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are the most ubiquitous sequence in all of combinatorics. Their OEIS entry
A108 contains over 10,000 words, and Stanley’s famous Enumerative Com-
binatorics lists (as an exercisel) XXX combinatorial objects counted by the
Catalan numbers =0mu plus 3mu[stanley].

Here we emulate both Stanley and another great mathematician, Carl
Jacobi, who was known to say that one must always “seek a converse, turn a
thought the other end to” =0mu plus 3mu[invert]. Rather than providing a
collection of theorems about just one sequence, we will provide a collection
of proofs about just one theorem. We hope that newcomers or novices to
enumerative combinatorics will appreciate the many techniques and tricks
laid out here over many proofs.

Our lone theorem is about binary trees. A binary tree is a tree where
every node contains at most two children, one “left” and one “right.” Binary
trees can be organized in a variety of ways, but one popular way is to group
them by the number of “final” nodes without descendants they contain, called
leaves. Below are four unlabeled trees which contain one to three leaves.

The Catalan numbers



https://oeis.org/A000108

In fact, these are the only such nonempty binary trees if we require that each
node has exactly zero or one child. Such a binary tree is called “full.” Our
theorem is as follows.

Theorem 1. The number B, of full binary trees with n + 1 leaves is C,,.

1 Remy’s bijective proof

Consider an arbitrary full binary tree. Pick any leaf. Delete this leaf, and
replace its parent with the sibling of the leaf we picked. This is a bijection
between two sets.

On the left, we have “binary tree with one leaf singled out.” There are
(n + 1)B,, of these. (Or whatever the correct indexing should be.) On the
right, we have “binary tree with one leaf / internal node singled out, plus
with a marker for whether this came from the ‘right’ or ‘left’ in our bijection.”
There are 2(2n + 1) B, of these. That gives the recurrence

(n+1)B, =2(2n+1)B,_1.
(Check the indices here! They are almost definitely wrong right now.)

2  Young Tableaux

There’s an easy bijection between Dyck paths and 2n Young Tableaux. Then,
the hook length formula lets you count the number of these Young Tableaux.
(This is a bit reversed from what you would normally do.)

3 Generating functions

Every full binary tree is either empty or contains a single node with two full
binary trees as children. (Note that this include the case where the tree is
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just one node.) If the children of the root node are (L, R), then each distinct
pair produces a different tree, and the number of leaves of the entire tree is
the number in L plus the number in R. So, to get a tree with n > 1 leaves, we
stitch together all possible left-right children such that the number of their
leaves sums to n.

This amounts to the following proposition.

Proposition 1. Forn > 0,

By = Z By Bpy1-k-
k=1

4 Combinatorial grammars and generating func-
tions

Linguists and computer scientists have developed methods to formally de-
scribe languages. Combinatorialists have recognized that many discrete ob-
jects can also be described by these methods, and in fact can lead directly to
solutions to difficult enumeration problems. This approach is epitomized in
Flajolet and Sedgewick’s Analytic Combinatorics =0mu plus 3mulanalytic].

Consider a language which consists of words of the form a, aa, aaa, aaaa,
and so on, as well as the empty word. This language is generated by the
context free grammar

a — €| aa.

With the understanding that « represents an arbitrary member of our lan-
guage, and that € is a symbol for the empty word, this states that each «
is either € or a followed by another occurrence of some a. The language of
balanced parenthesis could be represented as

a— ()| (a)]aq

which contains the words (), (())(), and (()).

This idea translates quite directly to full binary trees. A full binary tree
is either empty, contains a root and no children, or contains a root and
has exactly two children. If T stands for an arbitrary full binary tree and



r an arbitrary root, then the above description translates to the following
grammar:
T —r|r(T)(T)
where r stands for a root node. This says that a tree is either empty, or
contains a node and two children.
The main benefit to the grammatical approach is their direct relation to

generating functions.
XXX

flz) =1+ af(x)?

5 Algebraic equations imply recurrences

A generating function which satisfies a polynomial equation is called alge-
braic. Every algebraic generating function leads directly to a certain kind of
recurrence.

[Explain how to go from algebraic equations to differential equations to
recurrences. Mention gfun!]

6 Lagrange Inversion

The generating function equation satisfied by f(x) is of a very special form.
That is, it is of the form

u(z) = z¢(u(x))
for some formal power series ¢(z).
Reason as follows:

f(x)=1+af(x)?
fle) = 1=a((f(z) = 1) + 1)%
Now set u(x) = f(z) — 1, so that we have
u(z) = (1 + u(x))?

And so. ..

Then apply the formula [z"|u(z) = 2[z"!|p(z)".

Easy Lagrange reference: https://sites.math.rutgers.edu/ zeilberg/
mamarim/mamarimPDF/lag.pdf


https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/lag.pdf
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/lag.pdf

7 Elementary calculus
Easy from the binomial theorem:

N

n

Then integrate both sides and divide by x:

a = — aT.
n+1\n V1—dzx

n

Can check that the difference is constant.

8 Dyck words

The grammar leads directly to the definition of Dyck paths. We can also
mention the more direct bijection between binary trees and Dyck paths,
which is a description of the (prefix?) depth-first traversal of a tree.

From here, we need to count the number of Dyck paths of a certain length.
But we want to do so without reference to the above methods, such as solving
the generating function equation, using Lagrange inversion, and so on.

[This may become multiple sections.]

Obvious recurrence method Think of Dyck paths as walks from (0, 0)
to (n,n) which stay below the identity line and consist of steps right and up.
We will first give a more general formulation, where F(a,b) the number of
such walks from (0,0) to (a,b). This has a very obvious description:

F(a,b) = F(a—1,b) + F(a,b—1)
F(a,0)=1
Fla,a+1) =0,

From here, we can verify the closed form answer F'(a,b) = (a — b+ 1)(a +
b)!/(a + 1)!b! quite easily. But we should also mention how you come up
with this. (One idea is to guess that the answer is hypergeometric, then fit
a formula given the data.)



Reflection proof The number of all walks from (0,0) to (n,n) is exactly
(2:) There is a fairly standard proof that you can “reflect” bad paths to get
good ones, and vice versa.

Motzkin lemma Take dyck words of semilength n and consider the 2n-+1
cyclic shifts that they generate. These are, taken together, just the set of
2n—+1 lists with n+1 copies of 1 and n copies of —1, of which there are (2":1).
Motzkin’s lemma says that these cyclic shifts are all distinct, and it should
be easy to show that they are all distinct. So, the number of dyck words of

. . . . . oIn+1
semilength n is the number of equivalence classes, which is ( ”; )2nl+1.
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10 Summation methods

As proven in previous sections, the number of full binary trees with n leaves
satisfies the identity

Bys1 =) BiBur.
k=1

Previously, we continued from here by deriving the generating function of
B,,. That is, in some sense, the more difficult choice. A simpler method is to
just check that C), satisfies the same recurrence. If so, and if they have the
same initial conditions, then we would be done. In other words, we would be
done if we could prove the following proposition.

Proposition 2.

= <2(:f 11)) -3 (k+ 1)(73 — k1) <2:> (2(:—_ ’fk))

k=1

Without leaving the world of summation, there are roughly two ways
to prove this identity. The first, following the summation bible Concrete
Mathematics =0mu plus 3mu[conc|, would be to manipulate the sum and
apply various transformations until a reasonable identity applied. The second
is to pull a rabbit out of a hat.



Proof. Call the summand F(n, k) and define the function

(n+1—2K)(2k —2n — 1)(k + 1)

G(n, k) := T

F(n,k).

When defined, these functions satisfy the identity
G(n,k+1) — G(n, k) = F(n,k),

which can (and should!) be verified by a computer. It follows that

§F<n7k>=6<n,n>—c<n,o>= on (2”)

o (n+1)(n+2)\ n

Adding F'(n,n) to both sides yields
- 2(n + 2 2
> Fln k) = 2B ().
p (n+1)(n+2)\ n

The expression on the right is C, 1. O]

The function G(n, k) from the above proof appeared as if by magic. It is
the result of Gosper’s algorithm for hypergeometric summation =0mu plus
3mu[gosper|. A sequence a(n) is hypergeometric in n provided that a(n +
1)/a(n) is a fixed rational function in n. Given a hypergeometric sequence
a(n), Gosper’s algorithm determines whether there exists a hypergeometric
s(n) such that

s(n+1) — s(n) = a(n),

and constructs it if it exists. This is equivalent to asking whether >")'_, a(k)
is hypergeometric, which in very loose terms is like asking whether this sum
has a “closed form.”

Our summand F(n, k) happens to be hypergeometric in k (where the
base field consists of all rational functions in n). When we execute Gosper’s
algorithm on F(n, k) we get precisely the G(n, k) referenced above.

It is worth mentioning that we got lucky. Gosper’s amazing algorithm
does not always produce a closed form, because not every indefinite sum
has a closed form. This is especially true for hypergeometric sequences of
more than one variable. There are very powerful generalizations of Gosper’s
algorithm that produce recurrences for all hypergeometric sums, and indeed
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much more general classes of sums. We will not go into detail here, but
see =0mu plus 3mulab; dfinite; computer| and the innumerable references
there.

[Todo: More on Zeilberger, WZ, companion identities? -R]

11 Constant term integrals
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