How many coin tosses would you need until you get n Heads OR m Tails

Svante JANSON, Lucy MARTINEZ and Doron ZEILBERGER

Abstract: We harness both human ingenuity and the power of symbolic computation to study the number of coin tosses until reaching n Heads OR m Tails. We also talk about the closely related problem of reaching n Heads AND m Tails.

Preface

If you toss a coin whose probability of Heads is p, until you reach n Heads, you should expect to make n/p coin tosses, and the variance and higher moments are easily derived from the explicit probability generating function, (as usual q := 1 - p)

$$\sum_{k=0}^{\infty} {n+k-1 \choose n-1} (px)^n (qx)^k = \left(\frac{px}{1-qx}\right)^n ,$$

which is essentially the negative-binomial distribution (note that usually one only counts the number of Tails until you reach n Heads, but we are interested in the total number of coin-tosses, so we add the n Heads. From this probability generating function we can extract not only the expectation, but by repeated differnting with respect to x, and plugging in x = 1 we can explicit expressions of as many as desired factorial moments, that in turn gives the moments, and from them the central moments. Then we can compute the scaled central moments, take the limit as $n \to \infty$ and prove that for a fixed p it tends to the good old Normal Distribution.

But what if you are not *Headist*? What if you like Tails just as much, and stop as soon as you get n Heads OR m Tails? Another interesting stopping rule is to make **both** Heads and Tails happy and keep tossing until you get n Heads AND m Tails. Now things are not as nice and simple. Nevertheless, using Wilf-Zeilberger algorithmic proof theory [PWZ], we can derive the next-best thing, linear recurrences that enable very fast comptation of these quantites. In the case of a fair coin and tossing until getting n Heads or n Tails, we get, explicit expressions not only for the expectation and variance, but for many moments, and prove that their centralized-scaled tend, rather than the standard normal distribution, N(0,1), to those of -|N(0,1)|.

While we (or rather our computer) can go pretty far, we can not prove it for *all* moments. In the second part of this article we will prove it completely.

References

[BFV] Simon Blatt, Uta Freiberg, and Vladimir Shikhman, *The mathematics of family planning in the Talmud*, Math. Intelligencer **47(2)** (Spring 2025), 120-125.

[PWZ] Marko Pektovsek, Herbert S. Wilf, and Doron Zeilberger, "A=B", AK Peters, 1996. Freely available from https://sites.math.rutgers.edu/~zeilberg/AegB.pdf .

Svante Janson, Department of Mathematics, Uppsala University, Box 480 751 06 Uppsala, SWE-DEN. Svante.Janson@math.uu.se .

Lucy Martinez, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. lm1154@math.rutgers.edu. Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA. DoronZeil@gmail.com

Written: **Nov. 2025**.