Cutting 4 by n grids into two congruent pieces

Robert Dougherty-Bliss, Natalya Ter-Saakov, and Doron Zeilberger

October 13, 2025

Pour Jean-Paul Delahaye, avec admiration

Introduction

In the March 2025 issue of Pour La Science (the French analogue of Scientific
American), in his delightful monthly column [D], Jean-Paul Delahaye described
in detail the solution of the following counting problem.

In how many ways can you cut a 3x2n rectangle consisting of 6n unit squares (in
other words a 3 x 2n (colorless) checkerboard) into two connected, congruent
pieces?

In collaboration with his épouse, Martine Raison, Delahaye used human inge-
nuity to prove that this number is given explicitly by the beautiful formula
2"+tl —n — 1. Here are all twelve ways to divide 3 x 6 rectangles into two
congruent, connected parts:

We asked ourselves, what about a 4 x n checkerboard?

Here are twelve such ways to split a 4 x 6 rectangle into two congruent parts:

Now human ingenuity is still necessary, but (most probably) not sufficient.
In collaboration with our beloved silicon friends we proved the following deep
theorem.

Theorem 1. Let ¢, be the number of ways of cutting a 4 X n grid into two
(connected) congruent pieces. The (ordinary) generating function of ¢, is

i n x(2:138—4x7+8w6—7x5+3x4+2x3—5:1:2—1—30—}-1)
cpx” = .
~ (z —1)% (2% + 322 — 1) (2% + 222 — 1)

The coefficients have the (approximate) asymptotic expansion

e ~ 1.93104(1 + 0.08417(—1)")(1.8174)".

For the sake of the OEIS the first 30 terms are:

1,3,5, 14,22, 54, 84, 197, 305, 696, 1075, 2410, 3716, 8231, 12676,
27844, 42843, 93558, 143865, 312859, 480868, 1042624, 1602002,
3466064, 5324385, 11501987, 17665729, 38119718, 58540246, 126217718

To our delight, this sequence was not (as of Sept. 4, 2025) in the OEIS. We hope
to submit it soon.

Our colorful rectangles are very pretty, but it is more convenient to represent
such decoupages as 4 X n matrices with entries 0 and 1, where the value at
position 45 indicates to which part that entry belongs. For example:

o O OO
O~ OO
O~ OO
— = O =
=
— =

Definition 1. A m x n matrix M with entries in {0, 1} that satisfies the rule
Mij =1- M(m—i)(n—j) (1)

such that the 0’s and 1’s form exactly two connected components (using north-
south-east-west adjacency) is called a Graham matriz. (Note that this rule uses
zero indexing.)

Why Graham? For one, to honor the great Ron Graham, who advanced discrete
mathematics in a substantial way; for another, because the problem is something
like breaking apart a graham cracker fairly.

Note that if we drop the condition of the two pieces being congruent, and
consider only square matrices, then we have the (computationally) challenging
problem of the Gerrymander sequence [Sl], beautifully treated in [KKS] and
extended in [GJ].

How did we find this beautiful generating function?

We asked our computer to show us all these creatures up to n = 12. After
some thought, we convinced ourselves that our matrices could be recognized
by reading them one column at a time; in other words, that they could be
recognized by a finite state machine, or a reqular grammar.

A finite state machine (also called a deterministic finite autornata) is an object
which detects words of a language. It reads in words one “symbol” at a time,

0010
(\V/
0110 =
0000 —» 0100 —

\\)’ N 1110
1100 — / \ —
\\&\ I
-

1000

(connected)

Emﬂ accept accept if even length reject

Figure 1: Finite state machine constructed to recognize 4 x n Graham matrices.
Rectangular states are start states, purple states accept if the string has an even
number of symbols, and green states accept no matter what.

and uses these symbols to determine a walk on a finite graph. Some states in this
graph are marked as accepting, and all others are rejecting. A string of symbols
is accepted by the machine if the walk it determines ends in an accepted state.

In principle, it is not hard to see that our arrays can be recognized by a finite
state machine. We can track connectivity data and update it whenever a column
is read in, and we only need to consider the first half of the array thanks to
rule ([If). When we have read in the first half, we can merge with the implied
connetivity data of the second half, and making sure everything works. The
difficult part is actually constructing this finite state machine. In this problem
it turns out that there are some shortcuts which make the machine a more
reasonable size. If you are in a hurry, see Figure [l|.

The motivation behind constructing a finite state machine is the transfer matriz
method ([St], section 4.7). If a finite state machine has adjacency matrix T
(sometimes called a transfer matrix), then the symbolic inverse (I — xT)™!
contains the generating functions which count walks between different vertices
of the state machine. The generating function we want is

S T —a2T)

start state i
accepting state j

We will now actually describe the grammar.

The grammar

A matrix that follows the complement rule (m)
Mij =1 = M—ip(n—j)

is determined by its left half. To avoid double-counting symmetric arrange-
ments, we need to stipulate some conditions.

1. The left-half of the bottom row of M is all 0’s.

2. The first column of M has at least as many 0’s as 1’s.

We can enforce these conditions by a combination of rotations and reflections.
First, force a 0 in the bottom left corner by rotating or reflecting. Then, there
are two cases:

1. If the bottom-right corner is a 0, then the entire bottom row must be 0 to
satisfy the connectivity rule. Then, either the first or last column of M
satisfies the second condition, and we can force it to be the first column
with a reflection.

2. If the bottom-right corner is a 1, then the top-left corner is a 0, and the
first column is all 0’s. The bottom and top rows consist of a run of 0’s
followed by a run of 1’s. If the run of 0’s in the bottom row is less than
half of the row, then the run of 0’s in the top row is at least half the row
by rule ([ll). Reflect if necessary to make this happen in the bottom row.

With these stipulations, there are only 23 = 8 possible column vectors on the
left-hand side:

oo oo
o~ OO
SO RO
S == O
oo =
O~ O
OO ==
O = =

According to the stipulations, the possible initial columns are (0, 0, 0,0), (1,0, 0, 0),
and (1,1,0,0). These columus all start with the 0’s and 1’s connected. The way
we generate edges in Figure [l| is to look at all possible next columns and track
connectivity information. Almost all edges are “trivial,” meaning that the con-
nectivity information does not change. For example, here are four potential

edges determined which begin at (1,1,0,0):

1 1

1 2 |1 .

0 — o — vesi values remain connected
O _0_

= o

1 2 10 , .

0 = |4 — nos 1’s are disconnected

0 _0_

= -

1 2 10 .

ol = |o| — vess values remain connected
0 _0_

= =

1 2 |1 .

ol = || — vess values remain connected
O _0_

The only time that connectivity information is changed is when we encounter
the column (1,0,1,0). Sometimes when we see this column, new connected
components spawn. For example, in the edge

S O O
O = O =

we get new 0 and 1 connected components. Accordingly, there are two states
in Figure [I| for this column—one where the values are still connected, and one
where they are disconnected.

This explains all of the edges. But which states should be accepting?

The basic condition is that, when the second half of the matrix is appended,
the connected components need to “line up.” If an even number of columns
have been read in, then the next column of the final can be determined from
the current column by applying rule (E) It is routine to check whether the
connected components line up, even in the disconnected states, because the
connectivity information also follows rule (m)

If an odd number of columns have been read in, then the last column is the
“middle” column, and rule ([lf) must leave it fixed. The only columns for which
this is true are (1,1,0,0) and (1,0,1,0). In this case, the first column in the
right-half is determined by the predecessor of one of these columns. It is routine

to check that no matter what the predecessor is, the resulting matrix consists
of exactly two connected components.

We save the last word in this section for the lonely column (0,1, 1,0), the only
column which is always rejected.

Maple packages and asymptotics

We have constructed our finite state machine in a Maple package Decoupage . txt
that can be gotten from
https://sites.math.rutgers.edu/~zeilberg/tokhniot/Decoupage.txt

There are many ways to order the vertices of a finite state machine. We have
chosen, essentially, an arbitrary one. Our adjacency matrix is can be obtained
with TransferMatrixMethods [transfer_matrix]. It is as follows:

111111101
010101100
001101001
011101100
000011101
000011110
000011100
000010010

(00000100 1]

The generating function matrix (I —xM)~! is too large to display here, but the
LCM of the denominators of its entries is

(x—1)*(z* =2z +1)(2* + 3z — 1)(z? + 22 — 1).

Using Maple’s RootOf representation in concert with partial fraction decomposi-
tion, we can determine the asymptotic behavior of ¢, starting from its generating
function
z(2x8 —4x7—|—81:6—7x5—|—3x4—|—23:3—5x2+:c—|—1)
(2 —1)% (x4 + 322 — 1) (a* + 222 — 1) '

The smallest poles of this rational function are z and —z, where

27l = 2 1.817354022. ..

2v/13 -6

https://sites.math.rutgers.edu/~zeilberg/tokhniot/Decoupage.txt

The asymptotic formula is

8922 — 922 + 218 — 862! (ot 8922 4+ 92z + 218 + 862!
234 234
~ 1.93104(1 + 0.08417(—1)")z ™.

—-n

Cp ~

The front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/decoupage.html
contains some sample output files.

To see all 4 x n Graham matrices for 1 < n < 12 see the output file:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oDecoupagel.txt

Future work

What about the analogous problem of 5 x 2n, 6 xn, 7 x 2n, 8 x n checkerboards?
As we mentioned earlier, it is not hard to see that for any fized m, a finite state
machine can recognize the matrices of size mxn. It is another matter to actually
construct these machines.

We plan to follow-up with this question in a separate publication where com-
puters do everything—discover the grammar, process it, compute the generating
function, and so on. But even computers can only go so far, and we are sure
that humankind, and perhaps even computerkind will never have the generat-
ing function for the sequence counting 100 x n Graham matrices.

References

[D] Jean-Paul Delahaye, Combinatoire pour les rectangles, Logique & Calcul,
Pour La Science No. 569, Mars 2025.

[GJ] Anthony J. Guttmann and Iwan Jensen, The gerrymander sequence, or
AB48456, arXiv:2211.14482 [math.CO], 2022. https://arxiv.org/abs/2211.14482

[KKS] Manuel Kauers, Christoph Koutschan, and George Spahn, How Does the
Gerrymander Sequence Continue?, J. Int. Seq., 25 (2022), Article 22.9.7.
https://cs.uwaterloo.ca/journals/JIS/VOL25/Kauers/kauers6.html.
arxiv version: https://arxiv.org/abs/2209.01787

[S]] Neil Sloane, OEIS sequence A348456 https://oeis.org/A348456.

[St] Richard P. Stanley, “Enumerative Combinatorics”, Volume 1, Cambridge
University Press, First Edition, Wadsworth and Brooks/Cole, 1986.

Robert Dougherty-Bliss, Department of Mathematics, Dartmouth College, 29
N. Main Street, 6188 Kemeny Hall, Hanover NH 03755-3551 . Email: robert
dot w dot bliss at gmail dot com

Natalya Ter-Saakov, Department of Mathematics, Rutgers University (New
Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway,
NJ 08854-8019, USA.

Email: nt399 at rutgers dot edu

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick),
Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019,
USA.

Email: DoronZeil at gmail dot com

