
HOW MANY COIN TOSSES WOULD YOU NEED UNTIL YOU GET

n HEADS OR m TAILS

SVANTE JANSON, LUCY MARTINEZ, AND DORON ZEILBERGER

Abstract. We harness both human ingenuity and the power of symbolic computation to study the number

of coin tosses until reaching n Heads or m Tails. We also talk about the closely related problem of reaching

n Heads and m Tails. This paper is accompanied by a Maple package that enables fast computation of
expectations, variances, and higher moments of these quantities.

1. Preface

If you toss a coin whose probability of heads is p, until you reach n Heads, you should expect to make n/p
coin tosses, and the variance and higher moments are easily derived from the explicit probability generating
function, (as usual q := 1− p)

∞∑
k=0

(
n+ k − 1

n− 1

)
(px)n(qx)k =

(
px

1− qx

)n

,

which is essentially the negative-binomial distribution [4] (note that usually one only counts the number of
Tails until you reach n Heads, but we are interested in the total number of coin-tosses, so we add the n
Heads). From this probability generating function we can extract not only the expectation, n/p, but also

the variance n(1−p)
p2 , and by repeated differentiation with respect to x, and plugging in x = 1, we can easily

derive explicit expressions of as many as desired factorial moments, that in turn, yield the moments, and
from them the central moments. Then we can compute the scaled central moments, take the limit as n → ∞
and prove that for a fixed p it tends to the good old Normal Distribution. Of course, in this simple case we
can also derive a local limit law.

But what if you are not a Headist? What if you like Tails just as much, and stop as soon as you get n
Heads OR m Tails? Another interesting stopping rule is to make both Heads and Tails happy and keep
tossing until you get n Heads AND m Tails. Now things are not as nice and simple. Nevertheless, using
Wilf-Zeilberger algorithmic proof theory [3], we can derive the next-best thing, linear recurrences that enable
very fast computation of these quantities. These will be presented in Section 2.

In the special case of a fair coin, and the same desired number of Heads and Tails (let’s call it n), we
get, explicit expressions not only for the expectation and variance, but for as many as-desired moments (we
went up to 200th, but could go much further). Then we (or rather Maple) can compute the scaled limit, and
surprise! they coincide exactly with the central-scaled moments of −|N(0, 1)|, the continuous probability
distribution whose probability density function (pdf) is

e−x2/2√
π/2

,

supported in −∞ < x < 0. This will be accomplished in Section 3.
While we (or rather our computer) can prove this convergence for the first 200 moments, and with a larger

computer, the first 2000, we can not prove it for all moments. In the last three sections of this article we
will prove it completely, using purely human-generated, paper-and-pencil mathematics.

1.1. The Maple package. CoinToss.txt is freely available from
https://sites.math.rutgers.edu/~zeilberg/tokhniot/CoinToss.txt,
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2. Recurrences for the Duration with a Loaded Coin and Different Target Goals

You are tossing a coin whose probability of Heads is p (and hence the probability of Tails is q := 1− p).
We consider two random variables

• X1(n,m; p): The number of tosses until reaching (for the first time) either n Heads OR m tails, and
• X2(n,m; p): The number of tosses until reaching (for the first time) n Heads AND m tails.

The probability generating function of X1, in x, let’s call it F1(n,m; p)(x) is

F1(n,m; p)(x) = (qx)m
n−1∑
h=0

(
h+m− 1

m− 1

)
(px)h + (px)n

m−1∑
t=0

(
t+ n− 1

n− 1

)
(qx)t.

On the other hand, that of X2(n,m; p), let’s call it F2(n,m; p)(x) is:

F2(n,m; p)(x) = (qx)m
∞∑

h=n

(
h+m− 1

m− 1

)
(px)h + (px)n

∞∑
t=m

(
t+ n− 1

n− 1

)
(qx)t.

Unlike the probability generating function for the Negative Binomial distribution [4], F1(n,m; p)(x) and
F2(n,m; p)(x) do not have closed-form, but thanks toWilf-Zeilberger Algorithmic Proof theory [3,5],
they have the next-best thing, linear recurrences with polynomial coefficients (that happen to be third-order),
in each of n and m, that enable an efficient compilation of a table of these. We observe that F1 + F2 does
have a closed-form.

F1(n,m; p)(x) + F2(n,m; p)(x) =

(
qx

1− px

)m

+

(
px

1− qx

)n

.

The actual recurrences are too complicated to reproduce here but can be looked up from the output file,
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCoinToss2.txt.

Let L1(n,m; p) be the expectation of X1(n,m; p) and let L2(n,m; p) be the expectation of X2(n,m; p),
then both satisfy the same system of third-order linear pure recurrences. We have the following pure
recurrences, in n and m, respectively (below L(n,m) stands for either L1(n,m; p) and L2(n,m; p)):

L(n,m) =
(pn+ pm− 2p+ 2n− 2)

n− 1
· L (n− 1,m)

− (2pn+ 2pm− 4p+ n− 1)

n− 1
· L(n− 2,m) +

p (m− 2 + n)

n− 1
· L(n− 3,m) ,

L(n,m) =− (pn+ pm− 2p− n− 3m+ 4)

m− 1
· L(n,m− 1)

+
(2pn+ 2pm− 4p− 2n− 3m+ 5)

m− 1
· L(n,m− 2)− (−1 + p) (m− 2 + n)

m− 1
· L(n,m− 3) .

Of course L1(n,m; p) and L2(n,m; p) differ in the initial conditions. Here they are:

[[L1(1, 1), L1(1, 2), L1(1, 3)], [L1(2, 1), L1(2, 2), L1(2, 3)], [L1(3, 1), L1(3, 2), L1(3, 3)]] =

[[1,−p+ 2, p2 − 3p+ 3], [p+ 1,−2p2 + 2p+ 2, 3p3 − 7p2 + 3p+ 3],

[p2 + p+ 1,−3p3 + 2p2 + 2p+ 2, 6p4 − 12p3 + 3p2 + 3p+ 3]],

and

[[L2(1, 1), L2(1, 2), L2(1, 3)], [L2(2, 1), L2(2, 2), L2(2, 3)], [L2(3, 1), L2(3, 2), L2(3, 3)]] =[[
−p2 − p+ 1

p (p− 1)
,
p3 − 3p2 + p− 1

p (p− 1)
,−p4 − 4p3 + 6p2 − p+ 1

p (p− 1)

]
,[

−p3 − 2p+ 2

p (p− 1)
,
2p4 − 4p3 + 2p− 2

p (p− 1)
,−3p5 − 10p4 + 10p3 − 2p+ 2

p (p− 1)

]
,[

−p4 − 3p+ 3

p (p− 1)
,
3p5 − 5p4 + 3p− 3

p (p− 1)
,−

3
(
2p6 − 6p5 + 5p4 − p+ 1

)
p (p− 1)

]]
.
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These recurrences are implemented in procedures fAveF(n,m,p) and FaveF(n,m,p) respectively. For
example to find the expected number of coin-tosses it takes if you toss a loaded coin whose probability of
Heads is 1

3 until it reaches, for the first time 100 i Heads OR 200 i Tails, for 1 ≤ i ≤ 7, type:

restart: read ‘CoinToss.txt‘:t0:=time():

evalf([seq(faveF(100*i,200*i,1/3),i=1..7)]);time()-t0;

getting

[285.3561686, 579.2804255, 874.6196952, 1170.690974, 1467.229920, 1764.101012, 2061.223764],

and it took 0.563 seconds.
For comparison, if you do it directly, not using the recurrence, but rather the definition as a sum, typing

restart: read ‘CoinToss.txt‘: t0:=time():

evalf([seq(fave(100*i,200*i,1/3),i=1..7)]);time()-t0;

you would get the same output, but it took more than 12 seconds.
What about L2(r, s, p), i.e. L2(100i, 200i,

1
3 )? Type:

restart: read ‘CoinToss.txt‘:

t0:=time():evalf([seq(FaveF(100*i,200*i,1/3),i=1..7)]);time()-t0;

getting

[314.6438314, 620.7195745, 925.3803048, 1229.309026, 1532.770080, 1835.898988, 2138.776236],

and this took 0.561 seconds, and the direct way took more than 12 seconds.
We observe that for positive integers a and b we have the explicit expressions

L1(an, bn,
a

a+ b
) = (a+ b)n

(
1− ((a+ b)n)!

(an)!(bn)!
·
(

aabb

(a+ b)a+b

)n)
,

L2(an, bn,
a

a+ b
) = (a+ b)n

(
1 +

((a+ b)n)!

(an)!(bn)!
·
(

aabb

(a+ b)a+b

)n)
.

These are asymptotically

(a+ b)n

(
1±

√
a+ b

2abπ
· 1√

n

)
.

So L1(an, bn,
a

a+b )/((a+ b)(n)) and L2(an, bn,
a

a+b )/((a+ b)(n)) converge slowly (as n−1/2) to 1 as n goes

to infinity. On the other hand if p > a
a+b then L1(an, bn, p)/n and L2(an, bn, p)/n converge exponentially

fast to bp, and if p < a
a+b then they converge exponentially fast to ap. This makes sense, since when a coin

is loaded in favor of achieving your goal you should expect to achieve your goal only a bit later than if the
other side of the coin didn’t matter.

3. Explicit expressions for the moments of the number of tosses until getting n Heads or
n Tails with a fair coin

The probability generating function for the number of tosses until a fair coin reaches n Heads or n Tails
is

(
1

2
x)n

n−1∑
h=0

(
h+ n− 1

n− 1

)
(
1

2
x)h + (

1

2
x)n

n−1∑
t=0

(
t+ n− 1

n− 1

)
(
1

2
x)n = (

1

2
)n−1

n−1∑
h=0

(
h+ n− 1

n− 1

)
(
1

2
)hxh+n.

Recall that the r-th factorial moment of a random variable is

E [X(X − 1) . . . (X − r + 1)] = r!E
[(

X

r

)]
.

Let A(n, r) be the the r-th factorial moment of our random variable (number of tosses of a fair coin until
you get for the first time n Heads or n Tails). We have:

A(n, r) = (
1

2
)n−1

n−1∑
h=0

(
h+ n− 1

n− 1

)
r!

(
h+ n

r

)
(
1

2
)h.
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For each specific r, this can be evaluated as a closed-form expression in n, and Maple can do it easily for
small r, but as r gets larger, it becomes harder and harder. There is no closed-form expression in r. Luckily,
thanks to the Zeilberger algorithm [3, 5], one can get the following linear recurrence equation for A(n, r) in
r: (Let us abbreviate C := (n+ 1)

(
2n
n+1

)
/4n):

A(n, r) = 2nA(n, r − 1) + (r − 1)(r − 2)A(n, r − 2)− 4n

(
2n− 1

r − 2

)
(r − 2)!C,

subject to the initial conditions,

A(n, 1) = 2n− 2C, A(n, 2) = 4n2 − 8nC.

This enables a very fast computation of A(n, r) for many r. Once we have them, Maple can easily compute
the (usual) moments

E [Xr] =

r∑
i=0

S(r, i)A(n, i),

where S(r, i) are the Stirling numbers of the second kind.
Now, Maple can easily compute the central moments where µ := E [X] (that happens to be 2n− 2C)

E [(X − µ)r] =

r∑
i=0

(
r

i

)
(−µ)r−i E [Xi].

In particular the variance σ2 := E [(X − µ)2]. Finally it can take the limits of the scaled central moments

lim
n→∞

E [(X − µ)r]

σr
,

and surprise! they are exactly the same as the central scaled moments of −|N(0, 1)|, that are easily
computed by Maple. We verified it up to 200 moments, but could have easily gone further. See the output
file: https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCoinToss4.txt.

But in order to prove it for all moments we need some human ingenuity and paper-and-pencil good-old-
traditional math.

4. The Human Touch

Let (ξi)
∞
0 be an infinite sequence of independent fair coin tosses, with ξi = 1 representing “Heads” and

ξi = −1 representing “Tails”. Let Sn :=
∑n

i=1 ξi.
Let Hn and Tn be the number of Heads and Tails, respectively, in the first n tosses. Thus

Hn =
n+ Sn

2
, Tn =

n− Sn

2
. (1)

Let

X(n) := min{N : HN = n or TN = n} = min{N : max (HN , TN ) = n}.

Note that

Hn + Tn = n, (2)

Hn − Tn = Sn. (3)

In particular,

X(n) = HX(n) + TX(n) ⩽ 2n. (4)

Furthermore, at time X(n), one of HX(n) and TX(n) equals n while the other is smaller. By (3), the smaller
one is n− |SX(n)|, and thus (4) yields

X(n) = 2n− |SX(n)|. (5)

Hence, the random variable 2n−X(n) that we are interested in is |SX(n)|. In particular, the centered variable

X(n)− E [X(n)] = −
(
SX(n) − E [SX(n)]

)
. (6)
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The idea to analyse SX(n) is that X(n) ≈ 2n, and thus SX(n) ≈ S2n, which has a nice normal limit by the
central limit theorem. One elegant way to do this rigorously is by using Donsker’s theorem on convergence
of the entire process (Si)

2n
i=1, after suitable scaling, to a Brownian motion. But I guess that you might be

more comfortable with the following, I hope more pedestrian, approach.
We split the process of coin tosses into two phases, in the first we toss n1 := 2n− 2n2/3 times, and in the

second we proceed to the end.
By the central limit theorem, since E ξi = 0 and Var ξi = 1,

Sn1√
n

=

√
n1

n

Sn1√
n1

=
(√

2 + o(1)
) Sn1√

n1

d−→ N(0, 2). (7)

In particular, w.h.p. (with high probability, meaning with probability tending to 1 as n → ∞), |Sn1
| < 2n2/3,

and thus Hn1
, Tn1

< n by (1), so we have not reached the stopping time X(n) before n1. We may thus
condition on this event, so we will assume it in the sequel.

Let n2 = 2n2/3, so n1 + n2 = 2n. Then, by the assumption just made and (4),

n1 ⩽ X(n) ⩽ 2n = n1 + n2. (8)

Let

S′
k := Sn1+k − Sn1

=

k∑
i=1

ξn1+i.

By Kolmogorov’s inequality [2, Theorem 3.1.6], for every x > 0,

P
(

max
1⩽k⩽n2

|S′
k| > x

)
⩽

∑n2

i=1 Var(ξi+n1)

x2
=

n2

x2
=

2n2/3

x2
. (9)

In particular,

P
(

max
1⩽k⩽n2

|S′
k| > n0.4

)
→ 0,

and thus w.h.p., recalling (8),

|SX(n) − Sn1
| = |S′

X(n)−n1
| ⩽ max

1⩽k⩽n2

|S′
k| ⩽ n0.4.

Hence,

SX(n) − Sn1√
n

p−→ 0,

which together with (7) yields

SX(n)√
n

d−→ N(0, 2). (10)

If we let Z denote a standard normal variable, then (10) can also be written as

SX(n)√
n

d−→
√
2Z.

We have proved the following, recalling (5) and (6),

Theorem 4.1. We have, with notation defined above,

2n−X(n)√
n

d−→
√
2|Z|, (11)

and, for the centered variables,

X(n)− EX(n)√
n

d−→ −
√
2
(
|Z| − E |Z|

)
. (12)
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5. n Heads and n Tails

We can argue similarly with

Y (n) := min{N : HN ⩾ n and TN ⩾ n} = min{N : min (HN , TN ) = n}.

Now, Y (n) ⩾ 2n. Furthermore, one of HY (n) and TY (n) is n, and the other is n+ |SY (n)|. Consequently, by
(3),

Y (n) = 2n+ |SY (n)|. (13)

Let n2 = 2n2/3 as above. It follows from the central limit theorem, similarly to (7), that

S2n+n2√
n

d−→ N(0, 2).

and it follows easily that w.h.p. |S2n+n2 | < n2 and thus, by (1), H2n+n2 , T2n+n2 > n. Hence, w.h.p.,

2n ⩽ Y (n) < 2n+ n2.

We use Kolmogorov’s inequality (9) again, but now for 1 ⩽ k ⩽ 2n2, and obtain as above

SY (n) − Sn1√
n

p−→ 0,

and thus

SY (n)√
n

d−→ N(0, 2),

and equivalently

SY (n)√
n

d−→
√
2Z.

Hence we obtain by (13), in analogy to Theorem 4.1:

Theorem 5.1. We have, with notation defined above,

Y (n)− 2n√
n

d−→
√
2|Z|, (14)

and, for the centered variables,

Y (n)− EY (n)√
n

d−→
√
2
(
|Z| − E |Z|

)
. (15)

Remark. Thus X(n) and Y (n) have, apart from a sign, the same (centered) asymptotic distribution. More-
over, it is really “the same” Z in Theorem 4.1 and 5.1: it follows from the profs above that

X(n) + Y (n)− 4n√
n

=
Y (n)− 2n√

n
− 2n−X(n)√

n
=

|SY (n)| − |SX(n)|√
n

p−→ 0.

In fact, an extension of the arguments above shows that X(n) + Y (n) − 2n is of the order n1/4. More
precisely,

X(n) + Y (n)− 4n

n1/4

d−→ W,

for a random variable W with a distribution that is a mixture of normal distributions. (I omit the proof.)
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6. Moment convergence

The results in Theorem 4.1 and 5.1 are convergence in distribution, and as always, this does not by itself
imply convergence in distribution. In this case, it is easy to give supplementary arguments showing uniform
integrability of powers of the random variables in (11)–(12) and (14)–(15), and consequently these hold with
convergence of all moments. Here is one such argument:

Theorem 6.1. We have convergence of all moments (both ordinary and absolute) in (11), (12), (14), and
(15).

Proof. Let

νH(n) := inf{k : Hk ⩾ n}, νT (n) := inf{k : Tk ⩾ n}.
Then

X(n) = νH(n) ∧ νT (n), (16)

Y (n) = νH(n) ∨ νT (n). (17)

Note that νH(n) and νT (n) have the same distribution. They are dependent, so the representation (16)–(17)
is of limited use, but it is nevertheless very helpful here.

Let r ⩾ 2; it is then well-known from renewal theory, see e.g. [1, Theorem 3.7.4(ii)], that the sequence of
random variables ∣∣∣∣νH(n)− 2n√

n

∣∣∣∣r , n ⩾ 1,

is uniformly integrable. (See e.g. [2, Section 5.4] for the definition.) The same is true for νT (n), since it has
the same distribution as νH(n), and it follows from (16)–(17) that∣∣∣∣X(n)− 2n√

n

∣∣∣∣r and

∣∣∣∣Y (n)− 2n√
n

∣∣∣∣r , n ⩾ 1, (18)

also are uniformly integrable.
This implies that all moments converge in (11) and (14), see e.g. [2, Theorem 5.5.9]. In particular, this

shows that (E [X(n)] − 2n)/
√
n converges to E [

√
2|Z|], so E [X(n)] = 2n + O(

√
n). Similarly, E [Y (n)] =

2n+O(
√
n). This and (18) implies that∣∣∣∣X(n)− E [X(n)]√

n

∣∣∣∣r and

∣∣∣∣Y (n)− E [Y (n)]√
n

∣∣∣∣r , n ⩾ 1,

also are uniformly integrable. Hence we have moment convergence also in (11) and (14). □
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