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Abstract. We harness both human ingenuity and the power of symbolic computation to study the number

of coin tosses until reaching n Heads or m Tails. We also talk about the closely related problem of reaching

n Heads and m Tails. This paper is accompanied by a Maple package that enables fast computation of
expectations, variances, and higher moments of these quantities.

1. Preface

TO DO: Mention the paper by Stanislav Volkov, Magnus Wiktorsson [4] . SJ: Now in Remark 2.1 and
(briefly) Section 4. Also
mention in Section 1?If you toss a coin whose probability of heads is p, until you reach n Heads, you should expect to make n/p

coin tosses, and the variance and higher moments are easily derived from the explicit probability generating
function, (as usual q := 1− p)

∞∑
k=0

(
n+ k − 1

n− 1

)
(px)n(qx)k =

(
px

1− qx

)n

, (1)

which is essentially the negative-binomial distribution [5] (note that usually one only counts the number of
Tails until you reach n Heads, but we are interested in the total number of coin-tosses, so we add the n
Heads). From this probability generating function we can extract not only the expectation, n/p, but also

the variance n(1−p)
p2 , and by repeated differentiation with respect to x, and plugging in x = 1, we can easily

derive explicit expressions of as many as desired factorial moments, that in turn, yield the moments, and
from them the central moments. Then we can compute the scaled central moments, take the limit as n → ∞
and prove that for a fixed p it tends to the good old Normal Distribution. Of course, in this simple case we
can also derive a local limit law. (For a probabilist, these are examples of the classical central limit theorem SJ

and local limit theorem, see e.g. [2, Theorems 7.1.1 and 7.7.6].)
But what if you are not a Headist? What if you like Tails just as much, and stop as soon as you get n

Heads OR m Tails? Another interesting stopping rule is to make both Heads and Tails happy and keep
tossing until you get n Heads AND m Tails. Now things are not as nice and simple. Nevertheless, using
Wilf-Zeilberger algorithmic proof theory [3], we can derive the next-best thing, linear recurrences that enable
very fast computation of these quantities. These will be presented in Section 2.

In the special case of a fair coin, and the same desired number of Heads and Tails (let’s call it n), we
get, explicit expressions not only for the expectation and variance, but for as many as-desired moments (we
went up to 200th, but could go much further). Then we (or rather Maple) can compute the scaled limit, and
surprise! they coincide exactly with the central-scaled moments of −|N(0, 1)|, the continuous probability
distribution whose probability density function (pdf) is

e−x2/2√
π/2

,

supported in −∞ < x < 0. This will be accomplished in Section 3.
While we (or rather our computer) can prove this convergence for the first 200 moments, and with a larger

computer, the first 2000, we can not prove it for all moments. In the last three sections of this article we
will prove it completely, using purely human-generated, paper-and-pencil mathematics.

1.1. The Maple package. CoinToss.txt is freely available from SJ: Is this sentence
gramatically correct?

https://sites.math.rutgers.edu/~zeilberg/tokhniot/CoinToss.txt,
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would allow you to experiment with these quantities. We include some plots in Figure 1 of the expected
number of tosses as a function of the probability of getting heads with various goals. We also include two
plots in Figure 2 of the probability density function for the (scaled) discrete random variable of the number
of coin-tosses until a loaded coin reaches either 200 Heads OR 200 Tails where with probability p you get
heads.

pic100.jpg

(a) In this figure, the goal is to get
100 heads AND (top) / OR (bottom)
100 tails.

pic40.jpg

(b) In this figure, the goal is to get
100 heads AND (top) / OR (bottom)
40 tails.

pic10.jpg

(c) In this figure, the goal is to get
100 heads AND (top) / OR (bottom)
10 tails.

Figure 1. Each of the sub-figures shows the plots of the expected number of tosses as a
function of the probability of getting heads (from 0.1 to 0.9).

picFair.jpg

(a) In this figure, the probability of
getting heads is p = 1

2
.

picUnFair.jpg

(b) In this figure, the probability of
getting heads is p = 1

3
.

Figure 2. Each of the sub-figures shows the plots of the probability density function for
the (scaled) discrete random variable of the number of coin-tosses until a loaded coin reaches
either 200 Heads OR 200 Tails where with probability p you get heads.

2. Recurrences for the Duration with a Loaded Coin and Different Target Goals

You are tossing a coin whose probability of Heads is p (and hence the probability of Tails is q := 1− p).
We consider two random variables

• X1(n,m; p): The number of tosses until reaching (for the first time) either n Heads OR m tails, and
• X2(n,m; p): The number of tosses until reaching (for the first time) n Heads AND m tails.
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The probability generating function of X1, in x, let’s call it F1(n,m; p)(x) is

F1(n,m; p)(x) = (qx)m
n−1∑
h=0

(
h+m− 1

m− 1

)
(px)h + (px)n

m−1∑
t=0

(
t+ n− 1

n− 1

)
(qx)t.

On the other hand, that of X2(n,m; p), let’s call it F2(n,m; p)(x) is:

F2(n,m; p)(x) = (qx)m
∞∑

h=n

(
h+m− 1

m− 1

)
(px)h + (px)n

∞∑
t=m

(
t+ n− 1

n− 1

)
(qx)t.

Unlike the probability generating function for the Negative Binomial distribution [5], F1(n,m; p)(x) and
F2(n,m; p)(x) do not have closed-form, but thanks toWilf-Zeilberger Algorithmic Proof theory [3,6],
they have the next-best thing, linear recurrences with polynomial coefficients (that happen to be third-order),
in each of n and m, that enable an efficient compilation of a table of these. We observe that F1 + F2 does
have a closed-form.

F1(n,m; p)(x) + F2(n,m; p)(x) =

(
qx

1− px

)m

+

(
px

1− qx

)n

. (2)

(This reflects that fact that for each sequence of coin tosses, the two random variables X1(n,m; p) and SJ

X2(n,m; p) equal, in some order, the numbers of tosses required to reach n Heads and to reach m Tails.)
The actual recurrences are too complicated to reproduce here but can be looked up from the output file,
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCoinToss2.txt.

Let L1(n,m; p) be the expectation of X1(n,m; p) and let L2(n,m; p) be the expectation of X2(n,m; p),
then both satisfy the same system of third-order linear pure recurrences. We have the following pure
recurrences, in n and m, respectively; the two recurrences are equivalent by interchanging Heads and Tails SJ

(below L(n,m) stands for either L1(n,m; p) and L2(n,m; p));

L(n,m) =
(pn+ pm− 2p+ 2n− 2)

n− 1
· L (n− 1,m)

− (2pn+ 2pm− 4p+ n− 1)

n− 1
· L(n− 2,m) +

p (m− 2 + n)

n− 1
· L(n− 3,m) ,

L(n,m) =− (pn+ pm− 2p− n− 3m+ 4)

m− 1
· L(n,m− 1)

+
(2pn+ 2pm− 4p− 2n− 3m+ 5)

m− 1
· L(n,m− 2)− (p− 1) (m− 2 + n)

m− 1
· L(n,m− 3) .

Of course L1(n,m; p) and L2(n,m; p) differ in the initial conditions. Here they are:

[[L1(1, 1), L1(1, 2), L1(1, 3)], [L1(2, 1), L1(2, 2), L1(2, 3)], [L1(3, 1), L1(3, 2), L1(3, 3)]] =

[[1,−p+ 2, p2 − 3p+ 3], [p+ 1,−2p2 + 2p+ 2, 3p3 − 7p2 + 3p+ 3],

[p2 + p+ 1,−3p3 + 2p2 + 2p+ 2, 6p4 − 12p3 + 3p2 + 3p+ 3]],

and SJ: denominators changed
to p(1 − p). Please check
signs.[[L2(1, 1), L2(1, 2), L2(1, 3)], [L2(2, 1), L2(2, 2), L2(2, 3)], [L2(3, 1), L2(3, 2), L2(3, 3)]] =[[

p2 − p+ 1

p (1− p)
,−p3 − 3p2 + p− 1

p (1− p)
,
p4 − 4p3 + 6p2 − p+ 1

p (1− p)

]
,[

p3 − 2p+ 2

p (1− p)
,−2p4 − 4p3 + 2p− 2

p (1− p)
,
3p5 − 10p4 + 10p3 − 2p+ 2

p (1− p)

]
,[

p4 − 3p+ 3

p (1− p)
,−3p5 − 5p4 + 3p− 3

p (1− p)
,
3
(
2p6 − 6p5 + 5p4 − p+ 1

)
p (1− p)

]]
.

These recurrences are implemented in procedures fAveF(n,m,p) and FaveF(n,m,p) respectively. For
example to find the expected number of coin-tosses it takes if you toss a loaded coin whose probability of
Heads is 1

3 until it reaches, for the first time 100 i Heads OR 200 i Tails, for 1 ≤ i ≤ 7, type:
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restart: read ‘CoinToss.txt‘:t0:=time():

evalf([seq(faveF(100*i,200*i,1/3),i=1..7)]);time()-t0;

getting

[285.3561686, 579.2804255, 874.6196952, 1170.690974, 1467.229920, 1764.101012, 2061.223764],

and it took 0.563 seconds.
For comparison, if you do it directly, not using the recurrence, but rather the definition as a sum, typing

restart: read ‘CoinToss.txt‘: t0:=time():

evalf([seq(fave(100*i,200*i,1/3),i=1..7)]);time()-t0;

you would get the same output, but it took more than 12 seconds.
What about L2(r, s, p), i.e. L2(100i, 200i,

1
3 )? Type:

restart: read ‘CoinToss.txt‘:

t0:=time():evalf([seq(FaveF(100*i,200*i,1/3),i=1..7)]);time()-t0;

getting

[314.6438314, 620.7195745, 925.3803048, 1229.309026, 1532.770080, 1835.898988, 2138.776236],

and this took 0.561 seconds, and the direct way took more than 12 seconds.SJ

We observe that (2) implies the relation

L1(n,m; p) + L2(n,m; p) =
n

p
+

m

1− p
. (3)

We observe also that for positive integers a and b we have the explicit expressionsSJ: Please add some words
(or sentences?) on why this

holds. For example what
you wrote in an email to
me, possibly expanded.

L1(an, bn,
a

a+ b
) = (a+ b)n

(
1− ((a+ b)n)!

(an)!(bn)!
·
(

aabb

(a+ b)a+b

)n)
, (4)

L2(an, bn,
a

a+ b
) = (a+ b)n

(
1 +

((a+ b)n)!

(an)!(bn)!
·
(

aabb

(a+ b)a+b

)n)
. (5)

These are asymptotically

(a+ b)n

(
1±

√
a+ b

2abπ
· 1√

n

)
.

So L1(an, bn,
a

a+b )/((a+ b)(n)) and L2(an, bn,
a

a+b )/((a+ b)(n)) converge slowly (as n−1/2) to 1 as n goes

to infinity. On the other hand if p > a
a+b then L1(an, bn, p)/n and L2(an, bn, p)/n converge exponentially

fast to bp, and if p < a
a+b then they converge exponentially fast to ap. This makes sense, since when a coin

is loaded in favor of achieving your goal you should expect to achieve your goal only a bit later than if the
other side of the coin didn’t matter.

SJ: Added remark

Remark 2.1. Volkov and Wiktorsson [4] recently studied some related aspects of the case “n Heads or n Tails”
(thus with m = n). In particular, they study [4, Theorem 2.1] the expectation of (number of Heads - number
of Tails) when we stop having reached our goal after X1(n, n; p) tosses. (This is SX1(n) in the notation of
Section 4 below.) By Wald’s identity [2, Theorem 10.14.3], this expectation equals (p − q)L1(n, n; p), and
thus the formula in [4, Theorem 2.1] is equivalent to

L1(n, n; p) = n

n−1∑
j=0

Cj(pq)
j (6)

where

Cj :=
(2j)!

j! (j + 1)!
(7)

are the Catalan numbers. In the fair case p = 1
2 , it is easily verified that (6) agrees with the expression given

by (4) in the special case a = b = 1:

L1(n, n;
1
2 ) = 2n

(
1− (2n)!

n!2
· 4−n

)
. (8)
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3. Explicit expressions for the moments of the number of tosses until getting n Heads or
n Tails with a fair coin

The probability generating function for the number of tosses until a fair coin reaches n Heads or n Tails
is

(
1

2
x)n

n−1∑
h=0

(
h+ n− 1

n− 1

)
(
1

2
x)h + (

1

2
x)n

n−1∑
t=0

(
t+ n− 1

n− 1

)
(
1

2
x)t = (

1

2
)n−1

n−1∑
h=0

(
h+ n− 1

n− 1

)
(
1

2
)hxh+n.

Recall that the r-th factorial moment of a random variable is

E [X(X − 1) . . . (X − r + 1)] = r!E
[(

X

r

)]
.

Let A(n, r) be the the r-th factorial moment of our random variable X = X1(N,n, 1
2 ) (number of tosses SJ

of a fair coin until you get for the first time n Heads or n Tails). We have:

A(n, r) = (
1

2
)n−1

n−1∑
h=0

(
h+ n− 1

n− 1

)
r!

(
h+ n

r

)
(
1

2
)h.

For each specific r, this can be evaluated as a closed-form expression in n, and Maple can do it easily for
small r, but as r gets larger, it becomes harder and harder. There is no closed-form expression in r. Luckily,
thanks to the Zeilberger algorithm [3, 6], one can get the following linear recurrence equation for A(n, r) in
r, where we abbreviate C ′

n := n
(
2n
n

)
/4n: SJ: This is simpler for C′

n,
isn’t it?

A(n, r) = 2nA(n, r − 1) + (r − 1)(r − 2)A(n, r − 2)− 4n

(
2n− 1

r − 2

)
(r − 2)!C ′

n (9)

subject to the initial conditions,

A(n, 1) = 2n− 2C ′
n, A(n, 2) = 4n2 − 8nC ′

n. (10)

This enables a very fast computation of A(n, r) for many r. Once we have them, Maple can easily compute
the (usual) moments

E [Xr] =

r∑
i=0

S(r, i)A(n, i),

where S(r, i) are the Stirling numbers of the second kind.
Now, Maple can easily compute the central moments where µ := E [X] = A(n, 1) (which is 2n − 2C ′

n by SJ

(10))

E [(X − µ)r] =

r∑
i=0

(
r

i

)
(−µ)r−i E [Xi].

In particular the variance σ2 := E [(X − µ)2]. Finally it can take the limits of the scaled central moments

lim
n→∞

E [(X − µ)r]

σr
,

and surprise! they are exactly the same as the central scaled moments of −|N(0, 1)|, that are easily
computed by Maple. We verified it up to 200 moments, but could have easily gone further. See the output
file: https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCoinToss4.txt.

But in order to prove it for all moments we need some human ingenuity and paper-and-pencil good-old-
traditional math.

4. The Human Touch

We now give a mathematical proof of the moment asymptotics found above, using standard probabilistic
methods and results. Similar results have presumably been shown several times earlier, one recent example
is [4], but for completeness we give detailed proofs.
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4.1. Convergence in distribution, n heads or n tails. Let (ξi)
∞
0 be an infinite sequence of independent

fair coin tosses, with ξi = 1 representing “Heads” and ξi = −1 representing “Tails”. Let SN :=
∑N

i=1 ξi, for
N ≥ 0.

Let HN and TN be the number of Heads and Tails, respectively, in the first N tosses. Thus

HN =
N + SN

2
, TN =

N − SN

2
. (11)

We write for simplicity X1(n) for X1(n, n;
1
2 )., i.e.,

X1(n) := min{N : HN = n or TN = n} = min{N : max (HN , TN ) = n}. (12)

Note that

HN + TN = N, (13)

HN − TN = SN . (14)

In particular,

X1(n) = HX1(n) + TX1(n) ⩽ 2n. (15)

Furthermore, at time X1(n), one of HX1(n) and TX1(n) equals n while the other is smaller. By (14), the
smaller one is n− |SX1(n)|, and thus (15) yields

X1(n) = 2n− |SX1(n)|. (16)

Hence, the random variable 2n − X1(n) that we are interested in is |SX1(n)|. In particular, the centered
variable

X1(n)− E [X1(n)] = −
(
|SX1(n)| − E [SX1(n)]

)
. (17)

The idea to analyse SX1(n) is that X1(n) ≈ 2n, and thus SX1(n) ≈ S2n, which has a nice normal limit

by the central limit theorem. More precisely, we have the following, where
d−→ denotes convergence in

probability.

Lemma 4.1. As n → ∞,

SX1(n)√
n

d−→ N(0, 2), (18)

where N(0, 2) denotes a normal random variable with mean 0 and variance 2.

Proof. One elegant way to prove this rigorously uses Donsker’s theorem on convergence of the entire process
(SN )2nN=1, after suitable scaling, to a Brownian motion [2, Theorem 7.7.13]. But we choose instead to proceed
here by a related but somewhat more elementary approach.

We split the process of coin tosses into two phases; in the first we toss n1 := 2n − ⌊n2/3⌋ times, and in
the second we proceed to the end.

By the central limit theorem, since E ξi = 0 and Var ξi = 1, as n → ∞ we have Sn1/
√
n1

d−→ N(0, 1) and
thus

Sn1√
n

=

√
n1

n
· Sn1√

n1
=
(√

2 + o(1)
) Sn1√

n1

d−→ N(0, 2). (19)

In particular, w.h.p. (with high probability, meaning with probability tending to 1 as n → ∞), |Sn1
| <

⌊n2/3⌋ = 2n − n1, and thus Hn1
, Tn1

< n by (11), so after n1 tosses we have not yet reached the stopping
time X1(n). We may thus assume this event, i.e., X1(n) > n1, in the rest of the proof.

Let n2 = ⌊n2/3⌋, so n1 + n2 = 2n. Then, by the assumption just made and (15),

n1 ⩽ X1(n) ⩽ 2n = n1 + n2. (20)

Let

S′
k := Sn1+k − Sn1

=

k∑
i=1

ξn1+i. (21)
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By Kolmogorov’s inequality [2, Theorem 3.1.6], for every x > 0,

P
(

max
1⩽k⩽n2

|S′
k| > x

)
⩽

∑n2

i=1 Var(ξi+n1
)

x2
=

n2

x2
=

⌊n2/3⌋
x2

. (22)

In particular,

P
(

max
1⩽k⩽n2

|S′
k| > n0.4

)
→ 0, (23)

and thus w.h.p., recalling (20) and (21),

|SX1(n) − Sn1
| = |S′

X1(n)−n1
| ⩽ max

1⩽k⩽n2

|S′
k| ⩽ n0.4. (24)

Hence, with
p−→ denoting convergence in probability,

SX1(n) − Sn1√
n

p−→ 0, (25)

which together with (19) yields, by the Cramér–Slutsky theorem [2, Theorem 5.11.4],

SX1(n)√
n

=
SX1(n) − Sn1√

n
+

Sn1√
n

d−→ N(0, 2). (26)

which shows (18). □

We can now easily show that the asymptotic distribution of X1(n) is as found empirically above.

Theorem 4.2. Let Z ∼ N(0, 1) denote a standard normal variable. Then, as n → ∞,

X1(n)− 2n√
n

d−→ −
√
2|Z|, (27)

and, for the centered variables,

X1(n)− E [X1(n)]√
n

d−→ −
√
2
(
|Z| − E |Z|

)
. (28)

Proof. We can write (18) as

SX1(n)√
n

d−→
√
2Z.

Hence, by the continuous mapping theorem [2, Theorem 5.10.4],

|SX1(n)|√
n

d−→
√
2 |Z|, (29)

and (27) follows by (16). Finally, (28) follows from (27) and

2n− E [X1(n)]√
n

−→
√
2E |Z| = 2/

√
π, (30)

which follows from (10) which gives 2n− E [X1(n)] = 2C ′
n, or from Theorem 4.7 below. □

We postpone further discussion of convergence of moments until Section 4.3.

4.2. Convergence in distribution, n Heads and n Tails. We can argue similarly with

X2(n) := min{N : HN ⩾ n and TN ⩾ n} = min{N : min (HN , TN ) = n}.
Now, X2(n) ⩾ 2n. Furthermore, one of HX2(n) and TX2(n) is n, and the other is, by (14), n + |SX2(n)|.
Consequently, by (13),

X2(n) = HX2(n) + TX2(n) = 2n+ |SX2(n)|. (31)

In analogy with Lemma 4.1 we have:

Lemma 4.3. As n → ∞,

SX2(n)√
n

d−→ N(0, 2). (32)
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Proof. Let n2 = ⌊n2/3⌋ as above. It follows from the central limit theorem, similarly to (19), that

S2n+n2√
n

d−→ N(0, 2).

and it follows that w.h.p. |S2n+n2
| < n2 and thus, by (11), H2n+n2

, T2n+n2
> n. Hence, w.h.p.,

2n ⩽ X2(n) < 2n+ n2. (33)

We use Kolmogorov’s inequality (22) again, but now for 1 ⩽ k ⩽ 2n2, and obtain from (33) as in (23)–(25)

SX2(n) − Sn1√
n

p−→ 0. (34)

and thus (32) follows from (19) as in (26). □

Hence we obtain, in analogy to Theorem 4.2:

Theorem 4.4. We have, with notation defined above, as n → ∞,

X2(n)− 2n√
n

d−→
√
2|Z|, (35)

and, for the centered variables,

X2(n)− EX2(n)√
n

d−→
√
2
(
|Z| − E |Z|

)
. (36)

Proof. Almost identical to the proof of Theorem 4.2, now using (31) and Lemma 4.3; note also that

E [X1(n)] + E [X2(n)] = L1(n, n
1
2 ) + L2(n, n,

1
2 ) = 4n (37)

by (3), and thus E [X2(n)]− 2n = 2n− E [X1(n)]. □

Remark 4.5. Thus X1(n) and X2(n) have, apart from a sign, the same (centered) asymptotic distribution.
Moreover, it is really “the same” Z in Theorem 4.2 and 4.4: it follows from (16), (31), (25), and (34) that

X1(n)− 2n√
n

+
X2(n)− 2n√

n
=

|SX2(n)| − |SX1(n)|√
n

p−→ 0. (38)

In fact, an extension of the arguments above shows that (X2(n)− 2n)− (2n−X1(n)) is of order n
1/4. More

precisely, we have the following result for this difference, showing that it has an asymptotic distribution that
is a mixture of normal distributions with different variances.

Theorem 4.6. As n → ∞,

(X2(n)− 2n)− (2n−X1(n))

n1/4
=

X1(n) +X2(n)− 4n

n1/4

d−→ 23/4|Z|1/2W, (39)

where W and Z are independent random variables with the standard normal distribution N(0, 1).

Sketch of proof. Condition on X1(n) = 2n−x
√
n, for some x > 0. We see from (38) that then X2(n)−2n ≈

2n −X1(n) = x
√
n, and thus X2(n) −X1(n) ≈ 2x

√
n = 2(2n −X1(n)). It follows, by arguments as in the

proofs above, that, conditioned on X1(n),

SX2(n) − SX1(n)√
2(2n−X1(n))

d−→ W ∈ N(0, 1). (40)

Furthermore, it is easy to see that SX1(n) and SX2(n) have the same sign (depending on whether we reach n
Heads or n Tails first); consequently, (40) implies that, still conditioned on X1(n),

|SX2(n)| − |SX1(n)|√
2(2n−X1(n))

d−→ W ∈ N(0, 1). (41)
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This implies that (41) holds also unconditionally, with W independent of all X1(n). Hence, using also (16),
(31), and (27),

X1(n)− 2n

n1/4
+

X2(n)− 2n

n1/4
=

|SX2(n)| − |SX1(n)|
n1/4

=
|SX2(n)| − |SX1(n)|√

2(2n−X1(n))
·
√

2(2n−X1(n))

n1/2

d−→ W

√
2
√
2|Z|, (42)

with Z ∈ N(0, 1) independent of W , which proves (39). □

4.3. Convergence of moments. The results in Theorem 4.2 and 4.4 are convergence in distribution, and
as always, this does not by itself imply convergence of moments. In this case, as in many others, it is easy
to give supplementary arguments showing that the moments converge, as found empirically in Section 3.

Theorem 4.7. We have convergence of all moments (both ordinary and absolute) in (27), (28), (35), and
(36).

Proof. Consider the number of tosses until reaching n heads, or n tails, separately:

νH(n) := inf{k : Hk ⩾ n}, νT (n) := inf{k : Tk ⩾ n}.

Then

X1(n) = νH(n) ∧ νT (n), (43)

X2(n) = νH(n) ∨ νT (n). (44)

Note that νH(n) and νT (n) have the same distribution, which is negative binomial with the simple probability
generation function (1) mentioned in Section 1. However, they are dependent, so the representation (43)–
(44) does not tell us the distribution of X1(n) and X2(n), but it is nevertheless very helpful to obtain useful
estimates.

Let r > 0. It is well-known from renewal theory, see e.g. [1, Theorem 3.7.4(ii)], that the sequence of
random variables ∣∣∣∣νH(n)− 2n√

n

∣∣∣∣r , n ⩾ 1,

is uniformly integrable. (See e.g. [2, Section 5.4] for the definition.) The same is true for νT (n), since it has
the same distribution as νH(n), and then it follows from (43)–(44) that∣∣∣∣X1(n)− 2n√

n

∣∣∣∣r and

∣∣∣∣X2(n)− 2n√
n

∣∣∣∣r , n ⩾ 1, (45)

also are uniformly integrable.
This implies that all moments converge in (27) and (35), see e.g. [2, Theorem 5.5.9]. In particular, this

shows that (E [X1(n)] − 2n)/
√
n converges to E [

√
2|Z|], so E [X1(n)] = 2n + O(

√
n), as also was seen in

Section 3. Similarly, or by (3), E [X2(n)] = 2n+O(
√
n). This and (45) implies that∣∣∣∣X1(n)− E [X1(n)]√

n

∣∣∣∣r and

∣∣∣∣X2(n)− E [X2(n)]√
n

∣∣∣∣r , n ⩾ 1,

also are uniformly integrable. Hence we have moment convergence in (28) and (36) too. □

5. Future Work
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