An elegant Multi-Integral that implies an even more
elegant determinant identity of Dougherty and McCammond
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The first purpose of this note is to prove the following elegant identity.

Theorem A: Let zp,...z, be commuting indeterminates, let n be a positive integer, and let

ai,...,a,, and b be non-negative integers. Let a := Z[Z:/lﬂ
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The second purpose is to deduce from it (and thereby give a shorter proof) of the following even
more elegant identity, discovered, and first proved in [1].

Theorem B (Dougherty and McCammond): Let
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and let J(z1,..., z,) be the n x n matrix whose (4, j) entry is J(z1,...,2,)i,; = %p(zj), then

det J(z1,...,2,) = W-H(—zi)aa I Gi—z). (2)

Proof that A = B: Let’s rewrite the determinant and apply Cauchy’s alternant formula so that
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But by Theorem A, with b =0 and (ay,...,a,) replaced by (a1 —1,...a, — 1), this equals
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Proof of Theorem A: The proof is by induction on n and b. When n = 1 and b = 0 this is saying
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that [ (21 — 21)* day = (—=1)™ ( ;3;1 , whose proof is left to the reader’s five-year-old.

Let’s denote the statement of theorem A by A(n,b).
Proof that A(n,b) = A(n,b+1)

We claim that both sides of Eq. (1), let’s call them L(aq,...,a,;b) and R(aq, ..., a,;b) respectively,

satisfy the recurrence
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In other words, if you replace X by either L or R you get a true statement. Regarding the left
side of (1), in fact, this identity is already true if you replace X by the integrand of the left side
of (1), since there are no z;’s in sight, it is still true when you integrate with respect to x1,..., .
We leave both checks as pleasant exercises for the reader. &

Proof that A(n —1,b) for all b implies A(n,0)

Fix ay,...,a,. Let V(z1,...,2,) := Hl§i<j§n(xj —x;) and

F(xy, ... ®p;21,. 00, 2n) i= H (xj — 21)".
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We claim (check!) that




Applying [ ... [ dxy - - - dx1, we get
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By the Fundamental Theorem of Calculus, we have
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Going back we have that the left side of Eq. (1), when b =0, is
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We now claim that
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In order to prove this, notice that each of the integrands on the left, and the integrand on the
right, are anti-symmetric in their arguments. Hence, for any given permutation of the integration
variables, the effect is to multiple it by the sign of that permutation. Calling the common integrand
f(y1,...,Yn—1) and denoting A, (i) = Per(1,...,i—1,i+1,...n), we claim that
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Since both sides of Eq. (6) are (n — 1)! times the respective sides of Eq. (5), if we can prove (6),
then (5) would follow.

But surprise!, Eq. (6) is valid for any integrand! It is just a relation between regions in R"~1
that is equivalent to an easy symmetric function identity, that we also leave as a pleasant exercise

to the reader. Now make the change of variables (y1,...,yn—1) = (Y1 — 21,...,Yn—1 — 21), thereby
making it a case of A(n — 1,b) with b = a; and ay,...,a,—1 replaced by as,...,a,, respectively;
and z1,...,2z,—1 replaced by zo — z1,...,2, — 21, respectively. Plugging it in and simplifying,

completes the induction. & O

Comment: Readers that prefer not do the ‘exercises’ can convince themselves of all the claims,
empirically, by playing with the Maple package CritVal.txt available from the front of this paper

https://sites.math.rutgers.edu/"zeilberg/mamarim/mamarimhtml/crit.html
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