HOW MANY COIN TOSSES WOULD YOU NEED UNTIL YOU GET
n HEADS OR m TAILS

SVANTE JANSON, LUCY MARTINEZ, AND DORON ZEILBERGER

ABSTRACT. We harness both human ingenuity and the power of symbolic computation to study the number
of coin tosses until reaching n Heads or m Tails. We also talk about the closely related problem of reaching
n Heads and m Tails. This paper is accompanied by a Maple package that enables fast computation of
expectations, variances, and higher moments of these quantities.

1. PREFACE

TO DO: Mention the paper by Stanislav Volkov, Magnus Wiktorsson [4] .
If you toss a coin whose probability of heads is p, until you reach n Heads, you should expect to make n/p
coin tosses, and the variance and higher moments are easily derived from the explicit probability generating

function, (as usual g := 1 —p)
ZOO n+k—1 i pr \"
n — 1

k:o( n—1 )(}996) (a) (1‘15”) , o

which is essentially the negative-binomial distribution [5] (note that usually one only counts the number of
Tails until you reach n Heads, but we are interested in the total number of coin-tosses, so we add the n
Heads). From this probability generating function we can extract not only the expectation, n/p, but also
the variance %7 and by repeated differentiation with respect to z, and plugging in x = 1, we can easily
derive explicit expressions of as many as desired factorial moments, that in turn, yield the moments, and
from them the central moments. Then we can compute the scaled central moments, take the limit as n — oo
and prove that for a fixed p it tends to the good old Normal Distribution. Of course, in this simple case we
can also derive a local limit law. (For a probabilist, these are examples of the classical central limit theorem
and local limit theorem, see e.g. |2, Theorems 7.1.1 and 7.7.6].)

But what if you are not a Headist? What if you like Tails just as much, and stop as soon as you get n
Heads OR m Tails? Another interesting stopping rule is to make both Heads and Tails happy and keep
tossing until you get n Heads AND m Tails. Now things are not as nice and simple. Nevertheless, using
Wilf-Zeilberger algorithmic proof theory [3], we can derive the next-best thing, linear recurrences that enable
very fast computation of these quantities. These will be presented in Section

In the special case of a fair coin, and the same desired number of Heads and Tails (let’s call it n), we
get, explicit expressions not only for the expectation and variance, but for as many as-desired moments (we
went up to 200*", but could go much further). Then we (or rather Maple) can compute the scaled limit, and
surprise! they coincide exactly with the central-scaled moments of —|N(0, 1), the continuous probability
distribution whose probability density function (pdf) is

2
61/2

/2’
supported in —oo < z < 0. This will be accomplished in Section

While we (or rather our computer) can prove this convergence for the first 200 moments, and with a larger
computer, the first 2000, we can not prove it for all moments. In the last three sections of this article we
will prove it completely, using purely human-generated, paper-and-pencil mathematics.

1.1. The Maple package. CoinToss.txt is freely available from
https://sites.math.rutgers.edu/~zeilberg/tokhniot/CoinToss.txt,
1
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would allow you to experiment with these quantities. We include some plots in Figure [I] of the expected
number of tosses as a function of the probability of getting heads with various goals. We also include two
plots in Figure [2| of the probability density function for the (scaled) discrete random variable of the number
of coin-tosses until a loaded coin reaches either 200 Heads OR 200 Tails where with probability p you get
heads.

pic100. jpg pic40. jpg picl0. jpg

(A) In this figure, the goal is to get (B) In this figure, the goal is to get (¢) In this figure, the goal is to get
100 heads AND (top) / OR (bottom) 100 heads AND (top) / OR (bottom) 100 heads AND (top) / OR (bottom)
100 tails. 40 tails. 10 tails.

FIGURE 1. Each of the sub-figures shows the plots of the expected number of tosses as a
function of the probability of getting heads (from 0.1 to 0.9).
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(A) In this figure, the probability of (B) In this figure, the probability of
1

getting heads is p = 3. getting heads is p = %.
FIGURE 2. Each of the sub-figures shows the plots of the probability density function for
the (scaled) discrete random variable of the number of coin-tosses until a loaded coin reaches

either 200 Heads OR, 200 Tails where with probability p you get heads.

2. RECURRENCES FOR THE DURATION WITH A LOADED COIN AND DIFFERENT TARGET GOALS

You are tossing a coin whose probability of Heads is p (and hence the probability of Tails is ¢ := 1 — p).
We consider two random variables

e Xj(n,m;p): The number of tosses until reaching (for the first time) either n Heads OR m tails, and
e Xs(n,m;p): The number of tosses until reaching (for the first time) n Heads AND m tails.
2



The probability generating function of X3, in z, let’s call it F}(n, m;p)(x) is
n—1 m—1
_ m h+m—1 o t+n—1 ¢
Funmip)(a) = (o)™ 3 (" T )+ ("5 e
h=0 t=0
On the other hand, that of Xa(n,m;p), let’s call it Fa(n,m;p)(z) is

Rt = o 3 ("0 T o+ e 3 (V1T e
h=n t=m
Unlike the probability generating function for the Negative Binomial distribution [5], F1(n,m;p)(x) and
F5(n, m; p)(x) do not have closed-form, but thanks to Wilf-Zeilberger Algorithmic Proof theory [3,6],
they have the next-best thing, linear recurrences with polynomial coefficients (that happen to be third-order),
in each of n and m, that enable an efficient compilation of a table of these. We observe that F; + F5 does
have a closed-form.

m n
Fiy(n,m; p)(z) + Fo(n, m; p)(z) = (133:]”:) . (1pia:qx) . (2)
(This reflects that fact that for each sequence of coin tosses, the two random variables X;(n,m;p) and sJ
Xo(n,m;p) equal, in some order, the numbers of tosses required to reach n Heads and to reach m Tails.)
The actual recurrences are too complicated to reproduce here but can be looked up from the output file,
https://sites.math.rutgers.edu/"zeilberg/tokhniot/oCoinToss2.txt.

Let L1 (n,m;p) be the expectation of X;(n,m;p) and let La(n, m;p) be the expectation of Xa(n,m;p),
then both satisfy the same system of third-order linear pure recurrences. We have the following pure
recurrences, in n and m, respectively; the two recurrences are equivalent by interchanging Heads and Tails ss
(below L(n,m) stands for either Li(n,m;p) and La(n, m;p));

(pn+pm —2p+2n —2)

L(n,m) = — -L(n—1,m)
2 2 —4 -1 -2
_ C@pnt2pm —dptn ).L(n—Q,m)—i—p( +n) L(n—3,m),
n—1 n—1
—2p—n—-3 4
Lnm) = — WP ZRZINED
2 2pm —4p — 2n — -1 -2
_ m—

Of course Lq(n, m;p) and Ly(n, m;p) differ in the initial conditions. Here they are:
[[L1(1,1), L1(1,2), L1(1,3)], [L1(2,1), L1(2,2), L1(2,3)], [L1(3,1), L1(3,2), L1(3,3)]] =
[(1,—p+2,p* —3p+3],[p+1,—2p* +2p+2,3p® — Tp* + 3p + 3],
[P? +p+1,-3p> + 20> + 2p + 2,6p* — 12p° + 3p® + 3p + 3]],

and SJ: denominators ¢
to p(1 — p). Please
[[L2(1,1), L2(1,2), La(1,3)], [L2(2,1), L2(2,2), L2(2,3)], [L2(3,1), L2(3,2), L2(3,3)]] = siens:
p—p+1 PP =32 +p—1 pt—4pP+6p> —p+1
Hp - p(-p 7 p(1-p) ]
p372p+2 C2p* —4p® +2p—2 3p° —10p* +10p° — 2p 42
p( ’ p(1—-p) p(1—-p) ]
4—3p+3 3p° —5pt +3p—3 3(2p° —6p° +5pt —p+1)
l p(l-p) °  pl-p p(1-p)

These recurrences are implemented in procedures fAveF(n,m,p) and FaveF(n,m,p) respectively. For
example to find the expected number of coin-tosses it takes if you toss a loaded coin whose probability of
Heads is % until it reaches, for the first time 10047 Heads OR 200¢ Tails, for 1 < i < 7, type:
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restart: read ‘CoinToss.txt‘:t0:=time():
evalf ([seq(faveF(100%i,200%i,1/3),i=1..7)]) ;time()-t0;

getting
[285.3561686, 579.2804255, 874.6196952, 1170.690974, 1467.229920, 1764.101012, 2061.223764],
and it took 0.563 seconds.
For comparison, if you do it directly, not using the recurrence, but rather the definition as a sum, typing

restart: read ‘CoinToss.txt‘: t0:=time():
evalf ([seq(fave(100*i,200%i,1/3),i=1..7)]);time()-t0;

you would get the same output, but it took more than 12 seconds.
What about La(r, s, p), i.e. Ly(1004,200i, 3)? Type:

restart: read ‘CoinToss.txt‘:

t0:=time () :evalf ([seq(FaveF(100*i,200%i,1/3),i=1..7)]) ;time()-t0;
getting

[314.6438314,620.7195745,925.3803048, 1229.309026, 1532.770080, 1835.898988, 2138.776236],
and this took 0.561 seconds, and the direct way took more than 12 seconds.

We observe that implies the relation

n m
Li(n,m;p) + La(n,m;p) = — + —. 3
( ) ( ) 1, (3)
We observe also that for positive integers a and b we have the explicit expressions

Ll(an,bn,CL“M)—(a+b)n<1((”b)”)’.( a’? )n) (1)

(an)!(bn)!  \ (a + b)atd
a | ((a+b)n)! a®b® "
La(an,bn, ) = (a+ b)n (1+ g .((Hb)m) ) (5)

These are asymptotically

fa+b 1
b 1+ —— —|.
(a+ )n( 2abm \/ﬁ>
So Li(an, bn, ;55)/((a+b)(n)) and La(an,bn, ;43)/((a+b)(n)) converge slowly (as n~1/2) to 1 as n goes
to infinity. On the other hand if p > ;%5 then Li(an, bn,p)/n and La(an,bn,p)/n converge exponentially
fast to bp, and if p < %5 then they converge exponentially fast to ap. This makes sense, since when a coin
is loaded in favor of achieving your goal you should expect to achieve your goal only a bit later than if the

other side of the coin didn’t matter.

Remark 2.1. Volkov and Wiktorsson [4] recently studied some related aspects of the case “n Heads or n Tails”
(thus with m = n). In particular, they study |4, Theorem 2.1] the expectation of (number of Heads - number
of Tails) when we stop having reached our goal after Xi(n,n;p) tosses. (This is Sx, () in the notation of
Section [4] below.) By Wald’s identity |2, Theorem 10.14.3], this expectation equals (p — q)L1(n,n;p), and
thus the formula in [4, Theorem 2.1] is equivalent to

Liln,mip) =n'S. Cy(pa)! (6)
=0
where
@)
=G "

are the Catalan numbers. In the fair case p = %, it is easily verified that @ agrees with the expression given
by in the special case a = b = 1:

Ly(n,n; 1) = 2n (1 _ (2n) -4—”) . (8)

nl?
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3. EXPLICIT EXPRESSIONS FOR THE MOMENTS OF THE NUMBER OF TOSSES UNTIL GETTING n HEADS OR
n TAILS WITH A FAIR COIN

The probability generating function for the number of tosses until a fair coin reaches n Heads or n Tails
is

Qx)"g(hl'f[l)@x)u(;x)"g(t;’if)(; : "1Z(h2f]1)<;>hxh+n.

Recall that the r-th factorial moment of a random variable is
X
EX(X-1)...(X—-r+1)]=rE {( )] .
r

Let A(n,r) be the the r-th factorial moment of our random variable X = X;(N,n, ) (number of tosses
of a fair coin until you get for the first time n Heads or n Tails). We have:

Aln,7) = (5)™ 12(%?;) .(hj”>(;)h.

For each specific r, this can be evaluated as a closed-form expression in n, and Maple can do it easily for
small r, but as r gets larger, it becomes harder and harder. There is no closed-form expression in r. Luckily,
thanks to the Zeilberger algorithm [3L6], one can get the following linear recurrence equation for A(n,r) in
r, where we abbreviate C?, := n(*") /4™

2n—1

A(n,r) =2nA(n,r — 1)+ (r — 1)(r — 2)A(n,r — 2) —4n( .o

)(r -2)1C), (9)
subject to the initial conditions,
A(n,1) =2n —2C", A(n,2) = 4n* — 8nC". (10)

This enables a very fast computation of A(n,r) for many r. Once we have them, Maple can easily compute
the (usual) moments

= ZS(r, i)A(n, i
i=0

where S(r, ) are the Stirling numbers of the second kind.
Now, Maple can easily compute the central moments where pu := E[X] = A(n,1) (which is 2n — 2C/, by

)
Bl - w1 =3 () o Bl

. 1
=0

In particular the variance 02 := E[(X — u)?]. Finally it can take the limits of the scaled central moments

i EIX = 0]

b
n—o0 o’

and surprise! they are exactly the same as the central scaled moments of —|N(0,1)|, that are easily
computed by Maple. We verified it up to 200 moments, but could have easily gone further. See the output
file: https://sites.math.rutgers.edu/"zeilberg/tokhniot/oCoinToss4.txt.

But in order to prove it for all moments we need some human ingenuity and paper-and-pencil good-old-
traditional math.

4. THE HuMAN ToOUCH

We now give a mathematical proof of the moment asymptotics found above, using standard probabilistic
methods and results. Similar results have presumably been shown several times earlier, one recent example
is [4], but for completeness we give detailed proofs.

SJ
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4.1. Convergence in distribution, n heads or n tails. Let (&;)5° be an infinite sequence of independent

fair coin tosses, with & = 1 representing “Heads” and & = —1 representing “Tails”. Let Sy = Zivzl &, for
~ EeS'H ~ and T be the number of Heads and Tails, respectively, in the first NV tosses. Thus
HNZM, TNZLSN. (11)
2 2
We write for simplicity X;(n) for Xi(n,n; %), ie.,
X1(n) =min{N : Hy =n or Ty =n} = min{N : max (Hy,Ty) = n}. (12)
Note that
Hyx+Tn =N, (13)
Hy — Ty = Sn- (14)
In particular,
Xi1(n) = Hx,(n) + Tx,(n) < 2n. (15)

Furthermore, at time X1(n), one of Hx,(,) and Tx,(,) equals n while the other is smaller. By (14), the
smaller one is n — [Sx, (n)|, and thus yields

Xl(n) =2n— |SX1(n)|- (16)

Hence, the random variable 2n — X;(n) that we are interested in is |Sx, (,)|. In particular, the centered
variable

Xi(n) = E[X1(n)] = = (ISx; ()| = E [Sx,(m)])- (17)
The idea to analyse Sx, () is that Xi(n) ~ 2n, and thus Sy, () = S2,, which has a nice normal limit
by the central limit theorem. More precisely, we have the following, where 9, denotes convergence in
probability.
Lemma 4.1. As n — oo,

Sxi(n) d
— N(0,2 1
n (0,2), (18)

where N(0,2) denotes a normal random variable with mean 0 and variance 2.

Proof. One elegant way to prove this rigorously uses Donsker’s theorem on convergence of the entire process
(Sn)%™_,, after suitable scaling, to a Brownian motion |2, Theorem 7.7.13]. But we choose instead to proceed
here by a related but somewhat more elementary approach.

We split the process of coin tosses into two phases; in the first we toss ny := 2n — Ln2/3j times, and in
the second we proceed to the end.

By the central limit theorem, since E§; = 0 and Var¢; = 1, as n — oo we have Sy, /\/n1 N N(0,1) and
thus

Sn, n1 S, Sn,  d
N Y i (\/§+o(1))\/771 —45 N(0,2). (19)
In particular, w.h.p. (with high probability, meaning with probability tending to 1 as n — o0), |Sp,| <
[n?/3] = 2n — nq, and thus H,,,T,, < n by (L)), so after n; tosses we have not yet reached the stopping
time X;(n). We may thus assume this event, i.e., X;(n) > nq, in the rest of the proof.
Let ny = Ln2/3j, 80 n1 + ne = 2n. Then, by the assumption just made and ,

ny < Xi(n) < 2n =n; + ne. (20)
Let
k
Sllc = S'fl1+k - Snl = Z§n1+i' (21)
i=1

6



By Kolmogorov’s inequality |2, Theorem 3.1.6], for every = > 0,
_ X2 Var(Gian,) _ na _ [n?]

! — —
P(lgllfgu 15t > ) x? o2 a2 (22)
In particular,
/ 0.4
P(lg%);z) ISkl > n%*) — 0, (23)
and thus w.h.p., recalling and ,
_ 0.4
1Ssm — Sl = |y 1y <, e |1 <0, 29
Hence, with —- denoting convergence in probability,
Sx,(n) — Sn
2Xm) — Pm Py (25)
Vn
which together with yields, by the Cramér-Slutsky theorem [2, Theorem 5.11.4],
Sxi(n) _ Sxi(n) = Sni Sn, 4
= 2L S5 N(0,2). 26
oL 2 L N(0.2) (26)
which shows ((18). O

We can now easily show that the asymptotic distribution of X7 (n) is as found empirically above.

Theorem 4.2. Let Z ~ N(0,1) denote a standard normal variable. Then, as n — oo,
X1 (n) —2n d
—_— —V2|Z 27
and, for the centered variables,
Xi(n) —E[Xy(n)]
vn

% —v2(12| - E|2)). (28)

Proof. We can write as

Sxitn) 4
1<, V2z.
om0V

Hence, by the continuous mapping theorem [2, Theorem 5.10.4],

1Sxim)| 4
— 21Z 29
Lol 4, V2, (29)
and follows by . Finally, follows from and
2n —E[X
”f[nl(”)] —V2E|Z| =2/ V7, (30)
which follows from which gives 2n — E [X;(n)] = 2C},, or from Theorem below. O

We postpone further discussion of convergence of moments until Section [£.3]
4.2. Convergence in distribution, n Heads and n Tails. We can argue similarly with
Xo(n) :=min{N : Hy >n and Ty > n} = min{N : min (Hy,Tn) = n}.
Now, X3(n) = 2n. Furthermore, one of Hx,,) and Tx,(,) is n, and the other is, by , n + [Sx,m)l-
Consequently, by ,
Xa(n) = Hx,(n) + Txy(n) = 20+ [Sxy(m) - (31)
In analogy with Lemma [4.1] we have:

Lemma 4.3. Asn — oo,




Proof. Let ny = |n?/3] as above. It follows from the central limit theorem, similarly to (19), that

S2n+n2
NG
and it follows that w.h.p. [San4n,| < n2 and thus, by (1)), Hantnys Tontn, > n. Hence, w.h.p.,
2n < Xa(n) < 2n + no. (33)

We use Kolmogorov’s inequality again, but now for 1 < k < 2ny, and obtain from as in f

~4 N(0,2).

S n) Snl
2Xo(m) — Pm b, (34)
Vn

and thus follows from as in . O

Hence we obtain, in analogy to Theorem |4.2

Theorem 4.4. We have, with notation defined above, as n — oo,

Xa(n) —2n 4
—_ 2|7
g V2l (35)
and, for the centered variables,
Xo(n) ZEXo(n) 4, 52/~ E|2). (36)

vn
Proof. Almost identical to the proof of Theorem now using and Lemma note also that
E[X1(n)] + E [X2(n)] = L1(n,ni) + La(n,n, 3) = 4n (37)
by (), and thus E [X2(n)] — 2n = 2n — E [X;(n)]. O
Remark 4.5. Thus X;(n) and X5(n) have, apart from a sign, the same (centered) asymptotic distribution.
Moreover, it is really “the same” Z in Theorem [4.2 and [4.4} it follows from (16]), (31), (25), and that
Xi(n) —2n N Xo(n) —2n _ 1Sx, )| = [Sx, ()] v (38)

In fact, an extension of the arguments above shows that (Xa(n) —2n) — (2n — X1(n)) is of order n'/4. More
precisely, we have the following result for this difference, showing that it has an asymptotic distribution that
is a mixture of normal distributions with different variances.

Theorem 4.6. Asn — oo,

(Xa(n) - 2n)n - (n = Xa(m) _ Xa(n) Zﬁ(”) —An 4 gy gpey, (39)

where W and Z are independent random variables with the standard normal distribution N(0,1).

Sketch of proof. Condition on X;1(n) = 2n— z+/n, for some x > 0. We see from that then Xs(n) —2n ~
2n — X1(n) = zy/n, and thus Xs(n) — X1(n) = 22v/n = 2(2n — X;1(n)). It follows, by arguments as in the
proofs above, that, conditioned on X (n),

S n) S n
Xoln) 2N 4, e N(0,1). (40)
2(2n — X1(n))

Furthermore, it is easy to see that Sx, (,) and Sx,(,) have the same sign (depending on whether we reach n
Heads or n Tails first); consequently, implies that, still conditioned on X (n),
1Sx, ()| — [Sx, ()]
2(2n — X1(n))
8
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This implies that holds also unconditionally, with W independent of all X;(n). Hence, using also ,
B1), and 7),

Xi(n)—2n  Xo(m) —2n _ |Sx,ml = 1Sx,m| _ [Sxam| = [Sx,m)| ~ [2(2n — X1 (n))
nl/4 ni/4 ni/4 3@n — X1(n) nl/2

~Low/2v2|Z, (42)

with Z € N(0,1) independent of W, which proves (39). O

4.3. Convergence of moments. The results in Theorem and are convergence in distribution, and
as always, this does not by itself imply convergence of moments. In this case, as in many others, it is easy
to give supplementary arguments showing that the moments converge, as found empirically in Section [3]

Theorem 4.7. We have convergence of all moments (both ordinary and absolute) in , , , and
[5).

Proof. Consider the number of tosses until reaching n heads, or n tails, separately:
vi(n) = inf{k : H; > n}, vr(n) = inf{k : T > n}.
Then

X1(n) =vg(n) Avr(n), (43)
Xa(n) =vg(n) Vvp(n). (44)

Note that vy (n) and vr(n) have the same distribution, which is negative binomial with the simple probability
generation function mentioned in Section However, they are dependent, so the representation (43[)—
does not tell us the distribution of X;(n) and Xa(n), but it is nevertheless very helpful to obtain useful
estimates.

Let » > 0. It is well-known from renewal theory, see e.g. [1, Theorem 3.7.4(ii)], that the sequence of
random variables

vi(n) —2nl"

NG

is uniformly integrable. (See e.g. [2, Section 5.4] for the definition.) The same is true for vp(n), since it has
the same distribution as v (n), and then it follows from (43)—([44) that

n=1,

)

T T

\Y%
-

(45)

)

‘Xl(n) —2n
NG

and Xa(n) —2n
vn

also are uniformly integrable.

This implies that all moments converge in and , see e.g. [2, Theorem 5.5.9]. In particular, this
shows that (E[X1(n)] — 2n)/y/n converges to E[v2|Z]], so E[X1(n)] = 2n + O(y/n), as also was seen in
Section Similarly, or by (3), E[X2(n)] = 2n + O(y/n). This and implies that

N -EX@I [ Xem) —EXml
vn vn
also are uniformly integrable. Hence we have moment convergence in and too. O

5. FUTURE WORK
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