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The multivariable Almkvist-Zeilberger algorithm [1, 2] takes as input an inte-

grand that is hyperexponential in the integration variables and hypergeometric
in the discrete parameter, and then computes a single creative telescoping rela-
tion [8] that yields a recurrence satisfied by the integral. Alternatively, it can be
more efficient to perform creative telescoping on each integration separately, but
to do so we need an algorithm that can take arbitrary holonomic functions [7]
as input. For this purpose we employ the HolonomicFunctions package [4, 6]
in Mathematica. We demonstrate the strategy with the example of the original
Beukers triple integral:∫ 1

0

∫ 1

0

∫ 1

0

(
x(1 − x)y(1 − y)z(1 − z)

)n
(1 − z + xyz)n+1︸ ︷︷ ︸

=: fn(x,y,z)

dxdy dz. (1)

Since the integrations commute, we have in principle six permutations in which
order we can perform the integrations, but due to the symmetry of x and y, there
are actually just three. Experiments suggested that the following strategy is the
most efficient: we start with the integration w.r.t. z and obtain the following
set of linear operators{

(x− 1)x(y − 1)Dx − (x− 1)(y − 1)yDy + n(x− y),

(n + 1)(xy − 1)Sn + 2(x− 1)x(y − 1)y2Dy − (x− 1)xy(3ny − n− y + 1),

(y − 1)2y2(xy − 1)D2
y − (y − 1)y(2nxy2 − 4ny + 2n− 3xy2 + 3xy + y − 1)Dy

+ (n2xy3 − 4n2y2 + 4n2y − n2 − 2nxy3 + 3nxy2 − ny + xy3 − 2xy2 + xy)
}
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that annihilates the integral
∫ 1

0
fn(x, y, z) dz. Here Sn denotes the forward shift

in n, and Dx denotes the partial derivation w.r.t. x. Since we encounter re-
currences and differential equations of order larger than one, it is clear that
we cannot apply the Almkvist-Zeilberger algorithm again, but we really need
a more general one. In the second step, we perform integration w.r.t. x and
obtain the set of operators{

4(y − 1)2y2D2
y + (n + 1)2ySn − (y − 1)y(11ny − 8n− 9y + 4)Dy

+ (8n2y2 − 13n2y + 4n2 − 6ny2 + 5ny + 2y2 − 2y),

4(y − 1)ySnDy − (ny + 4n− 3y + 8)Sn − 5(y − 1)y2Dy + y(8ny − 3n− 2y + 2),

4(n + 2)2yS2
n +

(
(17n2 + 51n + 38)y2 − 20(2n + 3)2y + 16(2n + 3)2

)
Sn

− (y − 1)y2(27ny − 32n + 42y − 52)Dy

+ y(40n2y2 − 61n2y + 16n2 + 50ny2 − 72ny + 12n− 20y2 + 44y − 24)
}

that annihilates now the double integral
∫ 1

0

∫ 1

0
fn(x, y, z) dz dx. Finally, we in-

put the above set of operators once again to a holonomic creative telescoping
algorithm, in order to perform the integration w.r.t. y, and this yields the single
operator

(n + 2)3S2
n − (2n + 3)(17n2 + 51n + 39)Sn + (n + 1)3

that represents the second-order recurrence for the Beukers integral (1).
Now let us turn to the generalized Beukers triple integral∫ 1

0

∫ 1

0

∫ 1

0

xa1(1 − x)a2yb1(1 − y)b2zc1(1 − z)c2

(1 − z + xyz)d
· fn(x, y, z) dxdy dz. (2)

It can be treated in the same fashion as (1), with the major difference that the
existence of up to seven additional parameters tremendously blows up all the
expressions appearing in this calculation.

For general parameters a1, a2, b1, b2, c1, c2, d, the integral (2) does not satisfy
a second-order linear recurrence, as desired, but only a third-order one. One can
see this quickly by substituting the parameters by “random” integers (or even
better: rational numbers!). With some effort (using evaluation/interpolation
techniques, see below) we were also able to obtain the third-order recurrence
for purely symbolic parameters a1, a2, b1, b2, c1, c2 in the case d = 0. The four
coefficients of this recurrence are huge multivariate polynomials so that the
whole recurrence consumes about 1 GB of memory.

One possible strategy that we considered was to extract conditions on the
parameters, under which the order of this recurrence would drop, for example,
by studying the zero set of the leading resp. trailing coefficient. Unfortunately,
this did not reveal much useful information.

Instead, we performed a trial-and-error driven search for particular choices
of the parameters, such that the resulting recurrence is of order two. Starting
with one-, two-, and three-parameter families, we ended up with a (possibly
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(a, b, c, d, e, f, n)-degree points time/pt total time size

i = 0 (6, 6, 10, 6, 6, 8, 13) 960 170 s 45 h + 0.5 h 18 M
i = 1 (7, 7, 12, 7, 7, 10, 15) 1512 300 s 126 h + 3 h 47 M
i = 2 (8, 8, 14, 8, 8, 12, 17) 2240 700 s 18 d + 8 h 106 M

Table 1: Computational data for three instances of a six-parameter family with
second-order recurrence. The second column displays the coefficient degree of
the output recurrence, the column “points” shows the number of evaluation
points, “time/pt” refers to the time spend for each point. The next column
gives the total timing (time spent in the evaluation phase + time for interpo-
lation), and the last column shows the size (in MegaByte, according to Mathe-
matica’s ByteCount) of the recurrence with factored coefficients (keeping them
in expanded form increases the size by a factor of about 3).

infinite) family of six-parameter families, which we believe is the most general
integral of the form (2) still giving a second-order recurrence. More precisely,
we set

a1 = b, a2 = c−f, b1 = e, b2 = a+f + i, c1 = a, c2 = c, d = d, (3)

and let a, b, c, d, e, f be arbitrary (i.e., symbolic) parameters, while i must be a
nonnegative integer. That means, for each integer i > 0, we expect a second-
order recurrence in the symbolic six parameters a, b, c, d, e, f . We have con-
cretely computed such second-order six-parameter recurrences for i = 0, i = 1,
and i = 2, and observed that the coefficient degrees in the parameters were
growing linearly with i (see Table 1), suggesting that there is no second-order
recurrence for symbolic i. Based on experimental results, we conjecture that for
each nonnegative integer i a second-order recurrence exists, but we are unable
to prove it in general.

Constructing these recurrences is quite a computational challenge. None of
the creative telescoping algorithms [3, 5] implemented in the HolonomicFunc-
tions package was able to compute them directly with all parameters symbolic.
Instead, we chose a hybrid strategy and treated three of the parameters (specif-
ically: c, d, f) with evaluation/interpolation, while keeping the others (a, b, e)
symbolic. This allowed us to circumvent rational function reconstruction and
thus keep the number of necessary evaluation points low (namely: degree of the
polynomial plus one, plus one for safety, instead of twice the polynomial degree
plus two, for rational reconstruction). Also we observed that there was no signif-
icant expression swell with respect to the numeric coefficients and therefore we
did the computation without any modular arithmetic and chinese remaindering.
Table 1 shows the increasing difficulty as the parameter i grows; we were not
able (resp. not willing) to construct a second-order recurrence for i > 2. The
recurrence that was mainly used in the rest of this paper is the five-parameter
family that is obtained from (3) by setting f = i = 0.
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