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Abstract We state and prove an explicit evaluation of a certain multi-variate integral and use
it to furnish a new, and shorter, proof of an elegant determinant identity of Michael Dougherty
and Jon McCammond that came up in their study of critical values of a complex polynomial.

1 Introduction

Beardon-Carne-Ng [1] investigated invertibility of the Jacobian of the polynomials

p(z) :/ (w—2z1) - (w—zp)dw
0

given by the n-by-n matrix
o 1,n
J() = (%p@-))m .
Using Topological arguments and techniques from Several Complex variables, the authors [1]
show that every n-tuple of complex numbers arises as the critical values of some polynomial
by proving that the determinant det(J) # 0, as along as zi,..., 2, are non-zero and distinct.

More recently, Dougherty and McCammond [2] computed det(J), explicitly, and reproved the
above-mentioned result of [1] with a different method.

Some nomenclature adopted in the sequel: bold-face lower case letters are reserved for vectors,
such as z = (21,...,2,) and 2* = (21,..., 21, 2i+1,---,2n). Givena = (ay,...,a,) € Z%,,

denote @ = ZIZ{ZW az;—1 where [-] is the ceiling function while |-| is the floor function. Let
Va(@) = [li<icj<n(®; — i) be the Vandermonde determinant of the Vandermonde matrix

M = (ac;_') le" We write dz = dz; - - - dx,, the dimension n being suppressed when it is clear

from the context.

2 The Main Theorem

The first purpose of this note is to prove the following elegant identity.

Theorem 2.1. Let zy, ...z, be commuting indeterminates, let n be a positive integer, and let

ay, - ..,an, and b be non-negative integers. Then
Zn zp N
b .
/ / l_IarZ H () — 2p)%* H (xj — ;) dxy - - day,
0 0 21 1<jk<n 1<i<j<n
n n
! ]
_ a ita;+1 a;+b+1 b [T, ai!
I | EEESTIERN | E a

(n+b+ Y a)!

1<i<j<n i=1
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3 An Example

We offer an illustrative example for Theorem 2.1. Choose n = 2,b = 2022,a; = 1,a; = 2.
Then Eq. (1) reads

42024 2025
21)* 212

21 — (2
/o /0 (m122)" (1 =21) (w221 (@1 —22) (w2—22)" (w2 1) darndlrs = 17(035293698597800'

4 An interesting consequence

The second purpose our work here is to deduce from Theorem 2.1 (and thereby give a shorter
proof) of the following even more elegant identity, discovered, and first proved in [2].

Theorem 4.1. (Dougherty and McCammond) Let

A n
/ —z;)" dw,
0

and let J(z1,. .., z,) be the n x n matrix whose (i, j)-entry is J(z1, ..., 2p)i; = a%ip(zj), then
" oa) &
det J(z1,...,2p) = Hln:ilal'-ﬂ(—zj)“j . H (2i — zj)™. 2)
(Zi:l a;)! oY 1<ij<n
i#]

Proof that Theorem 2.1 — Theorem 4.1: Let’s rewrite the determinant and apply Cauchy’s
alternant formula so that

n

z; M dw 25 dz;
det(J) = det —ai/ w — 25 )% = det fa,;/ Ti— 2 )%F J
( ( 0 g< ) w) (o [ Tl -2

1 1,n
H — 21,)% - det < > dz
Tj — 24

1<4,k<n 0,J

e
/ H ) [H1<i<j<n(zi - Zj)(wj)— wi)} s

ngi,jgn(xj %

- %) / / — 2p) %V, (2) de.
0 0

1<y, k<n

||
S
\\

I

—=
—
g
SN—

i=1 1<z<j<n

But by Theorem 2.1, with b = 0 and (ay, . .., a, ) replaced by (a; — 1,...a, — 1), this equals

- i i — 1)!
det(J) _ (_l)a—[n/Z'\ H(_ai) H (Zi —Zj) H (Z —Z a,+a, IH a; z 1na ')
i=1 1<i<j<n 1<i<j<n % 1a1)
a;! w
= ana ' H —z;)* H (zi —2;)%. DO
=1 l 1<i,j<n
i#]

5 Proof of Theorem 2.1:

Proceed by induction on n and b. When n = 1 and b = 0, whose proof is left to the reader’s
ap+l
ay 21

five-year-old, the claim is saying foz' (21 — 21)" dwy = (1) S
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Let’s denote the statement of Theorem 2.1 by A (n, b).

Proof that A(n,b) = A(n,b+ 1):

Leta = (ay,...,a,). We claim that both sides of Eq. (1), let’s call them L(a;b) and R(a;b)
respectively, satisfy the recurrence

X(@b+1) =Y HZZ_JZ X(ar,.oo V4 ananh) + [ [[2 ] - X(@d). ()
i=1 \j=1"7 7=l
J#i

In other words, if you replace X by either L or R you get a true statement. Regarding the left-
hand side of (1), in fact, this identity is already true if you replace X by the integrand of the
left side of (1), since there are no x;’s in sight, it is still true when you integrate with respect to
zy,...,T,. We leave both checks as pleasant exercises for the curious reader. O

Proof that A(n — 1,b) forallb = A(n,0):

Fix ai,...,a,. Notations: a = (ai,...,a,),z2 = (21,...,20), Vo () = [[,<;j<n (¥; — 2;) and

2 = (z1,...,Ti—1,Tit1,- - -, Tp). Define the multi-variable polynomial

F(z,z) = H (xj — z5)%*

1<j,k<n

We claim (check! this reduces to the Laplace expansion V,,(z) = 327" (—1)*V,,_(#))2? ") that

(n + Zai) F(z,2)V,(z) = Z(_l)iVn_l(ﬁi) . 8ii H(xl —zj)-F(z,2)| . “4)

i=1 j=1

Applying [ ... [ (-++ )dwy - - - day,, We get

(n + zn:aZ) /Ozn .../OZ1 F(z,z)V,(z)dz

=S [T [ @ o [ - ) Fle.a)] d

n ) Zn Ziyl  fRi-1 z1 ) . zZoH
_ 712/ / / / Vo1 (3 d:i:'x/
Z( ) 0 0 0 0 (&) 0o O

By the Fundamental Theorem of Calculus, we have

H(SL’Z — Zj) . F(Z,Z) d931

zi 9 n n .
/0 2, 1_[1(% —z;) - F(z,2)| dz; = 1—[(9(:Z —z) F(z,2)|,
=

J=1
n
_ a+1 a Ti=2i
8 (ALY § I8 ) (TR s
]:] j=11<i'<n
i’ #i
n
0| CCR) | 1
j=1 j=11<i'<n

i’ #i
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Going back, we have that the left side of Eq. (1), when b = 0, is

n

-1 " n ./Zn /Zi+l /’Zi—l /21 .
. z;)%T -1) Vo1 (2
e | G W e Y A A A

xHH Ty — 25 )% dz"

J=11<i'<n
i
-1 " n . [Zn Zigl  [Zi] Z
S N | (SR (4)%/ / / / Vi (W1, )
”+Z?1aijl_[1 ! ; 0 o Jo o "
n n—I1

X H H(yl —z;)%dy - - dyn—1.

j=1 i=1
‘We now claim that

n n n—1

. Zn Zitl Zi—1 21
Z(—l)z_] /0 /0 /0 /0 anl(ylw--aynfl)'HH(yi_Zj)ajdyl"'dynfl

i=1 j=11i=1

n—l

= [ [ Vet T 6 2 dr. 5)
zZ] zZ]

7j=11i=1

In order to prove this, notice that each of the integrands on the left-hand side, and the integrand
on the right-hand side, are anti-symmetric in their arguments. Hence, for any given permutation
of the integration variables, the effect is to multiple it by the sign of that permutation. Calling

the common integrand f(yi, ..., y,—1) and denoting A, (i) = Per(l,...,i—1,i+1,...n), we
claim that
n o m(i+1) m(i—1) (1)
Z(_l)z_ Sgn / / / / f(yla“-aynfl)dyl "'dynfl
i=1 7r€A
= Sgﬂ / / y],...,yn_l)dyl ...dyn_]. (6)
WeAn

Since both sides of Eq. (6) are (n — 1)! times the respective sides of Eq. (5), if we can prove
(6), then (5) would follow.

But surprise!, Eq. (6) is valid for any integrand! It is just a relation between regions in R™~!
that is equivalent to an easy symmetric function identity, that we also leave as a pleasant exercise

to the reader. Now make the change of variables (y1,...,¥n—1) — (Y1 — 215+, Yn—1 — 21)s
thereby making it a case of A(n — 1,b) with b = a;; and ay,...,a,_ replaced by as, ..., an,
respectively; and z1, ..., 2z, replaced by 2z, — z1,..., 2, — 21, respectively. Plugging it in and

simplifying, completes the induction. O O

Remark: Readers that prefer not do the ‘exercises’ can convince themselves of all the claims,
empirically, by playing with the Maple package CritVal.txt available from the front of this
paper

https://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/crit.html
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6 Appendix: proof of the "exercises'
Proof of Equation (3):

Lete; = (0,...,0,1,0,...,0) be the i-th unit vector. So, the recurrence (3) reads as

X@b+1)=> X@a+esb) [] szz +X(a:b) -] =
i=1 j=1"7 7 i=1
J#i

The integrand on the left-hand side of (1) satisfies this recurrence because it reduces to (check!)

n n n
iz Ty — Z4 l‘j — Z;
2o : . 7
.1_‘[21' +Z< Zi ) HZj—Zi @
i=1 i=1 7=1

J#i

Induct on n. The case n = 1 is obvious. Let w = x; and treat (7) as a linear equation in w:
n n n n
EH&:1+1U721HIJ721+Z$1721wfzzl—[I]*ZZ
Z1 Z; Z1 Zi — 21 Zi 21 — Z; Zj — %4
Jj=2

i=2 j=2"77 i=2
J#i

If w = 21, equality holds by the induction assumption. Putting w = 0, turns the task into

n n n
T, — 21 XT; — 25 T — Z;
H : 1 Z .H J
Z; — 21 Z; — 21 i Zj—Zi

i=2 7 i=2
J#i

which is again the inductive step with x; — x; — 21 and z; — z; — 2. So, the first claim holds.
Now, we focus on the right-hand side of (1) and show it, too, fulfils (3). This tantamount

1+0b " 5. 1+ a; -
e =1+) (=1)% - (=1)
n+b+1+21:1a2 2::( ) n+b+1+zi:1ai ( )

where §; = 1 if i is odd; §; = 0, otherwise. The justification is immediate. O
Proof of Equation (4):

After computing the derivatives and cancelling out the term F'(z, z), the claim boils down to

<n+zai>vn<m>:z<— Voot (8- 3201+ a5) [ Lo - 20
i=1 i=1 j=1 k=1
k#j
= (T+a;) Y (=)' Vuoa (@) - [ (i — 2). (®)
j=1 i=1 ﬁ}

If we consider the sum Y7 | (—1) V,,_; (&) - 27", it is recognized as the determinant of the Van-
dermonde matrix M where the last row is replaced by the vector (21", ..., 27"). This, however,

’ n

is well-known to be V,, () - ;1 Where s, is the Schur polynomial. Notice that Hk 1 (zs—21)

is a polynomial of degree n — 1, in x;. But, s,,,_,1 = 1if m = n —1; and s,,, n+1 = 0 for
m < n — 1. Thus, equation (8) becomes trivial (n + > | a;) Vi, (z) = ZF (1+a;)Vo(z). O
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Proof of Equation (5):

Eq. (5) has been elucidated, neatly, using a symmetrizing process as depicted by Eq. (6). Here,
we offer yet another verification. To this end, start with the right-hand side of Eq. (5) by replacing
each integral with [** = [ — [ and expand the product ([ — [;") -+~ (fy* — Jo')- Based on
the fact that the integrand is an anti-symmetric, any multi-integral involving repeated evaluation

o' Jo" vanishes while out-of-order pairs, such as [;* [ [, changes sign where reordered,

o Jo >
thatis, — [;” [ J;'- On account of this, we find the (n — 1)-tuple multi-integrals

IV RV

n

Z(l)il/oz".../ozi'_] /OZM.../OZ],

i=1

The proof follows. O
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