polynomial coefficients (in x) .

In the case of an = n! the recurrence is first-
order: an = nan−1. A natural example of a
P -recursive sequence satisfying a higher-order lin-
ear recurrence with polynomial coefficients is the
sequence counting the number of involutions on
{1, . . . , n} (i.e. permutations that equal their in-
verse), let’s call it {wn}, that satisfies

wn = wn−1 + (n− 1)wn−2 .

This recurrence follows from the fact that n is ei-
ther in a 1-cycle, or in a 2-cycle, the former case
accounting for wn−1 of the involutions, and the
second for (n − 1)wn−2 of them (n − 1 ways of
choosing the cycle-mate, i, say, of n, and deleting
that cycle leaves an involution of the n−2 elements
{1, . . . , i− 1, i+ 1, . . . , n− 1}.

Bijective Methods

This last argument was a simple example of a
bijective proof, in this case, of a recurrence for
the number of involutions on n objects. Contrast
this with the following proof.

The number of involutions of {1, . . . , n} with
exactly k 2-cycles is

(
n
2k

) (2k)!
k!2k

, because we must
first choose the 2k elements that will participate
in the k 2-cycles, and then match them up into
(unordered) pairs, which can be done in (2k −
1)(2k − 3) · · · 1 = (2k)!/(k!2k) ways. Hence wn =∑
k

(
n
2k

) (2k)!
k!2k

. Nowadays such sums can be handled

completely automatically, and if one inputs this
sum to the Maple package EKHAD (downloadable
from my website), one would get the recurrence
wn = wn−1 + (n− 1)wn−2 as the output, together
with a (completely rigorous!) proof. While the
so-called Wilf-Zeilberger (WZ) method can han-
dle many such problems, there are even more cases
where one still needs a human proof. In either case
such proofs involve (algebraic, and sometimes an-
alytic) manipulations. The great Combinatorialist
Adriano Garsia derogatorily calls such proofs ma-
nipulatorics, and real enumerators do not manip-
ulate, or at least try to avoid it whenever possible.
The preferred method of proof is by bijection.

Suppose one has to prove that |A(n)| = |B(n)|
for every n, where A(n) and B(n) are combinato-
rial families. The ‘ugly way’ is to get some (al-
gebraic or analytic) expressions for a(n) := A(n),
and b(n) := |B(n)|. Then one manipulates a(n)
getting another expression a1(n), which in turn
leads to yet another expression a2(n), and if one is
patient enough, and clever enough, and in luck, or
the problem is not too deep, one would hopefully
arrive at b(n), and the result would follow from the
transitivity of the equality relation.

On the other hand, the nice way of proving that
|A(n)| = |B(n)| is by constructing (a preferably
nice) bijection T (n) : A(n) → B(n), which im-
mediately implies, as a corollary, that |A(n)| =
|B(n)|.

In addition to being more aesthetically pleasing,
a bijective proof is also philosophically more satis-
factory. In fact the notion of (cardinal) number is
a highly sophisticated derived notion based on the
much more basic notion of ‘being in bijection’. In-
deed, according to Frege, the cardinal numbers are
equivalence classes, where the equivalence relation
is ‘being bijective’. Saharon Shelah said that peo-
ple have been exchanging objects, in a one-to-one
way, long before they started to count. Also a bi-
jective proof explains why the two sets are equinu-
merous, as opposed to just certifying the formal
correctness of this fact.

For example, suppose that Noah wanted to prove
that in his Ark, there were as many male as fe-
male creatures. One way of proving this was for
him to actually have counted the number of males
and the number of females, and check that these
numbers are indeed the same. But a much bet-
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ter, conceptual, proof is to exhibit the bijection
Males→ Females defined by ‘wife of’, whose in-
verse map Females→Males is ‘husband of’.

A classic example of a bijective proof is
Glashier’s proof of Euler’s Odd=Distinct partition
theorem. A partition of an integer n is a way of
writing it as a sum of positive integers, where order
does not matter, hence for convenience’s sake it is
written as λ1 . . . λk with λ1 ≥ λ2 ≥ · · · ≥ λk > 0,
summing to n. For example, 6 has 11 partitions:
6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111.

A partition is called odd if all its parts are
odd, and it is called distinct if all its parts are
distinct. Let Odd(n) and Dis(n) be the sets
of odd and distinct partitions of n respectively.
For example Odd(6) = {51, 33, 3111, 111111} and
Dis(6) = {6, 51, 42, 321}. Leonhard Euler proved
that |Odd(n)| = |Dis(n)| for all n. His ‘manipu-
latorics’ proof goes as follows. Let on and dn be
the number of odd and distinct partitions of n re-
spectively, and let’s define the generating functions
f(q) =

∑∞
n=0 onq

n and g(q) =
∑∞
n=0 dnq

n. Using
the ‘multiplication principle’ for weighted count-
ing, Euler noted that

f(q) =
∞∏
i=0

1
1− q2i+1

,

and

g(q) =
∞∏
i=0

(1 + qi) .

Using the algebraic identity 1+y = (1−y2)/(1−y),
we have

∞∏
i=0

(1 + qi) =
∞∏
i=0

1− q2i

1− qi
=

∏∞
i=0(1− q2i)∏∞

i=0(1− q2i)
∏∞
i=0(1− q2i+1)

=
∞∏
i=0

1
1− q2i+1

.

Hence g(q) = f(q), and on = dn follows by ex-
tracting the coefficient of qn.

For a very long time, these kind of manipulations
were considered to belong to the realm of analy-
sis, and in order to justify the manipulations of
the infinite series and products, one talked about
the ‘region of convergence’, usually |q| < 1, and

every step had to be justified by the appropriate
analytical theorem. Only relatively recently people
came to realize that there is no analysis involved,
and every thing makes sense in the completely ele-
mentary and much more rigorous (from the philo-
sophical viewpoint) algebra of formal power se-
ries. One still needs to worry about convergence,
so as to exclude, for example, an infinite product
like

∏∞
i=0(1 + x), but the notion of convergence

in the ring of formal power series is much more
user-friendly than its analytical namesake.

Even though invoking analysis was a red her-
ring, Euler’s proof, while purely algebraic and el-
ementary, is nevertheless still manipulatorics. It
would be much nicer to find a direct bijection be-
tween the set D(n) of distinct partitions and the
set O(n) of odd partitions. Such a bijection was
given by Glaisher. Given a distinct partition, write
each of its parts as 2r · s, where s is odd, and re-
place it by 2r copies of s. The output is obviously
a partition into odd parts of the same integer n.
For example (10, 5, 4) goes to (5, 5, 5, 1, 1, 1, 1). To
define the inverse, count for each odd part, a, how
many times it shows up, say m times, write m in
binary notation: m = 2s1 + · · ·+ 2sk , and replace
the m copies of a by the k parts : a ·2s1 , . . . , a ·2sk .

When we perform algebraic (and logical, and
even analytical) manipulations, we are really rear-
ranging and combining symbols, hence doing com-
binatorics in disguise. In fact, everything is com-
binatorics. All we need to do is to take the com-
binatorics out of the closet, and make it explicit.
The plus sign turns into (disjoint) union, the multi-
plication sign becomes Cartesian product, and in-
duction turns into recursion. But what about the
combinatorial counterpart of the minus sign? In
1982, Adriano Garsia and Steven Milne filled this
gap by producing an ingenious ‘Involution princi-
ple’ that enables one to translate the implication

a = b and c = d ⇒ a− c = b− d ,

into a bijective argument, in the sense that if
C ⊂ A and D ⊂ B, and there are natural bi-
jections f : A → B and g : C → D establishing
that a := |A| equals b := |B|, and c := |C| equals
d := |D|, then it is possible to construct an explict
bijection between A\C and B\D. Let’s define it
in terms of people. Suppose that in a certain vil-
lage all the adults are married, and hence there is
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a natural bijection between the set of married men
to the set of married women, m → WifeOf(m),
with its inverse w → HusbandOf(w). In addi-
tion, some of the people have extra-marital af-
fairs, (but only one per person, and all within
the village). There is a natural bijection between
the set of cheating men to the set of cheating
women, called m → MistressOf(m), with its in-
verse w → LoverOf(w). It follows that there are
as many faithful men as there are faithful women.
How to match them up? (say if a faithful man
wants a faithful woman to go to Church with him).
A faithful man first asks his wife to come with him.
If she is faithful, she agrees. If she is not, she has
a lover, and that lover has a wife. So she tells her
husband: sorry, hubby, but I am going to the pub
with my lover, but my lover’s wife may be free,
so the man asks the wife of the lover of his wife
to go with him, and if she is faithful, she agrees.
Is she is not he keeps asking the wife of the lover
of the woman who just rejected his proposal, and
since the village is finite, he will eventually get to
a faithful woman.

The reaction of the combinatorial enumeration
community to the Involution Principle was mixed.
On the one hand it had the universal appeal of a
general principle, that should be useful in many
attempts to find bijective proofs of combinatorial
identities. On the other hand, its universality is
also a major drawback, since Involution Princi-
ple proofs usually do not give any insight into
the specific structures involved, and one feels a
bit cheated. Such a proof answers the letter of
the question, but misses its spirit. In these cases
one still hopes for a really natural, ‘Involution
Principle- free proof’. This is the case with the
celebrated Rogers-Ramanujan identity that states
that the number of partitions of an integer into
parts that leave remainder 1 or 4 when divided by
5 equals the number of partitions of that integer
with the property that the difference between parts
is at least 2. For example if n = 7 the cardinal-
ities of {61, 4111, 1111111} and {7, 61, 52} are the
same. Garsia and Milne invented their notorious
Principle in order to give a Rogers-Ramanujan bi-
jection, thereby winning a $50 prize from George
Andrews. However, finding a really nice bijective
proof is still an open problem.

A quintessential example of a bijective proof is

Prüfer’s proof of Cayley’s celebrated result that
there are nn−2 labeled trees on n vertices (ex. 5
above). Recall that a labeled tree is a labeled con-
nected simple graph without cycles. Every tree
has at least two vertices with only one neighbor
(these are called leaves). The Prüfer bijection as-
sociates with every labeled tree T a vector of inte-
gers (a1, . . . , an−2), with 1 ≤ ai ≤ n. Since there
are nn−2 such vectors, Cayley’s formula would fol-
low once we define a mapping f : Trees→ Codes
and prove that it is indeed a bijection. This really
entails four steps: defining f , defining its alleged
inverse map g, and proving that g ◦ f and f ◦ g are
the identity maps on their respective domains.

The mapping f is defined recursively as follows.
If the tree has 2 vertices, then its code is the empty
sequence, otherwise let a1 be the (sole) neighbor of
the smallest leaf, and let (a2, . . . , an−2) be the code
of the smaller tree obtained by deleting that leaf.

An even nicer bijective proof was given in 1980
by André Joyal, whose proof formed the iconic ex-
ample of a gorgeous and deep combinatorial theory
of species.

Many more bijections can be found in Den-
nis Stanton and Dennis White’s lively ‘Construc-
tive Combinatorics’ (Springer). Bijective combi-
natorics has reached new summits in the hands of
the members of the ecole bordelaise, uner the guru-
ship of the great Bijectionist Xavier Viennot and
his talented disciples: Mireille Bousquet-Mélou,
Maylis Delest, and many others.

Exponential Generating Functions

We already talked above about ordinary gen-
erating functions (ogf) that are ideally suited for
counting ordered structures like integer-partitions,
ordered trees, and words. But many combinatorial
families are really sets, where the order is imma-
terial. For these the natural concept is that of
exponential generating function (egf).

The egf of a sequence {a(n)}∞n=0 is

∞∑
n=0

a(n)
n!

xn .

Labeled objects can be often viewed as sets of
smaller irreducible objects. For example, a permu-
tation is the disjoint union of cycles, a set-partition
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is the disjoint union of non-empty sets, a (labeled)
forest is the disjoint union of labeled trees, etc.

Suppose that we have two combinatorial families
A and B, and there are a(n) labeled objects of size
n in the A family, and b(n) in the B family. We
can construct a new set of labeled objects C =
A × B, where the labels are disjoint and distinct,
and define the size of a pair to be the sum of the
sizes of the components. We have

c(n) =
n∑
k=0

(
n

k

)
a(k)b(n− k) ,

since we must decide (i) the size of the first com-
ponent, k (k = 0 . . . n), which forces the size of
the second component to be n − k. (ii) which of
the n labels go to the first component (

(
n
k

)
ways).

(iii) pick the objects for each component from the
A and B family respectively, using the available
labels (a(k)b(n− k) ways).

Multiplying both sides by xn/n! and summing
from n = 0 to n =∞ yields
∞∑
n=0

c(n)
n!

xn =
∞∑
n=0

n∑
k=0

a(k)
k!

xk
b(n− k)
(n− k)!

xn−k =

( ∞∑
k=0

a(k)
k!

xk

)( ∞∑
n−k=0

b(n− k)
(n− k)!

xn−k

)
.

Hence egf(C) = egf(A)egf(B). Iterating, we get

egf(A1×A2× · · · ×Ak) = egf(A1) · · · egf(Ak) .

In particular, if all the Ai’s are the same, we
have that the egf of ordered k-tuples, Ak, equals
[egf(A)]k. But if ‘order does not matter’ then
the efg of k-sets of A-objects is [egf(A)]k/k!, since
there are exactly k! ways of arranging a k-set into
an ordered array (since all labels are distinct, all
these objects are different). Summing from k = 0
to k =∞ we get the

Fundamental Theorem of Exponential
Generating Functions:

If B is a labeled combinatorial family that can
be viewed as sets of ‘connected components’ that
belong to a combinatorial family A then

egf(B) = exp[ egf(A) ] .

This useful theorem was part of the physics folk-
lore for many years, and was also implicit in many

older combinatorial proofs. However it was expli-
cated only in the early 1970-ies. It was fully ‘cate-
gorized’ by means of Joyal’s theory of species, that
grew to be a beautiful theory of enumeration in
the hands of the ecole québecoise (the Labelle and
Bergeron frères, Leroux, and others).

Here are some venerable examples. Let’s try to
find the egf of set partitions, i.e. let’s try and figure
out an expression for

∞∑
n=0

b(n)
n!

xn ,

where b(n), (the so-called Bell numbers) denote the
number of set partitions of an n-element set.

Recall that a set partition of a set A is a
set of pairwise-disjoint non-empty subsets of A,
{A1, . . . , Ar} such that the union of all the Ai’s
equals A. For example, the set partitions of the
2-element set {1, 2} are {{1}, {2}} and {{1, 2}}.

The atomic objects are non-empty sets. Let
a(n) be the number of non-empty sets of the form
{1, 2, . . . , n}. Clearly when n = 0 there is no such
(non-empty) set, while for each n ≥ 1, there is
exactly one such set, so the egf is

A(x) = 0 +
∞∑
n=1

1
n!
xn = ex − 1 ,

and we get immediately that

∞∑
n=0

b(n)
n!

xn = ee
x−1 . (Bell)

Nowadays, with computer algebra systems, this
can be used immediately to crank out the first hun-
dred terms of the sequence b(n) by simply typing,
e.g. in Maple:
taylor(exp(exp(x)-1),x=0,101); ,
so this is definitely an answer in the Wilfian sense.
We can also easily derive recurrences (albeit need-
ing at least O(n) memory), by differentiating both
sides of (Bell) and comparing coefficients.

That was really easy, so let’s go on and prove
something much deeper. How about an egf-style
proof of Rabbi Levi Ben Gerson’s celebrated for-
mula for the number of permutations on n objects,
n!? (ex. 2 above). Every permutation can be de-
composed into a disjoint union of cycles, hence the
atomic objects are cycles. How many n-cycles are
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there? (n − 1)! of course, since (a1, a2, . . . , an) is
the same as (a2, a3, . . . , an, a1) which is the same
as (a3, . . . , an, a1, a2) etc., so we can pick the first
entry arbitrarily, and then we have (n−1)! choices
for placing remaining entries. Hence the egf for
cycles is:

∞∑
n=1

(n− 1)!
n!

xn =
∞∑
n=1

1
n
xn

= − log(1− x) = log(1− x)−1 .

Using the Fundamental Theorem of Exponential
Generating Functions, we get that the egf of per-
mutations is

exp(log(1− x)−1) = (1− x)−1 =
∞∑
n=0

xn

=
∞∑
n=0

n!
n!
xn ,

and voilà we have a beautiful new proof that the
number of permutations on n objects is n!.

Isn’t it a bit of an over-kill? Perhaps. But
a slight modification leads immediately to the
(ordinary) generating function for the number of
permutations on {1, . . . , n} with exactly k cy-
cles (let’s call it c(n, k)), with n fixed, Cn(α) =∑n
k=0 c(n, k)αk. All we have to do is go from naive

counting to weighted counting, and assign to each
permutation the weight α#cycles. The Fundamen-
tal Theorem of Exponential Generating Functions
goes verbatim to weighted counting. The weighted
egf for cycles is α log(1 − x)−1, and hence the
weighted egf for permutations is

exp(α · log(1−x)−1) = (1−x)−α =
∞∑
n=0

(α)n
n!

xn ,

where

(α)n := α(α+ 1) · · · (α+ n− 1) ,

is the so-called rising factorial. Hence we derived
the far less trivial result that the number of permu-
tations of {1, . . . , n} with exactly k cycles equals
the coefficient of αk in (α)n.

About ten years ago (American Mathematical
onthly 101 (1994), p. 691) ), I used this technique

to give a combinatorial proof of the Pythagorean
theorem in the form

sin2 z + cos2 z = 1 .

sin z and cos z are the weighted egfs for increas-
ing sequences of odd and even lengths respectively
with weight (−1)[length/2]. Hence the left side is
the weighted egf for ordered pairs of increasing se-
quences

a1 < · · · < ak ; b1 < · · · < br ,

such that k and r have the same parity ,
{a1, . . . , ak} is disjoint from {b1, . . . , br}, and their
union is {1, 2, . . . , k + r}. There is a killer-
involution on these sets of pairs defined as follows.

If ak < br then map it to

a1 < · · · < ak < br ; b1 < · · · < br−1 .

and otherwise, map it to:

a1 < · · · < ak−1 ; b1 < · · · < br < ak .

For example

1, 3, 5, 6 ; 2, 4, 7, 8, 9, 10, 11, 12 ,

whose sign is (−1)2 · (−1)4 = 1 goes to

1, 3, 5, 6, 12 ; 2, 4, 7, 8, 9, 10, 11 ,

whose sign is (−1)2 · (−1)3 = −1 (and vice versa).
Since this mapping changes the sign, and is an

involution, all such pairs can be paired-up into
mutually cancelling pairs. But this mapping is
undefined for one special pair, namely the pair
(empty, empty), whose weight is 1, hence the egf
for the sum of the weights of all pairs is 1, explain-
ing the right hand side.

Yet another application of this method is to
proving André’s generating function for the num-
ber of up-down permutations. A permutation of
a1 . . . an is up-down (sometimes called zigzag) if
a1 < a2 > a3 < a4 > a5 < . . . . Let a(n) be the
number of up-down permutations then

∞∑
n=0

a(n)
n!

xn = secx+ tanx .

This is equivalent to

cosx ·

( ∞∑
n=0

a(n)
n!

xn

)
= 1 + sinx .

Can you find the appropriate set and the killer-
involution?
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Polyá-Redfield Enumeration

Often in enumeration it is easy enough to count
labeled objects, but what about unlabeled ones?
For example the number of labeled (simple) graphs
on n vertices (ex. 6) is trivially 2n(n−1)/2, but how
many unlabeled graphs are there on n vertices?
This is much harder, and in general there are no
‘nice’ answers, but the best known way is via a
powerful technique initiated by George Polyá, that
was largely anticipated by J.H. Redfield. Polyá
enumeration lends itself very efficiently to count-
ing chemical isomers, since, for example, all the
Carbon atoms ‘look the same’. Indeed counting
isomers was Polyá’s initial motivation.

The main idea it to view unlabeled objects as
equivalence classes of easy-to-count labeled objects,
and count these equivalence classes. But ‘what
equivalence’? There is always a (sometimes hid-
den) symmetry group, let’s call it G, ‘acting’ on the
set of labeled objects, let’s call it A, by a group
action G × A → A, (g, a) → g(a), and two ob-
jects a and b of A are equivalent if b = g(a) for
some member g of the group G. This is obviously
an equivalence relation and the equivalence classes
are the orbits

Orbit(a) := {g(a) | g ∈ G} , a ∈ A .

Calling each orbit a ‘family’, we have the task of
counting the number of families. Note that G is
a subgroup of the group of permutations on the
finite set A.

Suppose that there is picnic consisting of many
families, and we want to count the number of fam-
ilies. One way would be to define some ‘canoni-
cal head’ of a family, say ‘mother’ and count the
number of mothers. But some daughters look like
mothers, so it is not so easy. On the other hand,
you can’t just literally count people, since then you
would get a gross overcount. But ‘naive’ counting
of people (or objects) is giving a credit of 1 to
each person. If we asked each person: ‘How big is
your family’, and add to our count the reciprocal
of that number, then things would come out just
right, since a family of size k would get credit 1/k
for each of its members, hence would be counted
exactly once. Going back to counting orbits, we
see that their number is∑

a∈A

1
|Orbit(a)|

.

The conceptual opposite of ‘orbit of a’ is the sub-
group of members of G that fix a,

Fix(a) = {g ∈ G | g(a) = a} .

There is a natural one-to-one correspondence be-
tween the cosets of Fix(a) in G and the orbit of
a, hence the size of Orbit(a) is |G/Fix(a)|, and
we get (Let χ(statement) be 1 or 0 according to
whether it is true or false, respectively).

#Orbits =
1
|G|

∑
a∈A
|Fix(a)| =

1
|G|

∑
a∈A

∑
g∈G

χ(g(a) = a)

=
1
|G|

∑
g∈G

∑
a∈A

χ(g(a) = a) =
1
|G|

∑
g∈G

fix(g) ,

where fix(g) is the number of fixed points of g
(viewed as a permutation of A). We have just
proved what used to be called Burnside’s lemma
but goes back to Cauchy and Frobenius, that states
that the number of orbits in the action of G on A
equals the average number of fixed points over G.
If the group G is the full symmetric group of all
the permutations of A, we get that the average
number of fixed points equals 1 (in this trivial case
there is only one orbit!).

Enter George Polyà. The objects that he was
interested in counting (e.g. chemical isomers, or
colorings of the faces of the cube) were all naturally
functions from an underlying set, let’s call it U to
a set of colors (or atoms), let’s call it C. The
group of symmetry of U naturally acts on the set
of functions f : U → C by the induced action:
g(f)(u) := f(g(u)). To find the number of fixed
points of g in the set of C-colorings of U simply
decompose g into cycles. Such a coloring must
have the same color on the members of each cycle,
hence if there are c := |C| colors, the number of
different colorings of U (up to G-equivalence) is

1
|G|

∑
g∈G

c#Cycles(g) .

Here is a simple application. How many neck-
laces (without a clasp) are there consisting of p
beads (p prime), using a different colors? The un-
derlying set is {0, . . . , p − 1}, and the symmetry
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group is Zp, the cyclic group of order p. Since p is
a prime, there are p−1 elements with one cycle (of
length p) and one element (the identity permuta-
tion) with p cycles (all of length 1). It follows that
the number of necklaces is

1
p

((p− 1) · a+ 1 · ap) = a+
ap − a
p

.

In particular, since this number is necessarily an
integer, we get as a bonus a combinatorial proof
of Fermat’s Little Theorem. Who knows? Perhaps
one day there would be an equally nice combina-
torial proof of Fermat’s Last theorem? All one has
to do is to prove that there is no bijection between
the union of the sets of straight necklaces of size
n using x colors, and that set using y colors, with
that set using z colors (with n > 2, of course).

If one wants to keep track of how many beads
there are of each color, we simply replace straight
counting by weighted counting, and c#Cycles(g) is
replaced by (assuming that g has α1 1-cycles, α2

2-cycles, etc.)

(x1 + · · ·+ xc)α1 · (x2
1 + · · ·+ x2

c)
α2 · · · .

The resulting expression is the celebrated cycle-
index polynomial.

The Principle of Inclusion-Exclusion and
Möbius Inversion

Another pillar of enumeration is the Principle
of Inclusion-Exclusion (nicknamed PIE). Suppose
that there are n sins, s1, . . . , sn that a person may
succumb to, and suppose that for each set of sins
S, AS is the set of people who have all the sins in
S (and possibly others). Then the number of good
people (without sins) is∑

S

(−1)|S||AS | . (PIE)

For example, if the set A is the set of all permu-
tations π of {1, . . . , n} and the ith sin is having
π[i] = i, then |AS | = (n − |S|)!, and we get that
the number of derangements (permutations with-
out fixed points) is

n∑
k=0

(−1)k
(
n

k

)
(n− k)! = n!

n∑
k=0

(−1)k
1
k!

,

that yields the answer: ‘closest integer to n!/e’.

PIE is but a special case of Möbius inversion on
general Partially Ordered Sets (posets) where the
poset happens to be the Boolean lattice. This re-
alization, made in 1964, by Gian-Carlo Rota, in
his seminal paper ‘On the Foundations of Com-
binatorial Theory I. Theory of Möbius functions’,
(reprinted in Rota’s Collected Works) is considered
by many to be the big bang that started modern al-
gebraic combinatorics. Möbius’s original inversion
formula is gotten back when the partially ordered
set is N and the partial order is divisibility.

A contemporary account of Enumeration from
the ‘algebraic’ point of view can be found
in Richard Stanley’s marvelous two-volume set
‘Enumerative Combinatorics’ (Cambridge Univ.
Press), that I strongly recommend.

Algebraic Combinatorics

So far I described one of the routes to Alge-
braic Combinatorics: abstraction and conceptual-
ization of classical enumeration. The other route,
‘concretization of the abstract’ is almost every-
where dense in mathematics, and cannot be de-
scribed in a few pages. Let me quote from the
preface of the excellent volume ‘New Perspectives
in Algebraic Combinatorics’ by Billera, Björner,
Greene, Simion, and Stanley (Cambridge Univer-
sity Press).

“Algebraic combinatorics involves the use of
techniques from algebra, topology, and geometry
in the solution of combinatorial problems, or the
use of combinatorial methods to attack problems in
these areas. Problems amenable to the methods of
algebraic combinatorics arise in these or other ar-
eas of mathematics or from diverse parts of applied
mathematics. Because of this interplay with many
fields of mathematics, algebraic combinatorics is
an area in which a wide variety of ideas and meth-
ods come together.”

Tableaux

An interesting class of objects that initially came
up in group representation theory, but that turned
out to be useful in many other areas, for exam-
ple, the theory of algorithms, are Young Tableaux.
They were first used by Rev. Alfred Young to con-
struct explicit bases for the irreducible representa-
tions of the symmetric group. For any partition
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λ = λ1 . . . λk of n, a Young tableau of shape λ is
an array of k left-justified rows with λ1 entries in
the first row, λ2 entries in the second row, and so
on, such that every row and every column is in-
creasing, and the set of entries is {1, 2, . . . , n}. For
example there are two Standard Young Tableaux
whose shape is 22:

1 2
3 4 ,

1 3
2 4 .

Let fλ be the number of Standard Young Tableaux
of shape λ. For example for n = 4 f4 = 1, f31 = 3,
f22 = 2, f211 = 3, and f1111 = 1. The sum of the
squares of these numbers is 12 +32 +22 +32 +12 =
24 = 4!.

Since fλ is the dimension of the irreducible rep-
resentation parametrized by λ, it follows by so-
called Frobenius reciprocity that the above is true
for all n, in other words:∑

λ`n

f2
λ = n! . (Y − F )

A gorgeous bijective proof of this identity, that has
many beautiful properties, was given by Gilbert
Robinson and Craige Schenstead and later ex-
tended by Donald Knuth, and is now known as
the Robinson-Schenstead-Knuth Correspondence.
It inputs a permutation π = π1π2 . . . πn, and out-
puts a pair of Young Tableaux of the same shape,
thereby proving (Y − F ).

Algebraic combinatorics is currently a very ac-
tive field, and as mathematics is becoming more
and more concrete, constructive and algorithmic,
there are going to be many more combinatorial
structures discovered in all areas of mathematics
(and science!) and this will guarantee that alge-
braic combinatorialists will stay very busy for a
long time to come.
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