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Abstract. The number of standard Young tableaux whose shape is a k by n rectangle is famously
(nk)! 0! 1! ···(k−1)!

(n+k−1)!(n+k−2)!···n! , implying that for each specific k, that sequence satisfies a linear recurrence

equation with polynomial coefficients of the first order. But what about counting standard Young

tableaux where certain “run lengths” are forbidden? Then things seem to get much more compli-

cated. In this tribute to the legendary enumerative pair Goulden & Jackson we investigate these

intriguing sequences, and conjecture that if the number of rows is larger than two, then these se-

quences are generally not P -recursive. On the positive side, we conjecture that these sequences

have ‘nice’ asymptotic behavior. We pledge donations to the OEIS in honor of the first solvers of

these conjectures.

Preface

Some combinatorial families are easy to count, for example the number of subsests of an n-element

set, that can be computed in logarithmic time (in base 2). Also easy is counting the number

of permutations, that can be computed in linear-time. Then you have the really hard ones, for

example the number of n× n Latin squares and the number of self-avoiding walks of length n, for

which we will probably never know the exact value of the 1000-th term.

Both the number of subsets of an n-element set, 2n, and the number of permutations, n!, as well as

the famous Catalan numbers (2n)!/(n!(n+ 1)!) (OEIS sequence A108) are said to have a closed-

form formula. They satisfy a first-order linear recurrence equation with polynomial coefficients

a(n+ 1)− 2a(n) = 0 , a(n+ 1)− na(n) = 0 , (n+ 2)a(n+ 1)− 2(2n+ 1)a(n) = 0 .

(Note that the first equation is even better, it is constant coefficients).

Many natural families satisfy the next-best thing to being closed-form, they satisfy a linear-

recurrence equation with polynomial coefficients, but not necessarily of first order. Such

sequences, called P -recursive, or holonomic (see [KP]), satisfy an equation of the form

L∑
i=0

pi(n)a(n+ i) = 0 ,

1 This article was originally submitted to the electronic journal “Algebraic Combinatorics” founded by Goulden and

Jackson, following a solicitation for a special issue in honor of Goulden and Jackson. On July 27, 2020 we got an

email message from one of the editors-in-chief, Akihiro Munemasa, informing us that, after an initial review, it is

“unlikely to meet the standards of depth and originality that the journal is seeking”. Consequently this article will

remain in the ‘Personal journal of Shalosh B. Ekhad and Doron Zeilberger’, the homepage of Manuel Kauers, and

of course arxiv.org. Let the readers decide about its depth and originality.
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for some positive integer L and some polynomials in n, p0(n), . . . , pL(n).

The most famous such sequences that are not closed-forms are the Fibonacci numbers, Fn (OEIS

sequence A45), the number of involutions of an n-element set (permutations that are equal to their

inverse) wn (OEIS sequence A85), and the Motzkin numbers, Mn, the number of words of length

n in the alphabet {0,−1, 1} that add-up to 0 and all whose partial sums are non-negative (OEIS

sequence A1006). They satisfy, respectively, the recurrences

a(n+ 2)− a(n+ 1)− a(n) = 0 , a(n+ 2)− a(n+ 1)− (n+ 1)a(n) = 0 ,

(n+ 4)a(n+ 2)− (2n+ 5)a(n+ 1)− (3n+ 3)a(n) = 0 .

Given a natural combinatorial family, parameterized by n, it is very interesting to know whether

or not the sequence of integers that enumerates it happens to be P -recursive. This is interesting

both conceptually and computationally, since a linear recurrence makes it easy to compute many

terms, as well as deriving the asymptotics. Sometimes proving that a given sequence, or family of

sequences, is (are) P -recursive is highly non-trivial, see for example [GJR], [GJ], and [Ge2].

In this modest tribute to Ian Goulden and David Jackson we will raise the question whether a

certain very natural family of combinatorial sequences is P -recursive, and give ample computational

evidence that generally they are, probably, not.

Maple packages

This article is accompanied by the Maple packages YoungT.txt and Tableaux3R.txt, available

from http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cyt.html .

Counting Standard Young Tableaux with Restricted Runs

Recall that a partition of a positive integer m is a weakly-decreasing list of positive integers λ =

[λ1, . . . , λk], that add-up to m, also called a shape, and a standard Young tableau of shape λ is a

left-justified array of k rows with λi boxes in the i-th row, where the integers {1, . . . ,m} are filled

in the boxes so that both rows and columns are increasing. For example, here is a standard Young

tableau of shape [3, 3, 2]

1 3 4
2 5 7
6 8

,

and here is one of shape [5, 5, 4]

1 3 4 6 7
2 5 8 9 11
10 12 13 14

.
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The number of standard Young tableaux of shape [λ1, . . . , λk] is famously given by the Young-

Frobenius formula (equivalent to the hook-length formula)

(λ1 + . . .+ λk)!

(λ1 + k − 1)! · · ·λk!
·

∏
1<i<j≤k

(λi − λj + j − i) .

In particular, setting λ1 = . . . = λk = n, we get that the number of standard Young tableaux

whose shape is a k by n rectangle is given by

(nk)! 0! 1! · · · (k − 1)!

(n+ k − 1)!(n+ k − 2)! · · · n!
.

It follows that for each fixed k, this sequence, in n, is P -recursive, in fact it even satisfies a

first-order linear recurrence.

Let’s define a run in a standard Young tableau to be a maximal string of consecutive integers.

For example, in the following tableau of shape [5, 5, 5]

1 3 4 6 7
2 5 8 9 11
10 12 13 14 15

,

we have

• First row: one run of length 1, (1), and two runs of length 2 (34 and 67) ;

• Second row: three runs of length 1, (2, 5 and 11) and one run of length 2 (89) ;

• Third row: one run of length 1, (10) and one run of length 4 (12, 13, 14, 15) .

We are interested in the following general question. Fix k > 1. Given arbitrary finite sets of positive

integers A1, . . . , Ak, (or infinite arithmetical progressions), compute the following integer sequence,

let’s call it

GA1,...,Ak(n) ,

defined as the number of standard Young tableaux of shape (n, . . . , n) such that in each row i ,

1 ≤ i ≤ k, none of the runs belongs to Ai. Of course if all the Ai’s are the empty set, we are back

to counting unrestricted standard Young tableaux, for which there is a nice closed-form formula,

and of course it is P -recursive.

The case of two rows can be shown [EZ] to always give P -recursive sequences (in fact even something

stronger is true: the generating functions are algebraic formal power series). This is the case since

2× n standard Young tableaux are in easy bijection with Dyck paths of semi-length n.

More generally, as is well-known, and immediate to see, standard Young tableaux are in easy

bijection with lattice paths. A k-rowed standard Young tableau of shape [λ1, . . . , λk] corresponds
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to a lattice path in the k-dimensional hyper-cubical lattice, from the origin [0, . . . , 0] to the point

[λ1, . . . , λk], with unit positive steps ei := [0i−1, 1, 0k−i], that always stay in the region x1 ≥
x2 ≥ . . . ≥ xk. Given a standard Young tableau, the corresponding path is obtained by executing

the step ei at the m-th step, if m is located at the i-th row. So GA1,...,Ak(n) is also the number

of k-dimensional lattice paths from the origin to [n, . . . , n], always staying in x1 ≥ . . . xk ≥ 0, such

that the walker never has a run-length parallel to the i-th axis that belongs to the set Ai.

The same question makes sense for general walks, not necessarily those confined to x1 ≥ x2 ≥ . . . ≥
xk. It turns out that for this analogous question the sequences are always P -recursive, as we will

now show.

Counting Lattice Walks with Restricted Runs

In order to motivate the general case, let’s first give yet another proof, a bit more complicated

than the usual one, of the very easy fact that the generating function for the number of all walks,

without restrictions, is given by the generating function

1

1− x1 − . . .− xk
.

Every walk corresponds to a word in the alphabet {1, . . . k}, indicating which ei it went through.

For example, the walk

[0, 0, 0]→ [1, 0, 0]→ [1, 0, 1]→ [1, 1, 1]→ [1, 2, 1]→ [1, 2, 2]→ [1, 3, 2]

corresponds to the word

132232 .

Given a word in {1, . . . , k}, we can write it in frequency notation br11 . . . brll , where bj+1 6= bj , and

rj ≥ 1. For example, the above word 132232 is abbreviated 1131223121, and the word 1113322211

is written 13322312.

Let Fi = Fi(x1, . . . , xk) be the weight-enumerator of all words that end with the letter i. Then

obviously, for i = 1, . . . , k

Fi =
xi

1− xi

1 +
∑

1≤j≤k
j 6=i

Fj

 .

This is a system of k linear equations with k unknowns F1, . . . , Fk, whose solution is easily seen to

be given explicitly by

Fi =
xi

1− x1 − . . .− xk
.

Finally the full generating function, F , is gotten by adding the weight of the empty word, 1, to

the sum of the Fi’s, getting

F = 1 +

k∑
i=1

Fi ,
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that implies the deep theorem

F =
1

1− x1 − . . .− xk
.

Note, in particular that the Fi, (and F ) are rational functions of the variables x1, . . . , xk.

To handle the restricted case, to find the weight-enumerator of all words in 1λ1 . . . kλk such that

when written in frequency notation br11 . . . brmm we have that if bα = i then rα 6∈ Ai (i.e. runs in the

ei direction can’t be of a length that belongs to Ai), we have the modified system:

Fi =

 xi
1− xi

−
∑
β∈Ai

xi
β


1 +

∑
1≤j≤k
j 6=i

Fj

 .

This is a system of k linear equations in the k unknowns F1, . . . , Fk, with coefficients that are

rational functions in x1, . . . , xk. Hence, by Cramer’s rule, the Fi are all rational functions of

x1, . . . , xk, and hence so is F = 1 +
∑k
i=1 Fi.

Our sequence of interest is the sequence of coefficients of the diagonal of this rational func-

tion. Since the diagonal of any formal power series that is a rational function is D-finite (see

[Ge1][Z1][L][Z2]), it follows that the sequence itself is P -recursive.

Back to Tableaux

We strongly doubt that the multi-variable generating functions for restricted Young tableaux (alias

restricted walks confined to x1 ≥ . . . ≥ xk) are rational. In order to explore these sequences, we

need to generate as many terms as possible. Here is how to do it. Let us fix R1, . . . , Rk and

denote by g(λ1, . . . , λk) the number of standard Young tableaux of shape [λ1, . . . , λk] with no runs

in the i-th row that belong to Ri, or equivalently the number of walks in x1 ≥ . . . ≥ xk ≥ 0, from

the origin to the point [λ1, . . . , λk] with no run-length in the xi-direction that belongs to Ri (for

i = 1, . . . , k).

In order to compute g(λ1, . . . , λk), we need the more refined quantities (1 ≤ i ≤ k) g(i)(λ1, . . . , λk),

that enumerate those walks that end with a step in the xi-direction.

We have the dynamic programming recurrences (1 ≤ i ≤ k)

g(i)(λ1, . . . , λk) =
∑

1≤j≤k
j 6=i

∑
1≤r≤λi
r 6∈Ai

g(j)(λ1, . . . , λi−1, λi − r, λi+1, . . . , λk) ,

with the obvious initial conditions, and the boundary conditions

g(i)(λ1, . . . , λk) = 0 ,

whenever λ1 < λ2 or λ2 < λ3, . . ., or λk−1 < λk, or λk < 0. Finally

g(λ1, . . . , λk) =
k∑
i=1

g(i)(λ1, . . . , λk) .

This is all implemented in the Maple package YoungT.txt mentioned above.

5



Two Case Studies

In spite of the fact that we were unable to think of a good reason why these sequences should be

P -recursive, we still hoped that they would be for a non-obvious reason. We focused on two special

cases to generate as many terms as we could.

• G(n), the number of standard Young tableaux of shape [n, n, n] where each run, in each of the

three rows, must have length at least 2. This is the case A1 = A2 = A3 = {1} in the above notation.

• H(n), the number of standard Young tableaux of shape [n, n, n] where all the run-lengths, in each

row are always odd. This is the case A1 = A2 = A3 = {2r + 2 : r ≥ 0} in the above notation.

Regarding G(n), using the Maple package

http://www.math.rutgers.edu/~zeilberg/tokhniot/Tableaux3R.txt

we got that the sequence starts with (starting at n = 1)

0, 1, 1, 5, 15, 69, 304, 1518, 7807, 42314, 236621, 1364570, 8062975, 48680547, 299388670, 1871463427, . . . .

The first 200 terms may be viewed here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oTableaux3R1.txt .

The first 996 terms are available here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/CYT/GseqList.txt .

Regarding H(n), we got that the sequence starts with (starting at n = 1)

1, 2, 9, 46, 306, 2252, 18308, 158872, 1454570, 13888112, 137277741, 1396638636, 14561307281, 155040525128, . . . .

The first 200 terms can be viewed here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oTableaux3R2.txt .

The first 965 terms are available here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/CYT/HseqList.txt .

Even that many terms were not enough to guess a linear recurrence with polynomial coefficients, so

if such a recurrence exists, it would be extremely complicated. But we can do better! The existence

of a non-zero linear recurrence of a given order and degree boils down to the existence of a non-zero

solution to a certain system of linear equations with integer coefficients. If a non-trivial solution

exists, then doing everything modulo any prime would also have a solution. Conversely, if there is

no solution modulo that prime, there is no solution at all. Now we can generate many more terms,

and using the prime p = 45007 we (or rather our computer) generated 5000 terms, and even these
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did not suffice. In other words if there exists such a recurrence of order ≤ K and degree, in n, of

the coefficients of degree ≤ K, then (K + 1)2 + 5 ≥ 5000, i.e. K ≥ 70.

This leads us to make the following conjectures. One of us (DZ) is pledging a donation of 200 US

dollars to the On-Line Encyclopedia of Integer Sequences (OEIS) in honor of the first prover, for

each of the following four conjectures.

Conjecture 1a: The sequence G(n) is not P -recursive.

Conjecture 1b: The sequence H(n) is not P -recursive.

Surprisingly, the asymptotics seems to be very nice. Using the nearly 1000 terms in these sequences

we are safe in making the following conjectures.

Conjecture 2a: There exists a constant C1 (if possible, find it!) such that

G(n) � C1
8n

n4
.

We estimate C1 to be close to 0.521286 .

Conjecture 2b: There exists a constant C2 (if possible, find it!) such that

H(n) � C2
(7 + 5

√
2)n

n4
.

We estimate C2 to be close to 0.63892.

This raises the more general question about these sequences. Is the asymptotics always of the form

Cµn nθ with µ an algebraic number, and θ a rational number?
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